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Abstract

In this study consideration is given to viscous, incompressible, second order

fluid flowing in a rectangular duct, with varying aspect ratio, under the action of the
pressure gradient. In particular consideration is given to visco-inclastic liquid. An
ramed to describe the fluid motion and it is

orthogonal coordinates system has been |
by two parameters namely, Dean

found that the motion equations are controlled
number and the Non-Newtonian parameler. Solutions for the sccondary flow and the
axial velocity are derived as perturbations over straight pipe appearing through the
dean number. The finite-difference method is employed to find a perturbation
solution. These solutions have been developed in certain coordinates for harmonic
and biharmonic cquations. This study ended with the effeet of the non-dimensional
and aspect ratio parameters mentioned above on the secondary motion,
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i1-Introduction where 7 and & are the viscosity coefficient and

Fiyig IT‘CmeL:__ N [hﬁf h'a[.]"‘h g E.lp;jl_ICEl. the normal stress respectively, TA and ¢, are
mathematics that is concerned with behaviour of ! .
fluids whether they are in motion or at rest. Fluid
is that state of matter, which is capable of
changing shape, and is capable of flowing. Each
fluid characterized by an equation that relates
stress to rate of strain, this equation is known as
“State Equation™, 1 this relation is linear then the
fluid is called “Newtonian fluid”, otherwise the
fluid is “non-Newtonian fluid”. The fluid that we
are concerned with in this study is a non-
Newtonian fluid and is characterized by the

the stress and rate of strain tensors respectively
[6].

The flow of Newtonian and non-Newtonian
fluids has been the subject of extensive
theoretical studies for many decades. The
problem of fluid motion in a bend has been of
broad  interest both  theoretically  and
experimentally.

The first theotetical study of the subject was
made by Dean (1927,1928) who pointed out that
equation of state of the form: l.he dynamic similarity Uf.‘ the fu]ly developed
T, = 2ney 4, e, i k=123 .. flow depends on a non-dimensional parameter
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(namely Dean number) [ =—5 =

v R
where ¥ is the mean velocity along the pipe. U
is the kinematics viscosity, @ radius of the pipe,
which is bent in a circle of radius R and R',‘_ is
the Reynolds's number Dean (1927), [3].
introduced a toroidal coordinate system to show
that the relation between pressure gradient and
the rate of flow through a curved pipe with
circular  cross-section  of  incompressible
Newtonian fluid is dependant on the curvature. In
that paper he could not show this dependence but
he did it in his second paper (1928).[4] where he
modified his analysis by including higher order
terms to be able to show that the rate of flow is
slightly reduced by curvature.
Dean and Harst  (1957).[5],
approximate solution of Newtonian fluid flow in
a curved pipe with rectangular cross- section
assuming that the secondary motion is a
uniformly stream from inner to outer bend. They
modelled the equations of motion by using
cylindrical coordinates. This assumption enabled
them to obtain Bessel’s function solution. They
argued that the secondary motion decreases the
rate of flow produced by a given pressure
gradient and causes an outward movement at the
region where the prime motion is the greatest.
In his paper Jones (1960), [6], makes a
theoretical analysis of the flow of incompressible
Non-Newtonian viscous liquid in a curved pipe
with circular cross-section keeping only the first
order terms. He shows that the secondary motion
consists of two symmetrical vortices and the
distance of the streamlines from the central plane
decreases as the non-Newtonian parameter
increases.
Thomas and Walters (1964), [10, 11], studied
flow of an elastic-viscous liquid in a curved pipe
with an elliptical cross-section. And they noticed
that the liquid elements moves along the pipe in
two sets of spirals when the axes of the ellipse in
an asymmetrical position. The streamline
projections on the cross-section of the pipe arc
strongly dependant on the elasticity of the liquid.
This is not so when the axes are in a symmetrical
position. In addition of this the flux through the
pipe is independent of the namely Dean and non-
Newtonian parameters; also he studied the effect
of these two parameters on the secondary flow,
axial velocity and some other relations. Our work
will be generalized to chapter one of A.M.
Ahmad work.

obtained an
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2-Mathematical model and the governing

equations

Consideration is given to the study of motion
of fluid flowing in a curved duct with rectangular
cross-section, the position of any point O is then
specified by cylindrical coordinates (x.0, z), -

h .
a<x<a and —b<z<b. Leta =—, is the aspect
«

ratio. Our analysis concerting on the secondary

motion in the case when =1, e <land @ =1.

Fig (1): Coordinates system

Fig (1) illustrates the coordinates system that has
been used, the axis of the circle in which the duct
is coiled is OZ formed by the wall of the duct. C
is the centre of the section of the duct by a plane
through OZ making an angle & with a fixed axial
plane. CO is the perpendicular drawn from C
upon OZ and is of length R. The plane through O
perpendicular to OZ and the line traced out by C
will be called the central plane and the centre line
of the duct respectively. Cartesian coordinates x
and z are drawn in the section of the duct where x
is parallel to OC and z parallel to 0Z. The
general direction of flow will be taken to be the
direction in which @ increases. The motion of the
fluid is supposed to be due to a fall in pressure
along the duct, there will be a fall in pressure if
fluid enters the duct from a container at known
pressure at one end and flows along the duct to a
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container at lower pressure at the other end [1].

The line ¢lements

(ds) =(dx)* +(R+x)"d0” +(d=) @)
It is clear that the coordinates form orthogonal
Thus. one can use definition of the

coordinates.
down the

curvilinear coordinates to write

equations of motion and the continuity equation.

3-Motion equations and continuity
equation

The full equations of
ation for unsteady viscous flow in a curved

motion and continuity

equ
duct without imposing any restriction are[l]:-
(su ou ¥ ou U VP
ol il ik W =
‘ ot dx  R+x ¢t oz R+x :
—oP T s | aT |
— = — 4_._“, 4+ — _\"" ‘1) 4
ox ax R+x 06
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(ol U | v oW’
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& i P TP

ox R+x R+xd0 0z )
Where U .V .and W are the velocity components
in the directionx,@.and z respectively .Assume

that the motion is steady the velocity
components  U(x,z), p(x.z),  Wilxz)are
independent of & but P is not. where P is the

The

pressure which varies linearly with ¢.
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dimensions of the cross-section are small in
comparison with the radius K. The components

of strain tensor are [1]: -

U
ro il (""_.\‘_.' I
1 ¢ {—, 7 \
e pp =- el
00 " R +x ‘\ se )
oW
L,-—— - -
ot (#10 .
| L oW ev) =T)
e e | —— el |
6~ z0 3 \R+x 68 o)
1(6V oW )
¢ =e =—|—+—=
- oxz 2\ 8z Ox )
l(ov ¥V | au|
¢ =e = —=—— "7 ||
x0 "6 2l ax R+x R+x20))

Equations of motion and, thg gontinuity equation
are now modeled on the basis of assumptions
mentioned above and we approach non-
dimensionalization by introducing the following
new quantities

f A *
P [-R,“ |&
i nyv - ]:i_”_}i;o_ (8)
R”" LI,?I'UR J oe
V R,
T“\ _u h —I,y:H T:: ]I
L2
o VR, ., (V.R,Y VR ‘
(8 ;J_“_i;* by, | T =2 iy,
I"‘rr- | v k v /“ - ) r
! ] VnR[, ' ’
i xa "7!;_ =0 T::

where Rh is the hydraulic radius. Andv = %

V' is the value of V' at the central line.

4-Non-dimensional form of the motion

equations
By using equations (1-8), the motion and
continuity equations in dimensionless form are

ou ou 1, 3
y—+w—-—=Lv"
éx, oz, 2
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I'he non-slip boundary conditions is given
byu=v=w=0, on the boundary
x=Fk ;1 =+s,

where k=l+a/a.,s=1+a.

5-Stream function form of equations
[t is convenient at this stage to introduce a

stream function W(x, z) which is defined by

¥ oY
H=— — . W = (!:“]

o~ 2 ~L
0z, ox,
satisfy the continuity equation (12)
In what follows we shall omit the index, it is
being understood that the variables are non-
dimensional form,
- o — . g *
Substituting (13) into (9-11) and eliminating g
between the first and third equations, then
neglecting the terms of second order and
arrangement the last equations we get:
, v (é¥Y 8 oY 8 )
viy = L»* g s [PSIP -

AL AL
cz OX

F TN
(v Y a*v ;

.(14)
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and  the associated  boundary conditions
Y=Y =% =0,v=00n the boundary
These equations can be seen to be effected by
| ; AN
(V3R /|
; R Lo _Aal h / ’
two parameters L =2 /9 and
\ é U"'R}‘
b
V4 £/ .
Jsi U = ,  which are Dean
R SR )T
/ ( I ) ¥ ( I'.‘] F
numbcr and the Non-Newtonian parameters
respectively. The above system will be reduced

to corresponding systcm in case of Newtonian
fluid if we set =

To solve the above system we will use successive
approximation method, which is equivalent to

expanding ‘. and v in ascending power of L
and as follows
e I, 4 L5 W Fusass ,
B .(16)
v=v, +Lv, LVt

we will limit ourselves to find the solution up 1o
first order in L Substituting (16) into (14) and

(15) and equating coefficient of power of L we

will get a series of relations from which
Vo'V can be successfully found
Viv, =—d (17
-~ "Wq
4 ov (‘VU (-“v”
R i el
9 gz Ox
L(18)
ov_ a7V
!3 (%) 2]
5 2

6-Numerical method

To simulate flow in curved ducts, a finite
difference method is employed to solve the
equations of motion and the equation of
continuity in steady state with the dimensionless
variable formulation. The algorithm used is

successive-over relaxation (s.0.1), (8]
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The first step is to divided the region
R={(xy)-k<x<hk-s<z

regions of sides a and b by choosing integers 1

< x}into small

2k 2s
and #7 such that g =——.b=
1 m
x, =—k+ia,} =5+ jb )
i=1.2, b 5 2 M

Consider equation (17) on the rectangular region

R= {{\ _'.'X*— k

. 2 ol ;
< x<k,—s<z<sj and subject

- 8(,2 . 2
to the conditions v = 0and J = —{k= +s7 |, the
2 ;

corresponding equation in finite-difference form

is
\(( ) fh\w
| V.iﬂ- “—Vu;— i 1
| {1+1.4) (i=1.4)/ \_kJ,
[(VUL -k V”:“_k”)‘} hJ J
\’“l- WT‘_—-——')——-; .

V "hz -‘
Z'MI +1|

T B T S .(20)
The (s.0.r) that used for this system has the form

(A+ 1)

Vol ‘]—(l-rm]\ L )T .
r v 17
ii r“ {”1; ]_{j;\ I
Volis1s) Vol-1.) b
|‘ . b K/
(k+1) 2
| )“‘_H x-.'l'n.:-f))ifh JJ <2
am
\ 2.([-r +IJ
| I\ k)

l L |

where @ is the relaxation factor and is given by

2
0] T
obt [
5§ -T2
1 [ I N\ / ™
T =— Cos| — J+ Cos| EW
2| \ k H

By similar procedure one can find the solution of
the biharmoinc equation

Ve =0Q
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where
av a-v v, 07V
Q= ~—2 Do Je B S M
0 o S ) 2
(4 oxoz (974 (';.. -~
On the region R under the carresponding

boundary conditions. Notice that the free terms
depend on Vv, values, at the same mesh points, at

which ¥ to be calculated.

7-Secondary flow

The main feature of the flow in a curved duct is
the secondary flow in the cross-section of the

curved ducts. Physically the parameter L

(Dean's number) can be considered as the ratio of

the centrifugal force induced by circular motion
of the fluid to viscous force when a fluid flows
through a curved duct. Pressure gradient directed
towards the center of curvature, is setup across
the duct to balance the centrifugal force arising
from curvature. The fluid near the wall ot the
duct is moving more slowly than the fluid some
way from the wall owing to viscosity and
therefore require small pressure gradient to

balance the local centrifugal force. As a result of

these different pressure gradients, the faster-
flowing fluid moves outwards, whilst the slower-
flowing fluid moves inward.

This flow is known as the secondary flow and it
is superposed on the main stream region towards
the outer wall and creating a much thicker layer
of slowly moving fluid at the inner wall,
however, owing the enhanced mixing and
momentum transfer due to the secondary flow,
the total frictional loss of energy near the wall
increases and the fluid experiences more
resistance in posing through the duct.

8-Streamline projections in the central plane

The motion of the liquid in the central plane of

the duct is of special simplicity. If any point on
Y
o
~k<x<k,—=0 and
ox

w vanish (i.e. the liquid particles located in the

OC then z =0 and

central plane do not posses the W component of

velocity which is responsible of moving them out
of the planex =0). So at any such point the
direction of the velocity of the liquid lies in the
central plane, this is mean that any particle of the
liquid in this plane will not leave it in the

subsequent motion. The motion in the upper half

of the duct is therefore quiet distinet from that in
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the lower half and it is clear that the central plane
is the plane of symmetry from the motion.

Streamline projections on the cross-section
The secondary flow is the main feature of the
flow through a curved duct, where is caused by
the centrifugal force due to the curved
boundarics. Because the centrifugal force
intensifies the motion of the fluid particle in a
curved duct, the fraction of the flow in a curved
duct is higher than a straight one.
The projection of the stream function on the

cross-section represented by ‘1“[ = constant,

where ‘l‘] is the solution of equation (18). We
analyze many cases to study the effect of the non-
Newtonian parameter S and the effect of the
aspect ratio @ on the flow in the cross-section of
a curved duct. Numerical illustrations are given
for a particular boundary and Reynolds number
considered by Dean [8], namely:

(R)_1

R, =033 ===z
' R 3
and for different values of the parameter &
and /7.

Thirty cases are studied to ascertain how the
Non-Newtonian parameter and the aspect ratio
94

affect the secondary motion in a curved duct. The
parameter & is set at 0.1, 0.5,1,2, and 10, and 3
varies from 0 to 2.1.

Figures (2-7), illustrate the effect of the non-
Newtonian parameter [ on rectangular cross-
section with aspect ratioa =1.It is found that as
[ increase from 0 (Newtonian fluid) to 2.1,the
intensity of the secondary flow increases from
0.0005 t0 0.3.

The effect of £ on a rectangular cross-section
with aspect ratioa =2 is illustrate in figures (8-
]3).and it is noted that the intensity of the
secondary flow increase from 0.0001 to 0.6.The
came issue is examined for @ =0.5 ,here it found
that i increases from 0.0005 to 1,see figures
(14-19).

Two more aspect ratios are tested, The first one
@ =0.1(small) in which it is found that the
intensity of the secondary flow increased from
0.1 to 40.While in the second one @ =10(large),
the intensity increased from 0.0002 to 0.004,see
figures (26-31).

It is noticed that for all @ and /. the nature of

stream lines is a closed and symmetric curves in
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the upper and lower halves of the cross-scetions
" o the closed curves obtained is the reflexion in
OC", it has already been seen that the motion in
two parts into which the duct divided by the
central plane are independent with opposite
direction.

It is observed that the intensity of secondary flow
is stronger in the middle in each secondary vortex
and becomes weaker whenever we move towards
the boundaries and the central plane, and this
intensity increases as /3 increases, in addition to
that. there exists a vertical displacement in the
centre of cach vortex.

For & =1.2.0.5 Fig (2-19) one can see the effects
of the two parameters & and. [ for a fixed &
and [ varies from 0 to 2.1 then the intensity of
and when @

function increases

2 to 0.5 and [ fixed then the

the stream

decreases from 2
intensity increases.
Now, for a =0.1 (strong wide rectangular
region) and /3 varies from 0 to 2.1 we noticed

that there are two symmetric vortices covered the

-
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upper and lower halves of the cross-sections See
Fig (20-25).

Forax =2, Fig (8-13). it is observed that there is a
stagnation region "the region where all points
have a zero velocity" started to appear in the
centre of the cross-section near the central plane.
The last observations became clearer as
increases for example when @ =10 see Fig (26-
31).

Another feature of the secondary flow, strcam
lines pattern is the increases in the curvature of
the streamlines as ¢ increases.

If the scale of the region is taken a =I
and(k/2,5/2) we cover the results of non-
Newtonian fluid flow in a curved duet withsquare
cross-section  [1]. If the non-Newtonian
parameter [J is set to equal 0 we cover the
results of the Newtonian fluid flow in a curved
duct with different aspect ratio. If L =0 then
¥ =0 then we have flow of Newtonian fluid in
a straight duct with different aspect ratio.

=
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