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Abstract 
Yoshida and Adachi’s diploid genetic algorithm- the so-called pseudo-Meiosis 

genetic Algorithm (psM GA)- was focused on preserving population diversity and 
adapting the population quickly to problem changes. The large population diversity 
provided by psM GA with good adaptation to the problem changes were effective 
and sufficient to tackle non-stationary traveling salesman problem. They did not 
apply this genetic algorithm to other problem domains, like bit-coding problems. 
Hence, in this paper we revisit the psM GA, apply it on bit-coding problems so as to 
see the effect and search power of this genetic search algorithm on this problem 
domain. 

 

  الخلاصة
 والتي -ن يوشيدا واداجييالخوارزمية الجينية ثنائية المجموعة الكروموسومية والتي صممت من قبل الباحث

 ركزت على المحافظة على تنوع وتكيف المجتمع بصورة -تسمى الخوارزميات الجينية ذات الانشطار الكاذب
ير للمجتمع الذي توفره الخوارزمية والتكيف الجيد التنوع الكب. سريعة لتتلاءم مع تغير محيط المشكلة المراد حلها

الباحثان لم . مع التغير في محيط المشكلة كان كافيا وفعالا في معالجة التغير في محيط مشكلة البائع المتجول
على هذا . يطبقوا هذه الخوارزمية على مجالات أخرى من المشاكل  مثل المشاكل التي تستخدم التمثيل الثنائي

وذلك لدراسة فعالية , ذا البحث سوف يطبق هذه الخوارزمية على المشاكل التي تستخدم التمثيل الثنائيالأساس ه
  .وقوة الخوارزمية الجينية ذات الانشطار الكاذب على هكذا مجال من المشاكل

  
  

 
Motivation 

In nature most species utilize a dual or 
diploid chromosome structure in the non-gametic 
phase of their life cycle. Attempts to exploit 
diploidy with genetic algorithms are provided by 
Goldberg and Smith [1] [2], Yoshida and Adachi 
[3], and Greene [4]. These diploid GAs were 
mainly focused on preserving population 
diversity that is crucial particularly with multi-
modal or non-stationary problems. 
Some diploid genetic algorithms used dominance 
to generate a phenotype (or intermediate haploid 
chromosome) from diploid chromosomes. In 
methods based on dominance, chromosome 
position (or locus), and dominant values are 

chosen for each position to generate a haploid 
chromosome. 
This kind of dominance method cannot be always 
used for various problems. Previous studies on 
diploid and dominance GAs have focused mainly 
on bit-coding problems, a solution is coded as a 
bit string and loci have no strong inter-
dependency. But, order-coding problems often 
have strong constraints among loci. Consider a 
traveling salesman problem (TSP) and assume 
that each chromosome represents a tour in the 
form of a permutation of cities. The TSP has the 
constraint that every city must appear only once 
in a tour. If dominant cities are chosen 
independently of each other from a pair of 
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chromosomes (tours) to form a new tour, most 
resulting tours would violate the constraint. Also, 
it is often difficult to define dominant-and-
recessive relations among cities. 
Another dominance method for diploid GAs, 
which differs from nature, is to select one of a 
pair of chromosomes according to some criterion, 
for example, choosing one randomly, or the 
better (or higher-fitness) one. This method never 
generates illegal (or lethal) haploid 
chromosomes, and can therefore be used for 
order-coding problems. But, it has the drawback 
that one of two chromosomes does not contribute 
to the GA search. 
Yoshida and Adachi which proposed a diploid 
GA – the so called psM GA- studied its effect on 
ordering-problem (non-stationary traveling 
salesman problem). There simulation showed that 
the psM GA quickly adapted the population to 
the environment changes of TSP as it preserves 
population diversity. However, they did not 
address whether the mechanism of psM GA is 
also suffice in other problem domains like bit-
coding problems. Hence, this paper revisits the 
psM GA using bit-coding problem domain. 
The next section presents details of psM GA. 
Section 3 compares the performance of psM GA 
on bit-coding problem with haploid genetic 
algorithm. Finally, section 4 presents 
conclusions. 
 
The pseudo-Meiosis Genetic Algorithm 
1. Lingo used in psM GA 

Below is some consideration that should be 
presented behind the description of psM GA [3]. 
a. Producing a single chromosome from a pair of 
chromosomes is analogous to meiosis in biology. 
Meiosis involves genetic recombination between 
homologous chromosomes and cell division 
producing haploid gametes. As the metaphor 
from nature, diploid-to-haploid mapping named 
pseudo-meiosis (psM). By “pseudo-“ they mean 
that throughout mapping the chromosome pair is 
kept intact, unlike real meiosis. 
b. To avoid lethal haploids1 and to make both 
homologous chromosomes contribute to a (post-
meiosis) haploid, they use an ordinary crossover 
operator as psM mapping. Pseudo-meiosis 
mapping and crossover are the same from an 
algorithmic point of view. They distinguish 

                                                           
1 A lethal haploid chromosome means a haploid 
chromosome which violate the constraints of the 
problem. For TSP, the constraints is that every city 
must appears only once in a tour. 

between psM mapping and crossover, because 
psM occurs inside an individual whereas 
crossover occurs between individuals. Some 
crossover operators over two parent 
chromosomes yield two offspring chromosomes. 
In psM mapping, they assume that one of the two 
is selected according to some criterion (i.e. the 
one inheriting more properties of the chief 
chromosome, or the higher-fitness one). 
c. One chromosome of a diploid does not 
undergo selection. If, during selection, both 
chromosomes of a diploid become extinct, and a 
clone offspring of a diploid is reproduced, the 
population diversity decreases, like with haploid 
GAs. Because one of the two chromosomes 
bypasses selection, the population retains its 
diversity. 
d. Haploid-to-diploid re-pairing procedure builds 
a diploid from the one chromosome that survived 
selection, and another chromosome which 
bypassed selection. If both chromosomes of a 
diploid are processed as one body, repairing is 
not necessary. 
 
2. Steps of psM GA 

The psM GA has several steps. Below is a 
detailed explanation of each step (figure 1). 
1. (Initialization) All chromosomes are created 

according to some rules, as in other GAs. In 
psM GA, each individual has two slots to hold 
a pair of chromosomes, a chief slot and an 
assistant slot. The chromosome in a chief slot, 
called a chief chromosome, and the one in an 
assistant slot is called an assistant chromosome. 
Chief and assistant properties do not change 
during generation. 

2. (Pseudo-meiosis) Pseudo-meiosis mapping is 
applied to each diploid with probability 
Pmeio  in order to generate a post-meiosis 
(haploid) chromosome. For individuals that 
bypass pseudo-meiosis, a copy of the chief 
chromosome is treated as a post-meiosis one. 

3. (Selection, crossover and mutation) This step 
is very similar to that of ordinary haploid GAs, 
except that GA operations are applied only to 
the post-meiosis chromosomes’ population. 
The post-meiosis chromosomes are first 
evaluated and then selected and reproduced 
based on their fitness values. The offspring 
chromosome undergoes crossover, with 

probability Pc , and mutation, with 

probability Pm . 
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4. (Re-pairing) Each offspring chromosome is 
pulled back to the chief slot of its parent 
individual. The chief slot of an individual 
whose post-meiosis chromosome became 
extinct because of selection is filled with 
reproduced, and therefore promising, offspring. 
Each assistant chromosome undergoes 

mutation with probability Pma . Note that, 
apart from mutation, there is no destructive 
operation for assistant chromosomes. 

5. (Generation-cycle) steps 2 to 4 form one-
generation cycle. The generation is repeated 
until some terminating condition satisfied. 

The names, chief and assistant, come from their 
functions. The chief chromosome is related to the 
principal search cycle of the GA, whereas the 
assistant one works only for its chief pair inside 
the individual. 
One of the unusual features of the psM GA is that 
assistant chromosomes vary independently of 
chief ones, and therefore continuously maintain 
population diversity. Assistant chromosomes 
work as follows during a search: copies of the 
better (or higher-fitness) post-meiosis 
chromosome will migrate to many individuals, 
and be psM-mapped with different assistant 
chromosomes in the next generation cycle. In 
other words, random local searches are 
performed around the better chief chromosomes. 
Because a variety of assistant chromosomes are 
retained independent of chief ones, local searches 
function continuously. In contrast, variation in 
population of typical haploid GAs tends to 
decrease as generation proceeds. The chances of 
having better chromosomes for crossover with 
different chromosomes also decrease. 
 
Experimental Comparison with Haploid GA 

In this section, we examine the behavior of 
the psM GA on bit-coding problems and compare 
its results with haploid genetic algorithm. Hence, 
before presenting experiments, we highlight 
below a brief overview of the haploid genetic 
algorithm. 
 
1. Haploid Genetic Algorithm: A Brief 
Overview 

Haploid Genetic Algorithms (HGAs) or 
simple genetic algorithms are a class of stochastic 
search algorithms. They are motivated by the 
computational process in natural evolution. The 
HGA works from a population of samples 
defined using some representation searches by 
selection, crossover and mutation [2][5]. 

i. Representation: HGA sometimes uses a 
sequence representation. Binary representation 
and gray coding are some examples often used in 
GAs. Strings are sometimes called chromosomes. 
ii. Selection: the selection operator is responsible 
for detecting better regions of the search space. 
The fitness of a member is its objective function 
value. Selection computes an ordering among all 
the members of the population and gives more 
copies to the better strings at the expense of less 
fit members. Some widely used selection 
operators are roulette wheel selection and 
tournament selection. 
iii. Perturbation operators: 
a. Crossover: crossover works by swapping 
portions between two strings. Single point 
crossover is often used in haploid GAs. It works 
by first randomly picking a point between 0 and 
l. The participating strings are then split at that 
point, followed by a swapping of the split halves. 
Crossover is often applied with high probability. 
b. Mutation: mutation randomly changes the 
entries of a string. Mutation is usually treated as a 
low profile in GAs because of its random nature 
of perturbation. 
 
2. Algorithms Parameters Setup 

Minimization experiments on test functions, 
described in table 1, were carried out in order to 
determine the performance of the psM GA with 
binary representation. Comparison was made 
with haploid genetic algorithm (HGA).  
Simulation conditions were as follows: 
population size was 75 for the psM GA, and 150 
for the HGA, so that the total number of 
chromosomes was 150 for both GAs. The 
tournament selection procedure with size two 
was used. Two-point crossover was used for both 
psM mapping and recombination. For both 

algorithms, crossover probability =0.75. For 
the psM, pseudo-meiosis probability 

=0.001, mutation probability over (post-

meiosis) haploid chromosomes is =0.001, 
and mutation over assistant chromosomes 

=0.01.  

Pc

P

Pmeio

Pma

m

The test functions include a range of function 
types that takes important characteristics (e.g., 
unimodal and multimodal, position of the optimal 
solution). The Sphere function (F1) is a 
continuous, strictly convex, unimodal and its 
minimum is at (0,…,0) in the center of the search 
space. It is the simplest, imaginable of all 
quadratic functions, nevertheless, is a standard 
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problem. F4 is a multimodal Rastrigin’s function 
which is made from the sphere function by 

modulating it with )*2cos(*10 xi . It 

characterized by having 11 local minima, and 
by only one global minimum at (0,…,0). This 
function is considered as difficult for most 
methods. The Ackely’s path function (F3) is a 
conventional generalized multimodal with global 
optimum at (0,…,0) the center of the search 
space. The Griewangk’s (F4) function is another 
multimodal function, in which the summation 
term induces a parabolic “meta-structure” 
distributed by “waves”. The waves are created by 
the cosine function in the product term. The 
product term induces a non-seprable feature for 
F4. Due to nonseparability of F4, it is difficult to 
optimize and search algorithm has to climb a hill 
to reach the next valley and the function has 
strong epistasis with small dimension. 

n

3. Results  
Tables 2 to 5 provide a summery of applying 
psM GA and Haploid GA to the test functions 
F1, F2, F3, and F4 respectively with moderate 

dimension (i.e. ). Each value in table 

computed is from the average of fifteen runs of 
three hundred generations.  

10n

 
Conclusions  

Results presented assess the degradation of 
the psM GA’s performance over that of the 
Haploid GA counterpart. In all these four 
problems, the psM GA failed completely to 
approach the global minimum while the Haploid 
GA succeeds in providing the reliable solutions 
in two of them. Both in F1 and F4, the Haploid 
GA achieves the desired solutions in almost all 
runs (i.e. in 15 different runs). This in turn 
emphasizes that diversity provided by the 
mechanism of psM GA couldn’t accommodate 
the bit-coding domain. Another point here to be 
highlighted is that the inadequate performance of 
Haploid GA in F2 and F3 does not indicate the 
inability of Haploid GA in tracking these 
problems, but its main cause is the use of bit-
coding (genotypic level) recombination process 
for these real-valued parametric optimization 
problems. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Genetic operations of the pseudo-Meiosis GA. 
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Table 1: The Four Test Functions 
Problem 

No. 
Numerical Description Range of  xi

Reliable objective 
function value  

F1 




n

i
ixxf

1

2)(  [-5.12,5.12] 04500.2  E  

F2 ))*2cos(*10(*10)(
1

2 xixinxf
n

i





[-5.12,5.12] 029594.4  E

F3 

exin

xin
xf

n

i

n

i










20))*2cos(*
1

exp(

*
1

*2.0exp(*20)(

1

1

2



 [-32.768,32.768] 030133.2  E

F4 )/cos(/1)(
11

2 4000 




n

i
i

n

i
i ixxxf 011309.3 E [-600.0,600.0] 

 
Table 2: Test result of psM GA against Haploid GA on F1 where n=10 

Gen. No. psM GA Haploid GA 
20 1.3708E+01 8.2516E-01 
40 1.0626E+01 1.9992E-01 
60 9.2152E+00 6.3285E-02 
80 7.3458E+00 1.4422E-02 
100 6.5912E+00 4.4202E-03 
120 5.7239E+00 9.8779E-04 
140 4.9889E+00 2.5356E-04 
160 4.2637E+00 5.1887E-05 
180 3.9188E+00 9.2514E-06 
200 3.7751E+00 4.5526E-06 
220 3.6644E+00 6.3000E-07 
240 3.5488E+00 1.5062E-07 
260 3.3794E+00 5.8362E-08 
280 3.3638E+00 2.6731E-08 
300 3.3676E+00 9.9127E-09 

 
 

Table 3: Test result of psM GA against Haploid GA on F2 where n=10 
Gen. No. psM GA Haploid GA 

20 5.4154E+01 1.1339E+01 
40 3.7543E+01 6.2934E+00 
60 3.0395E+01 5.3663E+00 
80 2.8241E+01 5.0769E+00 
100 2.7481E+01 4.9821E+00 
120 2.5963E+01 4.9137E+00 
140 2.4559E+01 4.8956E+00 
160 2.4786E+01 4.8927E+00 
180 2.4268E+01 4.8908E+00 
200 2.4629E+01 4.8889E+00 
220 2.4793E+01 4.8885E+00 
240 2.3120E+01 4.8885E+00 
260 2.5043E+01 4.8837E+00 
280 2.2319E+01 4.8821E+00 
300 2.3226E+01 4.8574E+00 
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Table 4: Test result of psM GA against Haploid GA on F3 where n=10 
 

Gen. No. psM GA Haploid GA 
20 1.3708E+01 7.4234E+00 
40 1.0626E+01 4.3606E+00 
60 9.2152E+00 3.5096E+00 
80 7.3458E+00 3.1903E+00 
100 6.5912E+00 3.0600E+00 
120 5.7239E+00 3.0317E+00  
140 4.9889E+00 3.0202E+00 
160 4.2637E+00 3.0002E+00 
180 3.9188E+00 2.9620E+00 
200 3.7751E+00 2.9609E+00 
220 3.6644E+00 2.9384E+00 
240 3.5488E+00 2.9220E+00 
260 3.3794E+00 2.9154E+00 
280 3.3638E+00 2.8935E+00 
300  3.3676E+00 2.8835E+00 

 
 

Table 5: Test result of psM GA against Haploid GA on F4 where n=10 
 

Gen. No. psM GA Haploid GA 

20 2.1601E+01 3.7946E+00 
40 1.0168E+01 1.6980E+00 
60 5.3866E+00 1.1352E+00 
80 3.6071E+00 8.8072E-01 
100 2.6943E+00 5.6805E-01 
120 2.1765E+00 3.3673E-01 
140 1.7945E+00 1.7083E-01 
160 1.5701E+00 1.3668E-01 
180 1.4346E+00 1.2844E-01 
200 1.3928E+00 1.2481E-01 
220 1.3316E+00 1.2240E-01 
240 1.2799E+00 1.2094E-01 
260 1.2601E+00 1.2083E-01 
280 1.1935E+00 1.2081E-01 
300 1.1861E+00 1.2081E-01 

 
 
 

4. Sima, A. (1999): New Operators and 
Dominance Scheme for a Diploid GA, 
Technical Report No.80626 Maslak Istanbul, 
Computer Engineering Department. Istanbul 
Technical University, Turkey. 
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