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1. Introduction
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2 ZERNIKE Moments Descriptor (Z.MD)
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in polar space I'he following describes
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polynomials|5]]6]:
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i Central Moments Descriptor
lhe central moment of order pg

for object

(1mage) / is defined as [8]:
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u.,, are called central because they are defined

relative ta centre of mass




Pre-Processing  Procedure  for Image

Recognition
To solve the problems companion mvariant

caleulations, the process started by

the known object, transformed it

moments

acquisitioning

into an image shape that can be processed by
further steps in order to extract the characteristic
) faatures of the image. In this paper, two methods
were used. After the proposed preprocessing s
being applied, the first method 15 Zernike
moments method and the second one 1S the
central moments method are applied
[he preprocessing contains five steps
ransform the input image to bina
by ane of the known methods (t
method for example).
Ihe edee detection s taken for the binary
image to reduce the consuming tine of
calculation. Canny algorithm used to find the
eds of the abject, this method as edge
detector was adopted according to s
sowerful results, Canny method where finds
edges by looking for local maxima of the
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Figur (1) a) original image
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5. Moments Calculation Analysis
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If we plot the percentage error as a function for preprocessing reflect a very bad result of "
etrical transformation images, was found matching as shown in figure (5).
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