

Dini de la fr

Preparation and Characterization of New Metal Complexes of Schiff Bases Contaning a Thiazole Ring

Ahlam J. Abdul-Ghani and R. A. Majeed

Abstract

New metal Complexes of two newly prepared Schiff bases (L_T and L_V) and three previously prepared Schiff bases HL_{II} , L_{III} , L_{IV} by reacting 2-amino benzothiazole(2-ABT) with 2,4-dimethoxybenzaldehyde, salicylaldehyde, 4-hydroxy benzaldehyde, N,N-dimethyl-4-aminobenzaldehyde and from reaction of 2-aminothiazole (2-AT) with 2,4-dimethoxy benzaldehyde respectively. Structures were proposed depending on elemental and thermal analyses (TG and DTG) and by i.r and u.v- visible spectra in addition to magnetic susceptibility and electrical conductivity measurements. Some of these compounds exhibited growth inhibition against two types of bacteria.

الخلاصة

حضرت معقدات فلزية جديدة لاثنين من قواعد شيف جديدة I_{N} و I_{N} و ثلاثية من قواعد شيف محضرة سابقاً I_{N} الله و I_{N} و I_{N} من مفاعلة I_{N} من مفاعلة I_{N} من مفاعلة I_{N} الميهايد وساليسيل الديهايد و I_{N} هيدروكسي بنز الديها يد. و I_{N} من I_{N} من مفاعلة I_{N} الميفايد و I_{N} من على مناطقة I_{N} من الميفايد و I_{N} من على مناطقة I_{N} من الميفايد و I_{N} من على المناطقة I_{N} من مناطقة I_{N} من المناطقة I_{N} من مناطقة I_{N} مناطقة مناطقة I_{N} مناطقة مناطقة I_{N} مناطقة مناطقة I_{N} مناطقة منا

شخصت التراكيب الكيميائية بواسطة التحليل الدقيق للعناصر والتحاليل الحرارية DTG, TG وتتاتج اطياف الاشعة تحت الحمراء والاشعة فوق البنفسجية المرئية فضلاً عن قياسات الحماسية المغناطيسية والتوصيلية الكهربائية للمعقدات الفلزية. اظهرت بعض المركبات المحضرة قابلية على تثبيط نمو نوعين مسن البكتريسا المرضية

Introduction

Schiff bases derived from aromatic aldehydes containing- OCH₃, OH or halogen groups were reported to have higher antifungal activity than those of unsubstituted aromatic rings (1,2). In industry, these derivatives were used as anticorrosion agents and as fixing agents for fabric printing (3).

The importance of Schiff bases complexes were desecribed in the litrature (4,7). They were used as synthetic models for the explanation of biological reactions mediated by active metal centers such as oxygen carriers (hemocyanine, hemoglobin, myoglobin(6,7)) and in electron

transfer reactions (4,5,7). Furthermore some complexes of Schiff bases were found more active than parent ligands against bacteria and fungi (8,9), herbicides, and anticancer agents (10). In this work a new series of transition metal complexes of two new Schiff bases was prepared and studied. New complexes of three previously prepared Schiff bases (11,13), derived from condensation of 2- aminobenzothiazole (2-ABT) and 2- aminothiazole (2-AT) with different aromatic aldehydes were also prepared and studied. The structural formula of these compounds are illustrated in Scheme (1) and names are described in table (1).

Experimental Apparatus:

Melting points (uncorrected) were obtained using Gallenkamp MF 600-010F melting point apparatus. Elemental analyses were perforned by using Elemental analysis - Perkin Elmer 240B and Elemental analysis model CHNSO-Carlo-Erba instruments. Infrared spectra of ligands and complexes were recorded as KBr and Csl discs respectively on Perkin- Elmer 983 GIP and i.r spectrophotometer. Pyeunicam sp-300 Electronic spectra of ligands in ethanol and complexes in DMF were recorded on u.v- visible spectrophotometer Shimadzu u.v- 160A. H.n.m.r Spectra of ligands in DMSO were recorded on Hitachi- Perkin- Elmer spectrophotometer at 60 MHz with TMS as a reference.. Thermal analyses by TG and DTG were obtained by using Stonton Redcorft TG 760 series and thermogravimetric Analyzer (TGA) A Du-pont Thermobablance Model 951. Electrical conductivity of metal complexes in DMF (10⁻³M) were measured at room temperature by using Capacitor Analyzer and Resistance Bridge type CRB3. Magnetic susceptibilities (µeff B.M) of metal complexes in the solid states were measured at room temperature by Faraday method using Bruker Magnet B.M.6. Determination of metal content (%) of complexes were crried out by using Schimadzu-680G atomic absorption of flame emission spectrophotometer and Elemental analyser MOD 1106 Carlo-Erba.

Materials and Methods

Metal salts Ru Cl₃.3H₂O, 98%, H₂PtCl₆.6H₂O 38%, Ni(CH₃COO)₂.4H₂O (Purum), PdCl₂, 60% (Fluka), CuCl₂.2H₂O. (extra pure) (Merck), were used as received from suppliers. N, N-Dimethyl-4- amino benzaldehyde, 99% benzonitrile (puriss) (Fluka), and triethyl amine 99.5% (BDH) were used without further purification. Dimethy formamide and ethanol were dried before distillation (14,15). 2-Amino benzothiazole (2-ABT) was purified by crystallistion from boiling water (16) and 2-aminothiazole was purified by sublimation under reduced pressure. 4-Hydroxy benzaldehyde 99% was purified according to a method mentioned in the litrature (15). The preparation of 2- chlorobenzonitrile palladium (II) was carried out according to a reported method (17). The purity of all products were confirmed by T.L.C. using silica gel and different ratios of chloroform and acetone mixture as eluents.

Preparation of Schiff bases

The ligands L_I-Lv described in table (1) and illustrated by structures (a) and (b) in scheme –1-were prepared by adding ethanolic solutions (0.01 mole) of the amine to (0.01 mole) of aldehyde in dry ethanol. The amount of solvent should be as minimum as possible. 3-4 drops of piperidine were added and the solution was heated under reflux on a water bath for 30 min. with continuous stirring. A precipitate was formed after cooling the mixture to room temperature. The product was filtered off, washed with cold ethanol and ether and crystallized from ethanol then dried under vacuum.

Scheme (1):-Schiff bases derived from 2-amino thiazole and 2-amino benzothiazole

Table (1): Schiff bases derived from thiazoles and aromatic aldehydes

Symbol	Nomenclature	X	Z
	N-(2,4- Dimethoxy benzylidene) benzothiazole	OCH ₃	OCH ₃
HL _{II}	N- (Salicylidene)- benzothiazole	ОН	Н
Liii	N- (4-Hydroxy benzylidene) benzothiazole	Н	ОН
L _{IV}	N-(4-N,N-Dimethylaminobenzylidene)- benzothiazole	H	(CH ₃) ₂ N
Lv	N- (2,4- Dimethoxy benzylidene)- thiazole	OCH ₃	OCH ₃

Preparation of metal complexes

An ethanolic solution of metal salt (1 mmole) was added to an ethanolic solution of ligand (2 mmole) with continuous stirring. In case of C_4 and C_5 (2 mmole) of Et_3N were added. Precipitation took place immediately. Each mixture was then heated under reflux for 30 min to allow complete precipitation. The products were filtered off, washed with ethanol, followed by ether and dried under vacuum.

Results and Discussions

a) Physical data and elemental analyses:

Table (2) describes the physical properties of ligands and complexes together with CHN analyses and atomic absorption. The suggested molecular formulae were further supported by

thermal analyses and spectral studies. Elemental analyses of some complexes recorded deviation in hydrogen content (especially C₇, C₈ and C₁₁) because of technical errors in the instrument.

b) H.M.R. Spectra:

The N.M.R. spectrum of $L_{\rm i}$ in DMSO gave the following chemical shifts $\delta({\rm ppm})$: 2.85 (s, 3H, OCH₃), $^{(18)}$ 2.95 (s.3H, OCH₃) $^{(18)}$; 6.3-6.5 (m, 4H_A, aromatic H_A) $^{(18)}$; 6.7-7.0 (m, 3H_B o,ptrisubsituted benzene) $^{(18)}$; 8.15-8.3 (s,1H, CH for schiff base) $^{(19,20)}$. Additional chemical shifts were observed and were assigned to lattice ethanol $^{(18)}$. 1.4-1.6 t (CH₃); 2.2 -2.5 g (CH₂); 5.6-2.75 (OH) and 3.2-3.4 for DMSO $^{(21)}$.

Table (2): Molecular formula, Physical properties, and elemental analyses (%) of Schiff bases and their

metal complexes. Symble	(m.p)C		ental analy ind (calcula		M% Found
Molecular formula (Colour)	Yield %	C%	H%	N%	(Calculated
L ₁ [C ₁₆ H ₁₄ N ₂ SO ₂].0.5 EtOH(yellow)	(135-137) 70%	61.7 (61.62)	4.45 (5.29)	8.24 (8.71)	-
C ₁ [PdL ₁ Cl ₂].05 H ₂ O. 0.5 EtOH (yellow)	(287) decomp. 38%	_	-	-	20.75 (20.73)
C_2 [PtL ₁ Cl ₂ (H ₂ O) ₂].Cl ₂ .2H ₂ O.EtOH (yellow)	(259-261) sub. 43.8%	28.54 (28.67)	2.55 (2.52)	4.75 (3,72)	•
C ₃ [RuL ₁ Cl ₃ H ₂ O].2H ₂ O (greenish black)	>(300) 25.4%	33.48 (34.29)	2.98 (3.57)	5.8 (5.0)	17.81 (18.05)
HL _{II} C ₁₄ H ₁₀ N ₂ SO (yellow)	(145-147) 54%	65.5 (66.06)	4.20 (3.93)	10.43 (11.01)	~
C_4 $C_0(L_{II})_2(H_2O)_2$ (reddish brown)	(282) decomp. 33%	55.85 (55.85)	3.40 (3.66)	8.39 (9.31)	-
C ₅ [Ni(L ₁₁) ₂ (H ₂ O) ₂ 2EtOH (orange)	>(305) 30.8%	4	-	-	8.43 (8.47)
L _{III}	(189-190)	65.73	4.20	10.62	

$C_{14}H_{10}N_2SO$ (yellow)	lit.185 ⁽¹²⁾	(66.06)	(3.93)	(11.01)	idoz (1) Schi
C ₆ [PdL _{III} Cl ₂).2H ₂ O (Olive green)	>(305) decomp. 44.5%	-	-	-	(20.71)
C_7 [Pt(L _{III}) ₂ Cl ₂ (H ₂ O) ₂].Cl ₂ .1.5H ₂ O. EtOH(1) (pale yellow)	(259-260) decomp. 37.3%	37.45 (38.41)	2.58 (3.31)	5.82 (5.98)	19.76 (20.40)
L_{IV} $C_{16}H_{15}N_3N_3S$ (orange)	(187-189) lit:(186-187) ⁽¹³⁾ 67.0%	59.34 (59.74)	4.92 (5.33)	14.50 (14.94)	6.0
C_8 [Co(L _{IV}) ₂ Cl ₂ (H ₂ O) ₂].1.5H ₂ O.EtOH (Grey violet)	(289-290) decomp. 20.9%	50.02 (50.92)	4.38 (5.36)	9.29 (10.48)	7.01 7.48
C_9 [Ni(L _{IV}) ₂ (H ₂ O) ₄].(NO ₃) ₂ (orange yellow)	>(305) 29.3%	-	-	-	6.96 (7.46)
C_{10} [Pd(L_{IV}) ₂ Cl ₂].3H ₂ O.0.5EtOH (bright orange)	(259) decomp. (264-266) sub. 30.0%	-	-	-	13.31 (13.03
$ m L_V \ C_{12}H_{12}N_2SO_2 \ (yellow)$	(87-90) 20%	57.40 (57.99)	5.22 (4.83)	5.50 (5.64)	-
C_{11} [Cu(L _V)Cl ₂ (H ₂ O) ₂].0.2H ₂ O (yellow)	(102-105) decomp. 15.8%	33.28 (32.69)	3.58 (4.17)	7.20 (6.36)	14.92 (14.43)

c) Infrared spectra:

Important characterstic stretching frequencies of the ligands and their metal complexes are described in Table (3).

i) Complexes of $L_I(C_1-C_3)$ and $L_V(C_{11})$:

Bands related to methyl C-H, C-O, stretching and CH3 bending vibrations of the ligand appeared at 2920, 1020 and 1355 cm⁻¹ respectively (17). All complexes C1-C3 showed shifts in positions of azomethine group stretching vibrations, as a result of coordination with metal ions (9,22). The thiazole ring exhibited shifts of C=N, C-N and C-S stretching vibrations to higher frequencies in C1 and C2 and of C=N to lower frequencies in C3. This refers to the coordination of metal ion to sulfur atom (23) in C1 and C2 and to nitrogen atom (24) in C3. New low intensity bands were observed at lower frequencies were assigned to vM-S and vM-N vibrations respectively (25,26). Complexation of LIV with Cu(II) ion caused a shift of vc=N of azomethine group only to higher frequencies which refers to the coordination of metal ion to imino nitrogen (9,22). A new low intensity band appeared at lower frequencies and was assigned to Cu-Ci stretching modes of cis form (25).

ii) Complexes of HLII (C4, C5):

The spectra of C_4 and C_5 exhibited shifts in position of v_C =N vibrations and the disappearance of phenolic OH stretching modes together with the appearance of bands related to M-O and M-N=C stretching vibrations. This refers to the coordination of metal ions with imino nitrogen (9,22) and phenoxy group of the ligand (27, 28) .Vibrations related to lattice water (25,26) were also observed.

iii) Complexes of L_{III} (C₆, C₇):

The spectra of C_6 and C_7 showed shifts in streching vibrations of azomethine group which refers to the coordination of azomethine group to metal ions (9,22). The spectrum of C_6 exhibited shifts of thiazole ring vibrations to higher frequencies which refers to further coordination of metal ion to sulfur atom (23).

Abdul-Ghani & Majeed

Iraqi Journal of Science, Vol. 46, No. 1, 2005, PP. 59-74

Table (3): Characterterstic stretching vibrations v(cm-1) of i.r spectra for Schiff bases and their metal complexes

UMS	(v NO3)	24	1	375	5 420		0	,	- 6		1	and the second second	r		_
	UM-CI			335	335		370	355	310	1	1				1
	UM-O		1	1	(390)8		(490) ^g		المراجع المراج	1	(460) ^d	(405)8	(410) ^d	(400) ^g	
	UM-N		ř	420ª	480ª		420ª	260 ^b		ī	495 ⁸		500ª		1
V H20	Lattice	(coordinate)	1	3380-3270	3260-3200	(695pr), (645pw)	3500-3200	(009)		ı	(840 pr)	(875 pw)	(700 pr)	(md 069)	1
но о	Phenolic	(EtOH)	(3500-3100)	(3600-3420)	(3320)	40-78-6	1			3580-3180	1		(3600-3380)		1
ations	0C=S		730	750	750		745			745	745	.,	745		745
Thiazole vibrations	UC-N		1105	1120	1130		1120			1110	1110		1115		1105
Thi	UC-N		1500	1520	1520		1449			1500	1510		1513		1525
Azome thine	UC-N		1610	1595	1630		1585			1595	1630-1595		1630-1600		1621
	Symbol		Ľ	CI	C ₂		ű			HL	C4		స		LIII

Table (3): (continued)

C.	$L_{\scriptscriptstyle m V}$	C ₁₀	C,		C ₈	L _{IV}	C ₇	C _k	Symbol	
1610	1583	1595	1600		1600	1621	1630	1610	Azome thine $v_{C=N}$	
1510	1500	1520	1520		1520	1525	1515	1540	υ _{C-N}	Thi
1110	1100	1118	1118		1118	1118	1110	1130	υ _{C-N}	Thiazole vibrations
740	740	740	740		740	740	745	754	$v_{C=S}$	ations
1	1	3600-3500	1		(3700-3500)	1	(3700-3400) 3340	(3600-3440)	Phenolic (EtOH)	но п
3630-3230 830pr.640pw		3380-3270	(660)	(710)	3480-3160 (660)	1	3206-3210 770pr 660pw	3400-3290	<u>Lattice</u> (coordinate)	Ü H20
560°	3	550ª	570ª		505ª		490 ª	440ª	N-Wa	
(470)8	f	1	(490) ^g		(435) ⁸	r	(415) ⁸	1	υ _{м-0}	
380	1	410,360	ı		300 295	L	320	350,320	υ _{M-Cl}	
1		1	(1280) (1018)	(1400)			1	410	υ _{M-S} (υ _{NO3})	

bonded; sh= shoulder; pr= rocking; pw= wagging

iv) Complexes of LIV (C8 - C10):

All complexes exhibited shifts in postions of azomethine group stretching vibrations only which indicates the coordination of nitrogen of this group to metal ions (9,22).

d) Electronic spectra, magnetic susceptibility and conductivity measurements: i) Electronic spectra of ligands:

Table (4) describes the electronic spectra of the prepared Schiff bases in both DMF and ethanol. Two main bands were observed in the u.v region. The first band was assigned to $\pi \rightarrow \pi$ * transition

of the aromatic rings. The second band appeared at lower wavenumber was assigned to extended π $\rightarrow \pi^*$ of the conjugated Schiff bases (17,19). It was difficult to locate bands assigned to $n \rightarrow \pi$ * transitions as they might be masked by $\pi\to\pi$ * bands. Complexation with metal ion caused shifts of ligand bands to lower wavenumbers and the appearance of new bands in the visible, and near i.r region. These additional bands may be related to M-L charge transfer bands and ligand field transitions.

Table (4): bands of maximum absorptions (cm-1) in electronic spectra of Sciff bases (L_I-L_V) with molar extinction coefficients Emax (1.mol.-1 cm-1).

		DMF		Ethanol
Symbol	v _{max} (cm ⁻¹)	ε _{max} (1.mol1.cm -1)	v_{max} (cm ⁻¹)	ε _{max} (1.mol1.cm-1)
L	31628 33278 36269	12341.00 13523.70 12212.50	25510 29046 33816 43860	18555.50 19113.15 9183.31 11629.79
	31546	17326.80	26022	6515.70
HLn	33333	16884.30	31546	16746.90
	36269	15389.10	39526	18303.00
			21053	3303.60
L _{III}	33333	14831.90	29851	8446.00
-111	36101	15648.30	39063	18196.60
			23474	32778.34
L _{IV}	30395	34451.00	31348	4671.15
.,	36630	14400.00	36364	4765.60
			26525	27864.20
	26810	26754.90	28571	38741.70
L _v	28571	32036.40	33010	12251.70
	34130	15215.20	41152	25745.00
	36969	12019.90	45638	11589.00

absorption of complexes in DMF with their assignments together with crystal field parameters (10Dq, B', 10Dq/B' and β). The latters were determined by applying band ratios

Table (5): describes bands of maximum on Tanaba Sangano diagrams of the specified metal ion (30-33). All Complexes showed spectral behaviours related to octahedral geometries except Pd (II) complex

Table (5): Electronic Spectral data electrical conductivities (DMF 10⁻³) Magnetic susceptibilities (μeff, B.M) and suggested geometries for metal complexes of H₂L₂ and Mixed ligands complexes.

	complexes of t	complexes of H ₂ L ₁ and Mixed ligands complexes.	nds comp.	exes.					
A	Max. absorption	Max. absorption Band assignment	Dq/B'	B,	8.	10Dq (cm ⁻¹)	10Dq (cm ⁻¹) Conductivity	$\mu_{\rm eff}~BM$	Suggested
	$\hat{v}_{\rm max}({\rm cm}^{\text{-}1})$			(cm ⁻¹)			Scm ² mol ⁻¹	1	geometry
CI	v1 16393	$^{1}A_{1}g \rightarrow ^{1}A_{2}g$	ı	t	r	20833	18.5	Diamag.	Square Planar
Pd(II)	v2 20833	$^{1}A_{1}g \rightarrow ^{1}B_{1}g$							11
	v3 25906	$^{1}A_{1}g \rightarrow ^{1}Eg$							
C ₂	v ₁ 21413	$^{1}A_{1}g \rightarrow ^{3}T_{1}g$ $^{1}A_{1}g$		ı			168.9	Diamag.	Square Planar
Pt _(III)	$ v_2 26881$	\rightarrow 1 T $_{1g}$	1						1
C3	v ₁ 10537	$^{2}\text{T}_{2}\text{g} \rightarrow ^{4}\text{T}_{1}\text{g}(G)$					12.2	1.36	Octahedral
Ru _(II)	$v_2 11628$	$^{2}\text{T}_{2}\text{g}\rightarrow^{4}\text{T}_{1}\text{g}(G)$	ı	7	1	ī			(2) + ult - s
	v ₃ 21905	$^2\text{T}_2\text{g} \rightarrow ^2\text{A}_2\text{g},^2\text{Eg}$							1
	v ₄ 27778	CT(M→L)							
Ž	v ₁ 5974(calc-)	⁴ T ₁ g ^{-→} ⁴ T ₂ g	0.88	693	0.71	6609	8.6	5.7	Octahedral
Co(II)	$v_2 12392$	$^4T_1g \rightarrow ^4A_2g$							
	v ₃ 15385	$^{4}\text{T}_{1}\text{g}_{(F)}\rightarrow^{4}\text{T}_{1}\text{g}(p)$: :
	υ ₄ 25641	$CT(M_j \rightarrow L)$							
Ç	$v_1 10537$	3 A ₁ g \rightarrow ³ T ₂ g	1.9	527	0.51	10010	3.1	4.02	Octahedral
S.E.	$ v_2 $ 15700	$A_2g \rightarrow ^3T_1g(f)$				••		l la	V ⁸
5	v ₃ 23816(calc-)	$^{3}A_{2}g \rightarrow ^{3}T_{1}g(p)$							11 IV
	0421505	CT					g 2		
	v ₅ 2641	$\pi \to \pi^*$							

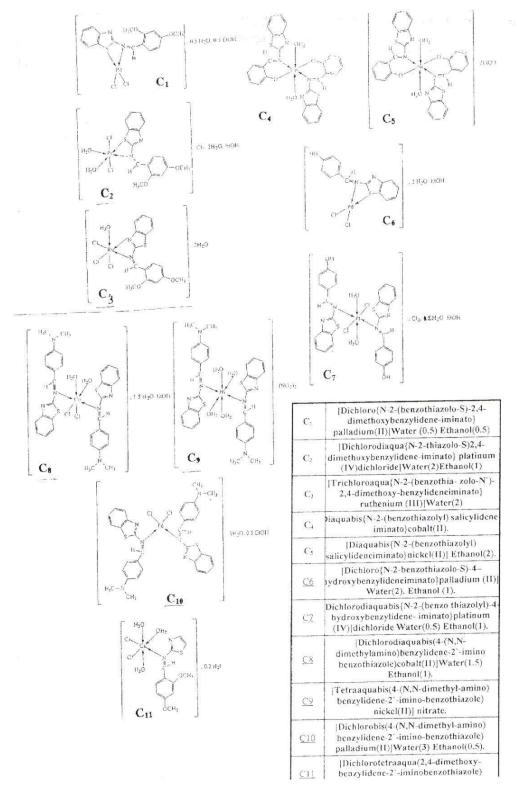
Table (5): (continued)

Octahedral	2.03	10.5	1	Č	i	ı	$^{2}B_{1}g \rightarrow ^{2}B_{2}g$	υ ₂ 16393	Cu _(II)
							A ₁ g→'Eg	v ₃ 23981	
	Diamag.		24400	t	i.	ı	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00000	$Pd_{(II)}$
Square planer	Diamaa	20	837770				$^{1}A_{1}O \rightarrow ^{1}R_{1}O$	p. 20721	C10
		6					$^{1}A_{1}g \rightarrow ^{1}A_{2}g$	v ₁ 16666)
							CT	υ ₄ 23981	
	3./	0.001	2117	0.00	000		$^{3}A_{2}g \rightarrow ^{3}T_{1}g(p)$	v_323319 (calc.)	Ni _(II)
Octahedral	1	1577	0170	0 65	660	1 27	$^{3}A_{2}g \rightarrow ^{3}T_{1}g(f)$	$v_2 14661$	C,
							$^{3}A_{2}g \rightarrow ^{3}T_{2}g$	v ₁ 9320	
							CT(M→L)	υ ₄ 23810	And the second s
	4./9	34.4	6100	0.//	134	1	$^{4}T_{1}g_{(F)}\rightarrow ^{4}T_{1}g(p)$	v ₃ 16547	Co(II)
Octahedral		3		0 77	CSE	0.88	$^{4}T_{1}g \rightarrow ^{4}A_{2}g$	v_2 129532	C ₈
					×	5.8	$^4\text{T}_1\text{g} \rightarrow ^4\text{T}_2\text{g}$	v_16073 (cal.)	
	Diamag.	110				1	¹ A ₁ g→ ¹ T ₁ g	v ₂ 27397	Pt _(IV)
Octahedral	?						$^{1}A_{1}g \rightarrow ^{3}T_{1}g$	\mathbf{v}_1 22222	C ₇
i i	Diamag.	4./	00,627				¹ A ₁ g→ ¹ B ₁ g	$v_2 25906$	Pd _(m)
Square planar	!)	25000			ı	$^{1}A_{1}g \rightarrow ^{1}A_{2}g$	$v_1 20202$	C,
geometry	Heff DIM	Scm ² mol ⁻¹	(rm)	-	(cm ⁻¹)	a iba	ò	$\dot{v}_{ m max}({ m cm}^{-1})$	
Suggested	: PM	Conductivity	16Do (cm-1)	D.	Βį	Da/R	Band assignment Da/R/	Max. absorption	Symbol

which showed square planer behaviours (30,31). The Cu(II) complex exhibited behaviours related to Jahn-Teller distortion of 2D term of octahedral complexes (31,34). The bands observed in Ru(III) complex are referred mainly to L \rightarrow M charge transfer and lie mainly near intraligand $\pi \rightarrow \pi$ * transition bands (30). Conductivity measurements of C₁, C₃, C₆, C₈, C₁₀ and C₁₁ in DMF (10 3 M) showed that they were non electrolytes while C₂, C₇ and C₉ were found to be electrolytic with ionic ratio of 1:2.

According to these observations and those obtained from CHN, A. A and thermal analyses and i.r spectra the structures of complexes were suggested as illustrated in Scheme –2.

e) Thermal analyses:


Thermal decomposition of some complexes by TG and DTG techniques are described in table (6) and thermographs for other complexes are shown in Figure (1). Results were in agreement with those obtained from CHN analysis and atomic absorption. Fragments which are not directly bonded to metal ion were found to leave at lower temperature than those directly bonded.

 C_1 and C_6 gave PdS as final product. This reflects the high affinity of Pd (II), ion to sulphide as both ions are soft acid and base respectively (35, 36). Different behavior was shown by C_9 and C_{10} within the same temperature range of decomposition which reflects the higher affinity of Ni (II) ions towards nitrogen compared with Pd (II) ions (37).

f) Biological activity:

A preliminary study of biological activity of the prepared complexes was carried out in DMF (1 mg/ml) on two types of bacteria namely gram (-) E. Coli and grm (+) B. Subtuluse. The following results were observed.

No antibacterial actions were exhibited by the ligands except $HL_{\rm II}$ which showed growth inhibition diameter of 8-10 mm against E. Coli. In contrast to their ligands complexes of Cu(II), Pd(II), Pt(IV) and Ru(III) showed successful variable antibacterial activity against both types. C_6 and C_2 showed growth inhibition of 10 and 8-10 mm diameter respectively against B. Subtluse.

Acheme (2): Suggested stereochemical structures and names of schiff base complexes

Table (6): Stages of thermal decomposition of Schiff base complexes C_1, C_2, C_6, C_9 and C_{10}

Stable phase C ₁	Temp. range of decomposition at TG (C)	Peak Temp. at DTG (C)	Weight loss% found (Calc.)
[PdL ₁ Cl ₂] .0.5 H ₂ O.0.5 EtOH			
	7.55 0.53	65	3.31
↓-0.5 H ₂ O	(65-95)	03	(4.15)
↓-2(OCH ₃)	20 2 20 20 20 20 20 20 20 20 20 20 20 20	*	1.969
↓- C1	(95-260)		(1.76)
J-Ph			35.43
↓- PhCHN	(335-420)	410	(34.71)
4 There			5.51
↓-CN	(420-480)	445	(5.07)
			27.95
PdS			(27.01)
C_2			
$[PtL_1Cl_2H_2O)_2]$.Cl ₂ .2H ₂ O EtOH			5.81
↓-EtOH	(65-150)	*	
\$ 2.0	200		(6.11)
↓-2H ₂ O	(150-230)	225	14.12
↓- 2C1	X		(14.20)
↓-2H ₂ O	(230-300)	270	14.93
↓- Ph	(230 300)		(14.86)
The state of the s	(300-410)	*	21.16
\downarrow -(OCH ₃) ₂ PhCHN	(300-410)		(21.77)
	(410,500)	445	17.01
$Cl_2Pt \leftarrow SCN$	(410-500)	443	(17.31)
C_6			
[PdL _{III} Cl ₂] .2H ₂ O. EtOH			
↓-2H ₂ O			22.59
↓- EtOH	(101-375)	349	(22.87)
↓- Cl			
↓-Ph	(207 420)	393	20.03
ţ- CHN	(387-428)	2,72	20-05)
		400	19.39
↓-PhOH	(428-590)	489	(18.10)

Table (2): Continued

Stable phase C ₆	Temp. range of decomposition at TG (C)	Peak Temp. at DTG (C)	Weight loss% found (Calc.)
Į-CN Į-Cl	(796-825)	812	11.38 (11.97)
↓PdS	(825-1000)	*	25.16 (26.96)
C ₉			
[Ni L _{IV} (H ₂ O) ₄] .(NO ₃) ₂			
. ↓- 2NO ₃	(25-220)	205	15.32 (15.75)
↓-4H ₂ O	(220-300)	275	9.27 (9.15)
↓-N(CH ₃) ₂ Ph CHN ↓- 2Ph	(300-405)	370	37.09 (37.98)
↓-2NCS	(405-438)	410	14.11 (14-76)
N(CH ₃) ₂ PhCHN→Ni			25.0 (26.13)
C ₁₀			
[PdL _{IV})Cl ₂] .3H ₂ O.0.5 EtOH			
↓-0.5 EtOH	(35-125)	65	2.40 (2.82)
↓-H ₂ O	(125-165)	150	2.05 (2.20)
↓-H ₂ O	(125-165)	150	2.05 (2.20)
↓-2H ₂ O	(165-205)	*	4.50 (4.41)
↓-2Ph	(205-300)	*	19.66 (18.61)
↓-2N(CH ₃) ₂ Ph CHN	(300-405)	325	34.81 (35.99)
PdCl ₂ + 2NCS			34.81 35.99

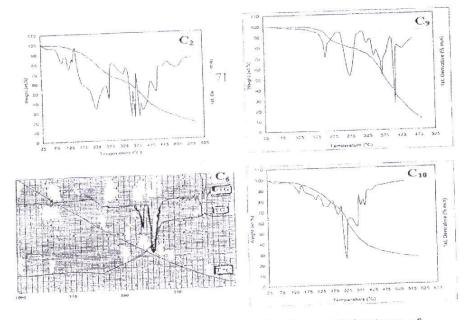


Figure (1): Thermograms of TG and DTG showing thermal behaviours of C_2, C_6, C_9 and C_{10}

References:

1- a) Dash, B.; Patra, M.; Praharj, S., (1980), "Synthesis and Biological Activity of Some Schiff Bases Derived from Thizaoles and Benzothiazoles", Indian, J. Chem., 19B, 894 – 97..b) Thaker, K. A.(1985), "Aldol Condensation of Thiozolidinones", J.Inst.Chem.,57(4),145-6.

2- a) Tamasan, I.; Maior, O.; Balaban, T. S. (1985), "O-Substituted Aromatic Aldoximes of 1-methyl -2-Aminooxy - methyl-5-Nitroimidazole. Synthesis and H-NMR Spectra", Rev. Roum. Chim., 30 (11-12), 1005-9..b) Hassan, K. M.; Mahmoud, A. M..; El-Sherif, H. A.; (1978), "Synthesis and Biological Activities of Some New Benzothiolyl Thiazolidine-4-ones", Z. Naturforsch, B, Anorg. Chem. Org. Chem., 33B(4), 1005-8.

3- Wolf, W. M..., (1981) "Carbazole Series Sulfur Dyes and Their Interrmediate Products", Ger. Offen. DE 3,013, 6254(Cl. (09B49)/12) 15 Oct. 1981, Appl. 09 Apr 1980. 22pp. c.f. C.A. 96 (1982),P36882k.

4- a) Williams, D. R., (1972), "Metals, Ligands, And Cancer", Chem. Rev., 72, 203 and References cited therein. b) Sarojini, T. and Ramachandriah, A., (1996), "Synthesis and Characterization of Copper(II). Cobalt(II), and Oxovanadium(IV) Chelates of a New Pair of Schiff Base Liigands Derived from 1,3bis-

(aminomethyl)cyclohexane", IndianJ. of Chem., 35A, 940-45.

5- Kasuya, R.; Nagahara, T.; Tsuge, A.; Sogabo, K., and Yamamato, Y.' (1983) "The Preparation and Some Properties of Cobalt (II) Schiff Base Complexes and Their Molecular Oxygen Adducts", Bull. Chem. Soc. Jpn., 56, 95-100.

6- Abd-Elzaher, M. M., (2001), "Spectroscopic Characterization of Some Tetradentate Schiff Bases and Their Complexes with Nickel, Copper, and Zinc ", J. Chineese Chem. Soc., 48, 153-8.

7- Nelson, S. M.; Sho, F. E.; Lavery, A.; and. Drew, M. G. B., (1983), "Dicopper Complexes of Macrocyclic Ligands as Models of Type 3 Copper Proteins", J. Am. Chem. Soc., 105, 5693-702.

8- a) Sahu, K..; Behera, R..K.; Patnaik, R. C.; Nayak, A.; and Bhera, G. B., (1979), "Synthesis and Fubgitoxicity of Complexes of the Schiff Bases Derived from 2-Hydroxy -I-naphthaldehyde and 2-Aminothiazoles", Indian J. Chem., 21/18B, 557-59. b) Dharmaraj, N.; Viswarathamurthi, P.; Natarajan, K., (2001), "Rutthenium Complexes Containing Bidentate Schiff Bases and Their Antifungal Activity", Trans. Met. Chem., 26, 105-109.

9- Dash, B.; Mahapatra, S. K.., (1975), "Cobalt (II), Nickel (II), Copper (II) and

- zinc(II) Complexes of Schiff Bases Derived from 4-Aryl-2-aminothiazoles and Salicylaldehyde", J. Inorg. Nucl. Chem., 37, 271-75.
- 10- Sinha, A. I. P.; and Manjin, B., (1988), "Metal Induced Hydrolysis of Some Herbicidal Schiff Bases and Formation of Mixed Ligand Complexes" Acta Cienc. Indica. Chem., 14 (1), 5-20.., c.f. (1990), C.A. 112 (12), 110704w.
- 11- Omar, 1.H.; Zucchi, F.; Trabanelli, G., (1986), "Schiff Bases as Corrosion Inhibitors of Copper and its Alloys in Acid Media", Surf. Coat. Technol., 29 (2), 141-51.
- 12- Dash, B.; Mahapartra, P. K.; Panda, R. C.; and Patanik, J. M., (1984), "Fungicidal Activities and Mass Spectral Studies of some Schiff Bases Derived from para-Hydroxy benzaldehyde and Their Derivatives", J. Indian. Chem. Soc., LXI, 1061-64.
- 13- Mazumdar, A. K. D.; Saha, N. K.; Kumar, K.; and Banerji, K. D., (1979), "Synthesis of some Thizaole Schiff Bases", J. Indian Chem. Soc., LVI, 999-1001.
- 14- Naser, M. A., (1989), M.Sc. Thesis, University of Basrah.
- 15- Vogel, A., (1972), "Text Book of Practical Organic Chemistry" 3rd., Edn. Longman, 167.
- 16- Biddle, P.; Lane, E. S., and Willans, J. H., (1960), "Organic Complex- Forming Agents for Metals, Part IV.* Some New Heterocyclic Complexes" J. Chem. Soc., 2369-70.
- 17- Rochow, E. G., (1960), "Dichloro-(1,4-butadiene) palladium(II)", Inorg. Synth., 4, 218-219
- 18- Silverstein, R. M.; Bassler, C.G.; and Morrill, T. C., (1974), "Spectrometric Identification of Organic Compounds" 3rd Ed., John Wiley and Sons, Inc., New York...
- 19- Ukueze, A. G. and Emkpae, T. A., (1987), "Preparation, Proton Resonance and Infrared Studies of Chromium (III) Complexes of Some Aldimines", Inorg. Chim. Acta, 133, 13-15.
- 20- Goudar, T. R.; Nadagoud, G. S.; and Shindagi, S. M., (1988), "Synthesis and Characterisation of Tin (iv) Complexes with Schiff Bases Derived from Salicylaldehyde, o-Vanillin and 2-Aminopyridine, 2-Amino-3-methylpyridine and 2-Aminothiazole", J. Indian Chem. Soc., LXV, 509-510.
- 21- Williams, D. H. and Fleming, I., (1973) "Spectroscopic Methods in Organic

- Chemistry", 2nd. Edn., Mc graw-Hill Book. Co. U.K. Ltd, 145
- 22- a) Kovaeic, J. E.,; (1967), "The C=N Stretching Frequency in the Infrared Spectra of Schiff's Base Complexes- I. Copper Complexes of salicylidene Anilines", Spectrochimica Acta, 23A, 183-185. b) Kerr, J. M.; Suckling, C. J., (1990), "Hydrogenation by a Novel Paalladium Salicylidenethylene diamine Complex and the Properties of Derivatives of Some Square Planar Homoogenous Hydrogenation Catalysts", J., Chem. Soc. Perkin Trans. 1, 887-95.
- 23- Mahapartra, S. C.; and Ramana RAO, D. V., (1980), "Mixed Ligand Thiocyanato Complexes of Cobalt (II)- Coordination Number Six and Eight", J. Indian Chem. Soc., LVII, 262-264.
- 24- Giusti, A.; Peyrnel, G. and Gilberti, E., (1982), "Copper (I) and Silver (I) Complexes of 2-Aminothiazole", Spectrochimica Acta, 38A(II),1185-87.
- 25- Nakamoto, K., (1997), "Infraed and Raman Spectra of Inorganic and Coordination Compounds", 5th Ed. John Wiley and Sons, Inc. New York
- 26- Burger, K., (1967), "Coordination Chemistry: Experimental Methods", London Butterworth.
- 27- Patel, K. V.; and Bhattacharga, P. K., (1986), "Study of some trinuclear Copper (II) Complexes Involving Catechol Aldehyds and Hetro-aromatic Nitrogen Bases", Polyhedron, 5 (3), 731-743.
- 28- Satapathy, S.; Sahoo, B., (1970), "Salicylaldazinate Metal Chelates and Their I.r. Spectra", J. Inorg. Nucl. Chem., 321, 2223-28.
- 29- Ebara, N., (1960), "Benzylideneaniline.

 I. Structure and Ultraviolet Absorption Spectrum of Benzylideneaniline", Bull. Chem. Soc. Japan, 33, 534-337.
- 30- Figgis, B. N., (1966), "Introduction to Ligand Fields" Interscience Publishers a Dvision of John Wiley and Sons, New York. London, Sydney
- 31- Lever, A. B. P., (1968), "Inorganic Electronic Spectroscopy", Elsevier Publishing Company Amsterdam-London-New York.
- 32- Sutton, D., (1968), "Electronic Spectra of Transition Metal Complexes", 1st Ed. Mcgraw-Hill. Publishing Company Ltd. London. New York.

- 33- Greenwood, N. N..; Earnshaw, A., (1986), "Chemistry of Elements", Pergamon Press.
- 34- Keskari, B. N., (1980), and Mishra, L. K., (1980), "Complexes of Some Bivalent Metals with Substituted Triazole and Thiadiazole Derivatires", J. Indian Chem. Soc. LVII, 279-83.
- 35- Duval, C., (1963), "Inorganic Thermogravicmetric Analysis" 2nd Ed. Elsevier Publishing Company. New York. London.
- 36- Buzus, A., (1975), "Thermal Analysis" Vol. (1) and (2), Organic and Macromolecular Chem. Earth Science Akademiaikiado, Budapest.
- 37- Houghton, R. P., (1979), "Metal Complexes Inorganic Chemistry", Cambridge University Press, Cambridge. London. New York
- 38- Washington, G. A., (1981), "Laboratory Procedures in Clinical Microbiology", Springier Verlag, New York, 299-302.