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Abstract

Difterent evolutionary algorithms based on real coding have been presented for
tracking parameter optimization problems. They include evolution strategics (ESs)
and real-coded genetic algorithms (RCGAs). As the power of the GAs arises from
their recombination (crossover) operator, and it may be considered to be one of the
components to be borne in mind to improve the GA's behavior, researchers on
evolutionary algorithms considered a new class of recombination operators- called
real-valued recombination operators.. In this paper. we examine the eefect of real-
valued recombination operator in diploid genetic algorithm. comparing its results
with that of diploid genetic algorithm using bit-coding recombination operators.
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representation. For this reason, the path has been
lain toward the use of non-binary representations
by processing more adequate for each particular application
problem. One of the most important ones is the
real number representation, which would seem
particularly natural when optimization problems
with variables in continuous search spaces are
tackled. So a chromosome in this representation
is a vector of floating point number whose size is
kept the same as the length of the vector, which is

1. Real-Coded Genetic Algorithm: An

Introduction

Genetic  scarch  operates
problem parameter coding rather than the
parameters themselves. In natural genetics,
chromosomes and the genes they contain act as a
code for the features of each individual organism.
In a Genetic Algorithm, GA, a finite-length string
coding describes the nccessary parameters for
cach candidate solution to the search or
optimization problem at hand, the candidate solution to the problem. Genetic
Traditionally, fixed length and binary coded algorithms based on real number representation
strings of Is and 0Os (bit string) for the are called real-coded GAs (RCGA) [2].
representation  solution have dominated GA  The main difference in the implementation of
research since there are theoretical results that  binary-coded GAs and real-coded GAs is in their
show them to be most appropriate ones, and as  recombination and mutation operators [3][4][5].
they are amenable to simple implementation[1]. On the behalf of recombination, literatures
But the GA’s good properties do not stem from  proposed several binary-coded and real-coded
the use of such low cardinality bit string recombination operators, A common binary-
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method is two-point
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on other hand, there
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crossover. in real- coded GA,
._UI“}‘II'LJ ion methods all of

iduals’ variables are

r averaged [6][71[8].

are a number of 1

which assume that the indi

either exchanged or

literatures

While from the mutaticn viewpoint,
proposed one main form of mutation. [n binary-
coded GAs, mutation works by occasionally

inverting single bits of individuals, with small
"J But in real-coded GAs, mutation
consists of the addition of a normally distributed
random *“-'hf' to variable of the
ird’:\*idua}, Corrc"sponding; in the search
space [6].
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each
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2. Diploid Genetic Algorithms: An Overview
The GA (haploid GA) assumed a
haploid problem

splutions.

Yy pl\.d.
representation

That is, each population member was 2
bit string that contain ned sufficient information to
specify 2 complete solution design (detailed

description for mechanism of the tyf srical GA can

of potential

be found in [9] ). The analogous haploid
chromosomes in natural i;*F‘LEI\‘w are found
simple organisms. However,

very
organisms often have diploid
contain  rwice  the
tor spe it !

primarily in
ﬂme complex

which
Necessary

chromosomes,
information
organism’s structure. Decoding this
genetic data into a single set of T=?tures in
between the homolgous ChIOmOQﬂI’lk

.O conflicts
that occur

Conflicts or

strands. contradictions

between the two halves of a diploid
chromosomes are resolved by 2 dominance
which (in its simplest form) decides

[A‘"r‘m"?.u
on one of the conflicting g
xpressed in the origanism itself.
ln a GA, a diploid individual has two bit strings
each of which is sufficient to specify a col "’l'plcf[k-
solution design. A dominance relationship must
be applied to specifies how these two strings are
jecoded into a single expressed string whose

enes that is eventually

Stness is evaluated [9]). For instance, if we
consider a dominance relationship whe"e ]
always dominants 0 (1 is called the inant

Jele and O is called the recessive :1:‘3&!:}) the
lowing diploid individual,
1011010110
0010101100
decodes to the following expressed string
1011111110
in the above example, there are contradictions
between the two strings at lo ci one, four, five,
and nine. The values in the expressed
expressed ot phenotypic

7
‘

a
fo

six, severn,
string are said to be the

.
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with the diploid chromosome.

values associated

'['hls xample shows that dominant allele is
expressed when heterozyeous (i.e., mixed, 10 —
| or 01—1) or homc pure, 11—1)

sed only when
. of domain
complete

1HL1' is expres:
—0)  [9]). This type
called Mendelian or

and the recessive
homozygous (00
relation 18
domainance
Diploid GAs not only differes from haploid GAs
in its methods of representing and translating
but it also uses a different process
ln diploid

like that

genetic traits,
for combining genet:c information.
GAs, the simple crossover operation

found in haploid LA is replaced by a more
complex, fwo-stage process [10]. In the first
stage of diploid information combination,

hetween the homalogous
single individual to form
gametes. This stage is called

In the example above, if a

crossover  occurs
chromosomes within a
single _~ti'amfed
gamelogenes 5
crossover point of four is sel lected:

Examplel:

| 1 0
1 100
crossover point
Hence, gametog ocess yields the
gametes
1011101100
and
10010110
After g_amem}-_enebi a ‘naploid gamete from one

parent is combined with a haploid gamete from

another parent to form the homologous pair for a

j wlmd child’s chromosome. This stage | called
ili=ation. Consider the following example:

fe ) TILIZC

Parent] Parent2
Gametel: 10110000 Gametel: 01001111
Gamete2: 11101010 Gamete2: 00010101

l

W
fertilization

Offspring2

01001111

11101010
structures with dominance have
nonstationary
hold alternate
illustrate

Qﬁ“ ingl
1110000
Lﬂn{ulu
Diploid genetic
an evolutionary
environments because they can
alleles in abeyance as recessives. To
abeyant recessive can be advantageous in
environments, consider an allele

advantage in

how
nonstationary
T :
A that is related to some useful feature of a
given species in a given en vironment. If the

conditions of the mlronment change, and the

‘J)
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sociated with " Is'no longer
e organisms with

£

particular feature
useful, selection tends to remov

L

ie 7 expressed. However, if  is recessive,

shielded from selection by a

alle
it usualiy
dominant allele.

will be

[f the environment returns to its original state,

allele # need not be rediscovered by a lucky
mutation, it will be available as an abeyant
alternative in the genetic structure. In this way
the abeyant allele acts as a form of pr'o'*v'ﬂ‘iﬁsr;c
memory of past environmental conditions [10].

Probabilistic memory is not the only advantage
of helding recessive alleles in abeyance. When an
suddenly faced
abeyant

evolving species is ¥ith new
environmental conditions,

alleles can also act as a source of diversity in the

recessive

gene pool. Since recessives

IS case,
introduce less  disruptive
development than that m'odmeu by mmatmn in

he homozygol

15

haploid chromosomes. 1f mutation is the only
source of genetic m»sm the mutation rate
necessary to cope with environmental changes

etic development,
mutations in
ed less often

as to stifle gene

introduced

might be so high
Also,

diploid genetic structures are express
& I

IeCessives by

than in haploid structures, thus limiting the
amount that a given mutation rate disrupts a
diploid species’ development ([9]. Figure |

outlines a pseudo-code odiploid GA with two

stages recombination scheme.

fize ( .‘-’w ‘pi‘l )}

at rancoimn.

Evaluate (Pop(t)}; //Evaluate the fitness
values
Repea
' Selection (Pop(t)); //Select better
' chromosomes
n (Pop(t))

‘ Two-Stage-Recombina

// Pertorm ga

{/ and fi
[T (Mutation (Pop(1)})
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s Mu
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Evaluate (Pop(t)); // Evali new
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[RUE)) ‘

L

Figure I A pseudo-code of diploid G As
with two-stage recombination scheme
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Previous studies on diploid GAs have focused

nainly on bit recombination or bit-coding
recombination 'Jnd did not present how to apply
i":i-t'-\":’j!t.cj recombination on diploid GA. Hence,
in the next section we will present a mapping

method of \lmlu d structure and dominance map

with  two- \TJ‘_j real-valued  recombination

mechanism [11

3. Real-valued Two-stage Recombination

As presented earlier, there are two general
forms of real-valued recombination that either
averaged individuals variables (i.e., intermediate
exchanged  individuals

recombination) ar

variables (i.e., discrete recombination). By
imitating the real-valued intermediate

recombination process in haploid GA [2], the
recombination is applied between
chromosomes of an

sis process so as to

intermediate
the two homolc
ndividual during gametogene
produce two new gametes. Gametes for the two
new offspring are produced according to the

ZOUS

rules:
Gu=upPp~U-uw)p
Gra =upPip+(l-u) pyy
Ga1=uPyr+(1-u) Py
Gop = U Py +(1 “:)Pﬂl

Y is a uniform random number belonging

G G'12 are

where

and gametel

+

the interval (0,1).

Lo

and gamete2 of parent] respectively, while

(7o . Gan -

T2land “Y22are gametel and gamete? of
. ) . 5]

parentZ respectively, P and Piz are

chromosomel and chromosome? of

P

respectively

are

parentl while respectively

chromosome! and chromosome2 of parent2.
. G . G . .
Each variable in “1land Y12 are the results of

combining th, variables in the chromosome! and
of parent] according to the above

G21and

chromosome?

expressions. While each variable in

G222 are the results of combining the variables in
the chromosomel and chromosome2 of parent2
according to the expressions. After
creating  new gametes from two parents,
fertilization occurs between two haploid gametes
of the two parents to new diploid

offspring chromosomes, As an example, consider

above

form two

the following twa diploid
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4. Results

A sample functions

of four minimization
(F1). Rastrigin function (F2),

(Sphere function
Griewangk function

,kckci_\ function (F3),
cen from the litretures shown in table 1 is
s the test bed to carry out the performance

] _valued intermediate

jary-coded crossover

and

g real

results of apply!

against bir
diploid GA
"ﬂ'f’m‘]‘.[

recombination
but with the
recombination

lts of the

using two-stag
to confirm the
previous studies  [4][6). All these
with the medium size of

in an

resu
functions are tested

of

n=10 Ra

are also presented in

nge

tabl.

R.inﬂr
| Function formulation | N Axs |
of ! |

Table 1 test Suite _ sopeneces

4 . - [ . I
o = 5 . 2 [-2.14, 001

i L £ A L_ \ Il b ‘
. IS PSS Spnd]
‘ ' !

| 0,001

| [-600.0, I
| ? - 600.0]

as  follows:
5. The standard

were

individuals
edure was used. For all

population size was

tournament selection p

functions, each variable is represented by thirty
Hollestien’s

in the two algorithms [10].

recombination

bits gray encoding. dominance
relationship was used

Recombination  OCCurs with
\utation operates at the

with mutation probability,

[n addition, tne
ft with a

n  =0.001
oI i

diploid GAs
specifie

¢imulate dominance st
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i = (.01
dominance shift proba ) 2
Tables 2 to § compare the performance of diploid
GA  with
intermediate
3 =0

two-stage recombination  us

recombination scheme with

against that TwWo-point

recombination scheme. In the figures below, the

diploid GA using two- point crossover and
ke

recombination are

DGA/ZpointX,

ntermediate
respectively as

DGA/intermediate X,

Fable 2 Test comparison of diploid GAs on FI

~ DGA
| interm ediateX

DG .L\_llr)uiinlﬂ

Table 3 Test comparison of diploid GAs on F

»A/2pointX

DGA/

Table 4 Test comparison of diploid GAs on F3
' DGA/

lintermediateX
BELL : o,

DGA2pointX

g
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Table 5 Test comparison of diploid GAs on F4
CDGA/
intermediateX

616
4.89

2 8459E-01

AT6E-01

Conclusion

One may expect that DGA/intermediateX
should outperform that of DGA/2pointX. The
above results demonstrate the success of
DGA/intermediateX  in  finding the g
in both Fl and F4. While

in finding the

global

minimum
DGA/2pointX
alobal minimum in all these functions. From this

does not succes

we can add to our arsenal the following. Similar
to the conclusion drawn the previous
hes results that real-valued recombination

Irom

reseat
overcomes hinary-coded recombination schemes
in numerical optimization problems, there 15 a
difference in performance here between the two
schemes, In other words, the diversity provided
v the diversity prolonging mechanisms of both

and dominance operators s not

S reliable results for
optimization with
arameters. And it is then approperiate to adjust
other than diversity-

handle

icient enough to give

praoblems real-valued

other genetic operators

proior operators real-valued
parameter optimization problem. However, the
failing in the other two functions (i.e., F2 and F3)
does not indicate that real-valued recombination
is not with any apparent advantages in this
domain but it most probably turns this unpleasant

combining

nhenomenon to the mechanism of
n the diploid GA with two-

through

information used
recombination mechanism

fertilization.

stage

netogenisis and
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