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Abstract
Computer simulations are carried out to guantify the qua
seen by the Next G n Space Telescope (NGST)
transfer function, MTF, of a refe

with the

is study is also e ) examine ti > frequency recovery of these
from a binary star of separation is just within the full extent of Hubbie's
ence and presence of atmospheric turbulence

Introduction that the NGST could be built and lunched by
The NGST is a major element of NASA’s  about 2009,

original program. It is planned to deploy a The origin of galaxies is one of the major projects

8 m diameter aperture and

equals 1000 times observations have already done w NGST.

telescope with an in observational cosmology [5]. Some simulated
sensitivity approximately
greater than any currently existing telescope [1]. Burgarella et.al [6] have studied the detectability
The NGST is de .d for observations in the far  of very high redshift galaxies and tried to
visible to the mid infrared part of the spectrum. haracterize Wide Deep-Field observations. The

Mid-IR  molecular hydrogen line
the HST which covers the range from the emission from the first objects in the universe
iolet to the near infrared. The NGST will be  with NGST has been studied [7]. The optimal
i to achieve high resolution

This wavelengths coverage is different from that
of
ultra
able to detect the likely presence of planetary  instrumentation
systems around nearby stars from their infrared  observation with NGST is discussed [8]. The
radiation. Details of the « n of the NGST
been suggested  Fourier transform spectrometer
NGST is demonstrated [9].

operation and advantages of using an imaging
“TS) for the
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found in [1( particularly

comprehensive review given by Roddier [12,15].
The objective of this is to implement
statistical approach in to quantify the
astronomical objects as se

. NGST

>, GBT (in the absence and presence o1

Theory
In this

a brief theory

the image that

ection, we present

the image formation model, i.e.,
recorded by an optical t;':' ype in the presence
of HTmN\I ve shall negl

ic turbulenc
} the

just consider

the turbulent atmos
optical telescope mental equation to be
for the format of image by an ideal

i, y)= || o(x', ¥ psf(x—x.y 'dy” (1)
i(x, ) =o(x, )& psf (x, p) (2)
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Equations (1) and (2) are equivalent and

representing a convolt ition equation. Where i{x, )/
the

s

is the observed image intensity, ofxy)
obiect intensity, psfix,y) represents the image

function caused by the telescope and
The

b |L\11i\ g
denotes convol m-m uperah‘,\r. Fourier

transform of (2

I vl = Ofwv). Tiuv) (3)
where Jfwv) and Ofuv) are, respectively, the
complex Fourier transforms of the image
intensity ifx,y), and the object intensity o(x,3/;

Tiu,v) which represents the Fourier transform of
4

is an important function known as the

transfer function (OTF). The modulation

the

aptical

or amplitude of the complex function Tt v} is
called MTF. In the resolution of an

. £

imaging ﬁ':ﬂil‘t‘d only by the luck of

at are free nherent

e optical elements t e from i

distortions.
Now

quasit

distant

consider an
located on the
ystem, In the

this source

nonochromatic point source

optical axis of a simple imaging

absence of atmospheric turbul L[lLC,

would penerate a plane wave normally incident
on the lens. In the presence of the atmosphere,
the plane wave incident on the inhomogeneous

medium propagates into the medium, and

ultimately a perturbed wave falls on the lens. The

field distribution incident on the lens can be
expressed as

Iiin.r)= p'#n.7)

ANty =0 i"l )
vither ¥ + b - 4 . ~f he
where * is the random phase of the

(7,7)

The

variables
il functian.

and the
the m

incident wavefront

n

represent distances

instantaneous psf of the entire telescope
atmosphere system is given by:

vef g e | g LE .r9",P7 i )

psy Lx,¥) I [;.’ (7. y W,y } (5)
where H'1-¥ ) represe nts the function and
£T denotes Fourier Transform operator. The

- OTF the Fourier Transform of

correspondir

the psf, thus

Ty 1= 17 / y
{1,V (n)

Equation (6) can also be written in terms of the

pupil function and the field distrib ution incident
on the lens as,
W k(n—-n',y -y ey )

(7




where denotes complex  conjugate. The
to the Fourier

by

and are related
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Each pixel is taken to be 4 cm.

£ we consider the object to be imaged is an
extremely distant quasimonochromatic  point
source located on the axis of an optical telescope.
turbulence, this

In the absence of atmaspheric
' 1€ wave as

a
a

source  would

mentioned before and so that

becomes zero and consequently U/ (7,7 = |

The psfs of the NGST, GBT and HST are
computed following eq.(5) and the corresponding
The

aq.(7).

iso computed via eq.(6) or eq.(7)
' maximum and
the

MTFs are a

normalised to one at

results are
Fig.(1) display the central
MTFs

lines through

Fig.(1): MTFs of NGST, GBT and HST,
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Fig.(2):

a- Amplitude of the complex wavefront at 0:8",
b- Amplitude of the complex wavefront at 1".
¢- Short exposure psf at 0.57,

d- Short exposure psfat 1",

| y=256 pixels
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Fig.(4): Central lines through M I'Fs when one short exposure psf is computed.
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Fig.(5): Central lines through MTFs when 200 short-exposure psfs are computed and

averaged out.

The total frequency components of each frame of
MTF after normalization is computed and given
below. The normalisation is done according to
the total frequency components of MTF of GBT

he absence of atmospheric turbulence.

‘,\}‘L‘lrt
exposure psf) = (0.20236.

MTF of GBT at
exposure pst) = 0.1
MTF (!T- GBT

Vit d

short

at seeing 0.5" after averaging

200 short exposure psfs = 0.0464.
MTF of GBT i
3

after averaging 20U

short exposure psfs = 0.0

MTFE of
smoothed Gau
MTF of GBT at seeing 1" after fitting a smoothed
=(3.0156.

GBT

3" a fitting  a
ssian function =0.0532.

at seeing 0.5" after

Gaussian function
Up to now, our study was concentrated on the psf
and MTF of the described telescopes.

It is now important to extent this study to include

4 binary star. A binary star of equal magnitude

and of a separation is just within the full extent of
a Hubble |
considered to be a reference binary star. This

is convolved wit psfs of NGST,
GBT. HST, GBT/atmosphere at seeing 0.5", and
1" The results of these simulations ar in

This is

H £

is simulated (see fig.6).

binary star
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Fig.(6): Central lines through a binary star and Hubble psf.
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Fig.(7): Central lines through a binary star
a-Original. b-Via NGST. e-Via GBT. d-Via HST.
e-Via GBT at 0.5". f-Via GBT at 1"
: . y), that described in Fig.(7) is

5

computed by the following

Plu,v)= FT[b(x.y)]° (9)
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Fig.(8): Power spectrum of an image of a binary star:

a-Original.

h-Via NGST. ¢-Via GBT.

d-Via HST.

e-Via GBT at 0.5". -Via GBT at 1.

The normalized central

Normalized P(u,v)

lines of Fig.(8) are shown in

Figi(9).
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Fig.(9): Central lines through Fig.(8).

a-Original,
e-Via GBT

It is now so crucial to guantify the revealed
The tota
frequency components of each frame of a power
spectrum is computed. The normalization is done
3] f

the power "\'r“{'\' trum ol oril

frequency components of Fig(8).

according to the tet ncy components of

al binary star.

Total frequency components of original binary

star=1

b-Via NGST. ¢-Via GBT. d-Via HST.
at 0.5". f-Via GBT at 1".

Total frequency components of a binary

seen viz " =(.5585

Total frequency components of a binar as
seen via GBT= 0.3483

lotal frequency components of a binary star as
Fotal frequ of a binary star as

gncy coil ponents

seen via GBT(seein

g u.c

) ={0.1688
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