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R. Jain studied multiplication modules and their generalizations. The aim of this
paper is to give various properties for these classes of modules. In particular, we
study M @ N and Hom (M, N), where M and N belongs to these classes.
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Introduction:

R.Jain in [6] studied multiplication modules
and their generalizations.In this paper, we add
some results on multiplication modules and their
generalization.

In section |, we give a characterization of
multiplication modules in terms of essential
submodules. We prove that a module M is a
multiplication module if and only if every
essential submodule of M is a multiplication
submodule. Also we prove that an epimorphic
image of an almost (semi) multiplication module
is an almost (semi) multiplication module.

In section 2, we prove that the tensor product of
two almost (weak) multiplication modules is an
almost (weak) multiplication module. In section
3, we prove that if M is a finitely generated weak
multiplication module and N is a multiplication
submodule of N such that ann M cann N, then
Hom (M, N) is a weak multiplication.

Finally we remark that all rings considered in this
paper are commutative with identity, and all
modules are unitary.

§1: Multiplication modules and their
generalizations,

Let R be a commutative ring with identity
and let M be a unitary R-module. In this section
we study multiplication, almost multiplication,
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weak multiplication and semi- multiplication
maodules.

Recall that a submodule N of an R-module M is
called a multiplication submodule if for each
submodule K of N, there exists an ideal 1 such
that K=IN, [6]. And a module M is called a
multiplication module if every submodule of M
is a multiplication submodule.

A module M is called faithful if ann M=0, [7]. It
is known that if R is a noetherian ring and M is
an R-module such that M is a multiplication
submodule of M, then M is a noetherian module,
[6].

The converse is true when M is faithful, finitely
generated and multiplication submodule of M,
[9).

The following proposition gives another
condition under which the converse is true.
Propositionl.1: Let M be a noetherian R-
module. If M is a multiplication submodule of M
and there exists an element x€ M such that ann
x=0, then R is a notherian ring.
Proof: Let lLLchcC be
sequence of ideals in R .It is clear that I)x < I:x
...... is an ascending chain of submodules of
M. But M is noetherian, so there exists a positive
integer n such that 1,x=I,x for each k>n. Now,
let a€ Iy, then ax € I,x=I,x and hence there exists
be I, such that ax=bx. Thus (a-b) x=0. But ann

an ascending
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x=0, therefore a=b and hence ael, and li- I for
each k > n. Thus R is a noetherian ring.

Now, let R be an integral domain. An R-module
M is called torsion free module if whenever
rm=0, for some re R and me M., then either =0
or m=0,[7].

Proposition 1.2: Let R be an integral domain and
let M be an R-module such that there exists an

me M with ann(m)=0.1f M is a
M is a

element
multiplication submodule of M, then

torsion free module.

Proof: Let 0 £x € Mandr € R such that rx=0,
since RxcM and M is a multiplication
submodule of M, then there exists an ideal [ in R
such that Rx=IM and hence R rx =r [ M=0.

Now, let 0#we I then rwm=0.But
ann{m)=0,therefore rw=0.Since R is an integral
domain ,then r=0 and hence M is a torsion free
module .

It was proved in [5], that if M is a multiplication
submodule of M and fM— M is an

epimorphism, then M is a multiplication

submodule of M We prove the following :

Proposition 1.3: Let fM—> M be an
epimorphism, if M is a multiplication module,
then M is a multiplication moduleation module.

Proof: Let N and K be submodules of M such
that K C N. It is clear that f'(K) & fIN) © M.
Since M is a multiplication module, then there
exists an ideal I of R such that f'(K) =1 f'(N) and
hence f(f'(K))=f( FHNY=If(F'(N)).But f is an
epimorphism, therefore K=IN. Thus N is a
multiplication submodule of M and M isa

multiplication R-module.
f

Proposition 1.4: Let 0 —> A—— B
_ 8 3¢ ——> 0 be a short exact sequence. If
B is a multiplication module, then each of A and
C is a multiplication module.

Proof: Since g:B —> C is an epimorphism
and B is a multiplication module. Then C is a
multiplication module, by (1.3). Now, to show
that A is a multiplication module, let K and N be
submodules of A such that K CN. It is clear that
flk) € fN) & B. Since B is a multiplication
module, then there exists an ideal 1 in R such that
f(K) =If(N) = f(IN). But f is a monomorphism,
therefore K=IN and hence N is a multiplication
submodule of A. Thus A is a multiplication
module.
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Remark 1.5: Let 0 —> A—L> B —£C

___» 0 be a short exact sequence. If each of A
and C is a multiplication R-module, then B may

not be amultiplication R-module as the
following example  shows, Consider  the
____> 7

following short exact sequence 0

i T
—3r @ L =P
Where i is the inclusion map and 7T is the

projection map. It is clear that Z as Z module is
amultipliction module. Now, Z(0,1) is a

submodule of Z ® Z and Z(0,1) Fm)Z®
Z), for each n€ Z. Thus Z @ Z is not a
multiplication submodule of Z ® Z and hence Z
@ 7 is not amultiplication module.

Recall that a non zero submodule N of an R-
module M is called an essential submodule if NN
K # 0 for every non zero submodule K of M,
[4].The following theorem is characterization of
multiplication modules.

Theorem 1.6: Let M be an R-module. M is a
multiplication module if and oniy if every
essential submodule of M is a multiplication
submodule.

Proof: Let N be a submodule of M, then there
exists a submodule K of M such that N ® Kis
essential in M [7], and hence N & K is a
multiplication submodule of M. But (N & KyK
~N and (N @& K)YK is a multiplication
submodule of M/K [1.4], therefore N is a
multiplication submodule of M. Thus M is a
multiplication module.

An R-module M is called an almost
multiplication module if the Rp-module Mp isa
multiplication module for each prime ideal P in
R, [6]. And a ring R is called an almost
multiplication ring if Rp is a multiplication ring
for each prime ideal P in R.

Recall that a ring R is called a local ring (semi—
local ring) if it has a unique maximal ideal (a
finite number of maximal ideals), [7].

It is clear that every multiplication module is an
almost multiplication module. It was proved in
[6] that the converse is true when M is noetherian
or R is a semi—local ring.

A submodule N of an R-module M is called a
prime submodule if for each re Rand m € M
such that rx € N and x € N, then ™MC N,

3]
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Let M be an R- module. We say that the
dimension of M is n if there exists a proper prime
submodules Py P, Py ....en P, in M such that

C P,, and there is no similar
sequence with n+2 of proper prime submodule
[6]. In this case we write dim(M)=n.

It was proved in [6] that if M is a multiplication

module, then dim(M) <.
We prove the following theorem:
Theorem 1.7: Let M be an almost multiplication

module, then dim (M) <.

Proof: Since M is an almost multiplication
module, then the Rp-module Mp is a
multiplication module for each prime ideal P in
R. But Rp is a local ring, therefore every
submodule of My is cyclic, and dim Mp <1, [6].
If dim(M) > 1, then there exists a proper prime
submodules P,,P,,P; in M such that P, € P, C
P;. Since P; is a proper prime submodule in M,

then P ;=(P;:M) is a prime ideal in R, [3].
Hence, there exists a one -to- one map f from the
set of prime submodules of M that contained in
P; in to the set of proper prime submodules in

MP  [6]. Now, we have f(P)Cf(P;) Cf(Py)
proper prime submodules in M P ; and hence

dim(MP_J)")i which is a contradiction. Thus

dimM) S 1.

A submodule N of an R-module M is said to have
the weak cancellation property if whenever AN
C BN where each of A and B is an ideal in R,
then AC B+ann (N) and N is said to have the
cancellation property if whenever AN & BN,
then AC B, [10].

Proposition 1.8: Let M be a faithful, finitely
generated and an almost multiplication module,
then R is an almost multiplication ring.

Proof: Let P be a prime ideal in R and A,B are
ideals in Rp such that B © A, then BMp, ©& AM;.
Since M is an almost multiplication module, then
there exists an ideal C in Rp such that
BMp=CAM,;p. But Mp is a multiplication module
and Rp is a local ring, therefore Mp is cyclic, [6].
Thus M, has the weak cancellation property and
hence B=CA-+ann(M;), [10]. Since M is finitly
generated, than (ann M)p=ann M;. Also M is
faithful, therefore ann Mp=0 and hence B=CA.
Thus A is a multiplication ideal and R is an
almost multiplication ring.

The proof of the following proposition is similar
to the proofof (1.3).

ro
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Proposition (1.9): Let fM— M  be an
epimorphism. If M is an almost multiplication

module, then M is an almost multiplication
module.

Proposition (1.10): Let 0 —> A—L > B
—£_3C —— 0 be a short exact sequence .If
B is an almost multiplication module, then each
of A and C is an almost multiplication module.

Proof: Since 0 ——>» A—f——) L T

———> 0 is a short exact sequence, then 0 ——>»

i g ;
A;,_L Bp —P—>CP —> 0 is a short
exact sequence for each prime ideal P in R
[8.p.15].Now since By is a multiplication module,
then Ap and Cp are multiplication modules for
each prime ideal P in R .Thus A and C are almost
multiplication modules.

L.11:

—£ 3C — 0 be a short exact sequence. If
each of A and C is an almost multiplication
modules, then B may not be an almost
multiplication module as the following example
shows: Consider the following short exact

f

Remark let 0 ——> A——— B

sequence 0 ——Z — g —Z5 7
— 0

where 1 is the inclusion map and Il is the
projection map. It is clear that Z is a
multiplication module and hence an almost
multiplication module. Let P=(0).It is known that
Z0y=Q. Now consider the following short exact

sequence 0 —3 Zy -—Kﬂl—% (Z®
Z)un—ﬂﬁ)ﬁézfm —F

Q is multiplication as Q- module. But (Z®
Loy Zioy @ Zpy=Q @ Q is not multiplication as
Q-module .
Recall that a module M is said to be a weak
multiplication module if every prime submodule
of M is a multiplication submodule, [6].
It is clear that every multiplication module is a
weak multiplication module.
It was proved in [6] that every
multiplication module is an almost multiplication
module and hence we have the following remark.
Remark 1.12: Let M be a weak multiplication
module, then dom(M)=< 1.Proposition 1.13: Let
R be a semi-local ring and let M be a weak
multiplication R-module, then M is a
multiplication R-module.

weak
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Proof: Since M is a weak multiplication module.
then every prime submodule of M is a
multiplication submodule. Since R is a semi-
1g. then every prime submodule of M is
and hence every submodule of Misa
[6]. Thus M is a

local rir
cyclic. [6].
multiplication submodule,
multiplication module.

The proof of the following proposition is similar
to the proof of (1 1) A

1.14: Let fM—M  be an
If M is a weak multiplication

M is a weak multiplication

Proposition
epimorphism.
module, then

module.
An R-module M is called a semi—multiplication

module if every proper submodule of M is a
multiplication submodule, [6].

It is clear that every multiplication module is a
semi-multiplication module.

It is known that a semi-multiplication module
may not have a maximal submodule, for example
Z po @S Z-module is a weak multiplication
module and Z je has no maximal submodule.
Recall that a module M is called apc-module, if
AM C M for each proper ideal A of R ,[6].
Propositionl.14: Let M be a semi-multiplication
R-module. If M is apc-module, then M has a
maximal submodule.

Proof: Casel: If M is a multiplication module,
then M has a maximal submodule.

Case2; suppose that M is not a multiplication
submodule of M and assume M has no maximal
submodule. Let K be a proper submodule of M,
then there exists a proper submodule N of M such
that K © NC M. Thus there exists a proper
ideal 1 of R such that K=IN C IM © M. Then
IM is a multiplication submodule of M and hence
there exist an ideal J in R s.t K=JIM. Thus M is a
multiplication submodule of M which is a
contradiction. Hence M has a maximal
submodule.

It is known that if R is a notherian ring and M is
apc-module and semi—multiplication module,
then M is noetherian. [6].

We prove that the converse is true when
an element x such that ann{x)=0.
Proposition 1.16: Let M be apc-module which is
noetherian and semi-multiplication. If there exists
an element x€M such that ann(x)=0, then R is
noetherian.

Proof: If M=Rx, then M is finitely generated,
faithful, and multiplication and hence R is
noetherian, [9]. Assume M# Rx, then Rx is a

M has

Jfragi Journal of Sci
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multiplication, faithful and finitely generated
module and hence R is a noetherian ring, [9]-
Compare the following theorem with theorem
(1.6).

Theorem 1.17: Let M be indecoposable R-
module, then M is semi- multiplication if and
only if every proper essential submodule of M is
a multiplication submodule.

Proof: Let 07 N be a proper submodule of M,
then there exists a submodule K of M such that N
@® K is essential in M, [4, p.75]. Since M
indecomposable and N7 0, then N © K FM
and hence N @ K is a multiplication submodule
of M. But N= (N @ K)K and (N & KYK is a

multiplication submodule of M/K, by (1.3),
therefore N is a multiplication submodule and M

is a semi—multiplication module.

Using an argument similar to that used in the
proof of proposition (1.3), (1.4). One can get the
following:

Proposition 1.18:  Let fiM— M be an
epimorphism. If M is a semi-multiplication R-
module, then M is a semi-multiplication R-
module.

Proposition 1.19: Let 0 A —L>B —£=C
—» 0 be a short exact sequence. 1f B is a semi-
multiplication R-module, then each of A and C is
a semi-multiplication R-module.

Remark 1.20: Let 0 —A —j——H} —£ yc-
0 be a short exact sequence. If each of A and C is
a semi-multiplication R-module, then B may not
be semi-multiplication R-module as the
following example shows consider the following

i
short exact 1 / /.
short exact sequence 0 — Z,poc —> I"pOC

- T
@ Zpo —>Zpeo—0
where i is the inclusion map and w is the

projection map. It is clear that Z p; as Z-module

is a semi-multiplication module. But Z po> @

7 o 18 nOt semi-multiplication because Z poo is

. p
a proper submodule of Z peo D Z peo which is

not a multiplication submodule.

§2: The tensor product of multiplication
modules and their generalizations.

In this section we study the properties of the
tensor product of multiplication modules and
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their generalizations. The following proposition

was proved in [1].
Proposition 2.1: Let each of M and N be R-

modules. If M is a multiplication submodule of

M and N is a multiplication submodule of N, then
M®& N is a multiplication submodule of M&® N.
The following proposition was proved in [2].
Proposition 2.2: Let ecach of M and N be R-
modules. If N is a multiplication submodule of N
and M is a multiplication module, then M & N is
a multiplication module. We prove the following.
Proposition 2.3: If M is a multiplication
submodule of M and | is a multiplication ideal,
then IM is a multiplication module.

Pronf : Concider the fallowine diaoram

-
IxM >, IOM
&4 b'.h

IM

where 1 is the tensor map and g is a map defined
by g(r,m)=rm. ¥re I. ¥ meM, its clear that g
is a bilinear map and hence there is a
homomorphism h from 1 ® M into IM such that
hot=g. It can be easily checked that h is an
epimorphism and hence IM is a multiplication
module by (1.3).

Proposition 2.4; Let each of M and N be
R-modules. If M is an almost multiplication

module and N is a multiplication submodule of

N, then M @N is an almost multiplication
module.

Proof: Let p be a prime ideal, we want to show
that (M & N)p is a multiplication Ry—module. We
have (M @ N)p = My ® N,, [8, P.75]. Since M
is an almost multiplication module, then Mp is a
multiplication  Rp-module, But N is
multiplication submodule of N. then Np is a
multiplication submodule of Np. Thus M, ® Np
is a multiplication module by (2.2) and hence M
@ N is an almost multiplication module.
Corollary 2.5: If each of M and N is an almost
multiplication module, then M @ N is an almost
multiplication module.

Corollary 2.6: Let M be an R-module. [f M is a
multiplication submodule of M and I is an almost
multiplication ideal, then IM is an almost
multiplication module.

When the module M is weak multiplication, we
prove the following:

Proposition 2.7: lLet each of M and N be R-
modules. If M is a weak multiplication module
and N is multiplication submodule of N, then M
@ N is a weak multiplication module,
Proof: Let K be a prime submodule of M ® N,
Since M is a weak multiplication module, then M
is a multiplication submodule of M and hence M
@ N is a multiplication submodule of M @ N, by
(2.1). Thus

K=(K:M @N) (M &N)

=(K:M @N)M &N,

Since K is a prime submodule of M & N, then
(K: M @N) is a prime ideal in R, and hence (K:
M @ N)M is a prime submodule of M, [18, prop.
(1.27)]. Thus (K: M & N)M is a multiplication
submodule of M. Therefore
K=(K: M ®&N) M ®@N is a multiplication
submodule of M @ N,
Corollary 2.8: If each of M and N is a weak
multiplication module, then M &N is a weak
multiplication module.
Using an argument similar to that used in the
proof of prop. (2.3), we prove the following;
Corollary 2.9: Let M be an R-module. If M is a
multiplication submodule of M and I is a weak
multiplication ideal, then IM is a weak
multiplication module.

§ 3: The module of homomorphisms of
multiplication modules and their
generalizations.

In this section we study the properties of the
module Hom(M, N) when M or N is a
multiplication or generalized multiplication
module.

The following proposition was proved in [1].
Proposition 3.1: Let each of M and N be an R-
module. It M is a finitely generated
multiplication submodule of M and N is a
multiplication submodule of N such that ann M
C ann N, then Hom(M, N) is a multiplication
submodule of Hom(M, N).
Our first result in this section is the following
Proposition 3.2: Let each of M and N be R-
modules. If M is a finitely generated
multiplication ~ R-module and N is a
multiplication submodule of N such that ann
MC ann N, then Hom(M, N) is a multiplication
module.
Proof: Let cach of K and L be submodules of
Hom(M, N) such that L C K, then
(L:Hom(M,N)) C (K:Hom(M,N)) and hence

220
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(L:Hom(M.N)]M C (K:Hom(M.N])M.Bnl
M is a multiplication module, So there is an ideal
[ in R such that

(L:Hom(M.N))Mﬁl(‘K:Homr_Ivl.N))M.Since
M is a finitely generated multiplication module,
then M has the weak cancellation property,
[10,Th 6.6]. Thus
(L:Hom{M.,N))+ann MTI(K:I-lom(lVI,N)]-:anu M.
But ann M & ann Hom(M.N), so

(L:HomM«N))I!0111(]\4.%3)71(}\':]knn(.\'l,]\'))l'l
om{M,N).Thus L=IK by (3.1) .

Corollary 3.3: Let M be an R-module. If M is a
finitely generated and multiplication module,
then Hom(M. M) is a multiplication module.
Corollary 3.4: Let M be an R-module. 1f M is
faithful. finitely generated and multiplication,
then M~ =Hom(M.R) is a multiplication module.
Compare the following proposition with [9, P.
57, Prop.(1.26)]

Proposition 3.5: Let each of M and N be R-
modules, such that M is a multiplication
submodule of M and ann M =ann Hom(M, N). If
Hom(M,N) is a finitely ~ generated and
multiplication module, then M is a multiplication
module.

Proof: Let each of K and L be submodules of M,
such that L. & K and hence

(LM) € (K:M) and (L:M)Hom(VI,N] c
(K:M)Hom(M,N).

Since Hom(M.,N) is a multiplication module, then
there exists an ideal | in R such that (L:M)Hom
(M,N):I(K:M']}Iom(M_,.\l).

But Hom(MN) is finitely generated and
multiplication module, so Hom(M,N) has the
weak cancellation property. [10, Th(6.6)] and

hence (L:M)+ann ! 10m{E\'l.?\l):l(K:I\h*mm
Hom(M,N).
Since ann M=ann Hﬂm(_M,N),then

(L:M)M—*—l(K:M)M

But M is a multiplication submodule of M, s0

[ =IK and hence M isa multiplication module.

Corollary 3.6: Lel M be a multiplication

submodule of M such that

ann M =ann Hom(M,M).If Hom(M.M) is finitely

generated and multiplication R-module, then M is

a multiplication module.

Corollary 3.7: Let M be a multiplication

submodule of M such that
ann M= ann M. If M s

and multiplication module,

multiplication module.

we need the following lemma later

Lemma 3.8: Let each of M and N be R-module

and let P be a prime ideal of R. If M is finitely

a finitely generated
then M is 2

fraqi Journal of Science, Vol .46,
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penerated, then there exists a monomorphism

from the module (Hom(M,N))p into the module
HOH'I(!VIP.N[:).

Proof: Define o:(Hom(M,N))p—> Hom(Mp,Np) as
follows:-

L L
(¢(\ t ))( S) s

for each € Hom(M.N).each me M and for all
t,s € R-P.
First we show that ¢ is well define

f

[t = = 2 and —IB eM,;, we want to show
tl I1 S
f (m) f (m) f f
that ——=—"" Since — = —2 _then there
155 £.8 t t
1 2 | 2

exists beR-P Such that titafitst 2 and hence

fm) f
stitof,=stst o Thus e
tLS 178

¢ is a homomorphism, to show that ¢ is a

It is clear

that
. f g
monomorphism. Let o(—)= $(=) and suppose
t S
that M=Rx+ Rxat+....7F Rx,
£ X o K
q,(-)(_'):q)(z)(;‘) Vij;l<isn
t 1 s 1
fix) ex)

Thus ( = (——) and hence there is t,
t S
 R-P such that tisf(x JEttE(X ).
Now., its enough to  Prove that

Btasvmnsd tof=ttae e thg-
To see this, let m e M, then there 1§ Fiaseeuli

€ R such that m=rX;. Xz, e
But {b....tsf(m)= Lt Ausflrixtraxat oK)

=rtita..
ity e t,sf(xn)

=1litz2....0t tntg(.\',)’rgtﬂg
+1.llllt_“ ------ 1;.@(-\'.\‘)

=itaree..- tytg(m)

50 ¢ is a monomorphism.
When M is a finitely generated and almost
multiplication module. we have the following:
Proposition 3.9: et each of M and N be a
finitely generated R-module. If M is an almost
multiplication module and N is a multiplication

g7 |
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submodule of N such that ann MC ann N, then
Hom(M,N) is an almost multiplication module.
Proof: Let P be a prime ideal in R. It is enough to
show that (Hom(M,N))y is a multiplication
module. Since M is an almost multiplication
madule, then Mp is a multiplication module. But
N is a multiplication submodule of N, So Npis a
multiplication submodule of Np, [6]. But ann
M C ann N, then ann My € ann Npand hence by
(3.2)Hom(Mp,Np) is a multiplication module,
Using lemma(3.8),we can consider (Hom(M,N))p
as a submodule of Hom(M,;,,Np) and hence
(Hom(M,N))p is a multiplication module. Thus
Hom(M,N) is an almost multiplication module.
Corollary 3.10: If M is a finitely generated
almost multiplivation R-module, then
Hom(M,M) is an almost multiplication module.
Corollary 3.11: If M is a faithful, finitely
generated almost multiplication module, then M’
is an almost multiplication module.
Proposition 3.12: Let each of M and N be R-
modules. If M is finitely generated and a
multiplication submodule of M such that

ann M =ann Hom(M.N) and Hom(M,N) is
an almost multiplication module, then M is an
almost multiplication module.
Proof: Let P be a prime ideal in R. We have to
show that M is a multiplication module. Let K
and L be submodules of Mp such that L © K and
hence (L:Mp) c (K:Mp). Thus
(L:Mp)(Hom(M . N))p € (K:Mp)(Hom(M,N))p .
But Hom(M,N) is an almost multiplication
module. So (Hom(M.N)), is a multiplication
module and hence there exists an ideal I in Ry
such that

(L:Mp)(Hom(M.N)p=I(K:Mp)(Hom(M,N)),..B
ut (Hom(M,N))s is cyclic, [6] and hence
(Hom(M,N); has the weak cancellation
property,[10,Th(6.6)]. Thus

(L:Mp)tann{Hom(M,N))p=I[(K:Mp)+ann(Ho

m({M,N))p.

Now.each of M and Hom(M,N) is finitely
generated, SO ann Mp=(ann M)p=
(ann(Hom(M,N))p=ann(Hom(M,N))s, [8,p.75]

and hence (L:Mp)Mp= [(K:Mp)Mp.

Since M is a multiplication submodule, then
M, is a multiplication submodule, [6]. Thus
L=IK and hence K is a multiplication submodule

of Mp.
Corohary 3.13: Let M be a multiplication
submodule of M such that

ann(M)=ann(Hom(M,M)). If Hom(M, M) is
finitely generated almost multiplication module,
then M is an almost multiplication module.
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Corollary 3.14: Let M be a multiplication
submodule of M such that ann M =annM’". If M’
is a finitely generated almost multiplication
module, then M is an almost multiplication
module.

When M is weak multiplication, we have the
following:

Proposition 3.15: Let each of M and N be R-
modules and let M be a finitely generated weak
multiplication module. If N is a multiplication
submodule of N such that ann M C ann N, then
Hom(M, N)is a weak multiplication module.
Proof: Let K be a prime submodule of Hom(M,
N) and L be a submodule of Hom(M, N) such
that .. € K and hence

(L:Hom(MN)) € (K:Hom(M,N)). Thus
(L:Hom(MN)M € (K:Hom(M,N))M. But M is
a weak multiplication module and
(K:Hom(M,N)M is a prime submodule of M,
[2.Prop. (1.27)], so there exists an ideal 1 in R
such that (L:Hom(M,N)M=I(K:Hom(M.N))M.
Since M is finitely generated and multiplication
submodule, then M has the weak cancellation
property, [12, Th(6.6)] and hence
(L:Hom(M,N))+ann M=I(K:Hom(M,N))+ann M.

Thus ((L:Hom(M,N)+ann M)Hom(M,N)=

((K:Hom(M,N))+ann M Y)Hom(M,N) since

ann M € ann Hom(M,N), then

(L:Hom(M,N})Hom(M,N)=

[(K:Hom(M,N))Hom(M,N).

But  Hom(M, N)is a multiplication
submodule by (3.1), so L=IK. Thus K is a
multiplication submodule and Hom (M,N) is a
weak multiplication module .

Corollary 3.16: If M is finitely generated and
weak multiplication, then Hom(M,M) is weak
multiplication .

Corollary 3.17: If M is faithful, finitely
generated and weak multiplication module, then
M’ is a weak multiplication module.

Proposition 3.18: Let cach of M and N be R-
moduies. If M is a multiplication submodule of
M such that ann M=ann Hom(M,N) and
Hom(M,N) is finitely generated and weak
multiplication, then M is a weak multiplication
module.

Proof: Let K be a prime submodule of M and L
be a submodule of M such that

LC K.Then (L:M) <(K:M) and

(L:M)Hom(M.,N) &(K:M)Hom(M,N). Since K
is a prime submodule of M, then (K:M) is a
prime ideal in R. But Hom(M,N) is a
multiplication submodule, so (K:M)Hom(M,N) is

I
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a prime submodule, [8.Prop.(1.27)]. Since

Hom(M,N) is weak multiplication, then there
exists an ideal I in R such  that
(L:M}!iom{MN)'f'!(K:l\f'l)lIom[M.N‘).
Now. Hom(M,N) is finitely generated and
multiplication submodule, so Hom(M,N) has the
weak cancellation property, [12,Th({6.6)]. Thus
(L:M)+ann Hom(M,N)=1(K:M)+ann
Hom(M,N).
Since ann M=ann Hom(M,N),then
(L:MM=1(K:M)M.
Also M is a multiplication submodule of M,
so L=IK. Thus M is a weak multiplication

module.
multiplication

Corollary 3.19: [If M is a
submodule of M such that ann M=ann
Hom(M,M) and Hom(M,M) is a finitely

generated weak multiplication module, then M is
a weak multiplication module.

Corollary 3.20: lLet M be a multiplication
submodule of M such that ann M=ann M*. [fM*
is a finitely generated weak multiplication
module. then M is a weak multiplication module.
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