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Abstract 

Nowadays the characteristic of many systems can be captured and investigated 

as networks of connected communities. Recently, large research interests are 

devoted towards unraveling natural divisions in such complex networks. Due to 

problem complexity, the field of multi-objective evolutionary algorithms (MOEAs) 
reveals outperformed results, however, they lack the introduction of some problem-

specific heuristic operators that realize their principles from the natural structure of 

communities. The main contribution of this paper is to introduce a heuristic 

perturbation operator that can as a local search operator. Thewell known multi-

objective evolutionary algorithm with decompositions (MOEA/D) is adopted with 

the proposed perturbation operator to identify the overlapped community sets in 

complex networks. The performance of the proposed MOEA/D is evaluated under a 

set of experiments on real-world social networks of different complexities. The 

results prove the positive impact of the proposed heuristic operator to harness the 

strength of MOO model in both terms of convergence velocity and convergence 

reliability. 
 

Keywords: Community-less nodes, graph co-clustering, MOEA/D, MOO, non-

dominated solution, NP-hard, Pareto Front, social networks. 
 

 الأجتماعية المعقدة متعددة الأهداف لكشف الجاليات في الشبكاتأرشادية خوارزمية 
 

 وسام اركان حريز*, براء علي عطية

 ، جامعة بغداد ، بغداد ، العراق قسم الحاسبات ، كلية العلوم
 خلاصةال                  

جاليات مترابطة في وقتنا الحاضر من الممكن تمثيل العديد من على هيئة شبكات متداخلة من مجموعة 
مع بعضها البعض. عدة بحوث حديثا أهتمت بتطوير خوارزميات للكشف عن  متطفلوبشكل  ابكثافة داخلي

على الرغم من وجود جهود ملحوظة في تصميم خوارزميات متعددة الأهداف ولكن . هذه الجاليات المتداخلة
لتركيز عملية البحث حول العلاقات  لحل هذه المشكلة، تفتقر هذه الخوارزميات الى تبني عامل أرشادي

كمحاولة لمساعدة الخوارزمية للوصول الى الحل الصحيح بشكل أسرع أو الداخلية والعلاقات الدفينة بين الأفراد 
،لحل مشكلة الكشف عن الجاليات في الشبكات الأجتماعية، بأقتراح لزيادة موثوقية الحل. يساهم هذا البحث

المعروفة )والذي  متعددة الأهداف واحد من أكثر الخوارزميات التطورية طوير أداءلتعامل أرشادي جديد يستمد 
لتقييم أداء الخوارزميةالمقترحة، تم أجراء المحاكاة على أربعة شبكات أجتماعية قياسية .(MOEA/Dيسمى 
الخوارزمية التطورية . النتائج المدونة توضح التأثير الأيجابي للعامل الأرشادي المقترح في تطوير أداء معروفة

 متعددة الأهداف.
 

1. Introduction 

Many complex real-world systems in almost every discipline of biology, sociology, and 
engineering can be represented as graphs, or networks. Social networks, protein networks, World 

Wide Web, the Internet, collaboration networks, power grids, communication and transport networks 
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are just some examples. Natural divisions within such networks, follow a general heterogeneous 

connections rule, known as modules or communities where densely intra-connected groups of nodes 

are also sparsely inter-connected with other groups [1]. In different context, other terms such as 

cluster, partition, group, and cohesive subgroup can be used to describe a community set. The growing 
demand for algorithms to detect such community structure in networks comes from its considerable 

extent of applications. For example, in social networks, individuals or organizations are tied through 

various social contacts, familiarities, or profiles. Social modularity means, then, a set of social 
individuals which satisfy dense convergence of contacts. In protein-protein interaction (PPI) networks, 

all cell activities can be understood by analyzing those proteins structured as interacting and separable 

modules. Thus, PPI modularity refers to a set of physically or functionally interacted proteins work 
together to accomplish particular functions. Another example is in recommendation systems where 

latent similarities between users (in terms of friendship, commenting, items, and etc.) can be used to 

help such system to work. With the growing demand for all these and other real-world applications, 

community structure aspires to capture the essential characteristics, topology, and functions of these 
networking systems. 

Community detection problem is proved to be an NP-hard problem [2, 3] and can mainly be 

decomposed into two sub-problems. The first one considers the algorithmic aspect, trying to find an 

answer for how to partition a network (i.e., how to generate   . The second problem is more 

semantically related with how to assess the quality of a given partitioning solution (i.e., how to define 

     for some quality function  ). In literature, the detection of community structure has been 

addressed with three different methodologies. These are: top-down co-clustering methods, bottom-up 
co-clustering methods and optimization methods.  The top-down (also called divisive hierarchical) 

methods initiate the whole network as one community and iteratively detect the weakest edges that 

connect different communities and remove them [1], [4 – 8]. In contrary, bottom-up (agglomerative 
hierarchical) methods, initialize each node as one community. It then iteratively merges similar 

communities according to some quality measures [9 – 13]. 

In EA-based literature, community detection model,     ,often exploit information gathered from 

the density of links within and among communities of a given partition. One of recent and effective 

     examples provided in the literature is C. Pizzuti's model [14]. However, few of such attempts 

proposed heuristic evolutionary operators that can deduce their mechanisms from the definition of 

community structure. To this end, the contribution of this paper is two-fold. First, three new 
definitions to qualify the neighborhood relation of a given node in the network are introduced. Second, 

based on the qualitative definition of the node, a heuristic perturbation operator is proposed to harness 

the performance of the multi-objective community detection model,     . Moreover, the prominent 
multi-objective evolutionary algorithm with decomposition (MOEA/D) [15] and the multi-objective 

     model of C. Pizzuti's [14] are adopted in this paper to evaluate our contribution. 

The remainder of this paper is organized as follows. Section 2presents basic concepts relating to the 

community detection problem. Section 3 reviews existing state-of-the-art multi-objective community 
detection algorithms. Section 4 introduces the formulation and the algorithmic steps for the proposed 

heuristic multi-objective community detection algorithm. Section 5 reports experimental results and, 

finally, section 6 presents our conclusions and suggestion of further research directions. 

2. Clustering vs. Bi-clustering 

In contrast to data clustering, community sets detection is defined to be a bi-clustering (i.e., co-

clustering) problem. Consider an     data set matrix   consisting of   objects, each being 

characterized by   features, i.e.   [   ]        and        . Note that in community 

detection problem, both dimensions of  , called adjacency matrix, are identical, equal to the number 

of nodes   in the networks (i.e.,   [   ]          ). Any clustering algorithm tries to partition 

the space of   into a set of   regions or clusters          
  according to the correlation among   

objects. Thus, if     {   }       

    
 and     {   }       

    
 are two clusters, then         . 

However, considering both correlation of features as well as objects in the light of clustering process, 

means to simultaneously select and group (i.e. co-cluster) both dimensions of   into sub-matrices, 

each of which consists of locally correlated objects under a subset of their features. Formally speaking, 

let          
  be a set of   co-clusters and let     {   }        

     
 and     {   }        

     
 are two 
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co-clusters belong to  , then          in both   and   dimensions. Simultaneous matrix co-

clustering needs a quality index that can capture the embedded sub-matrix structures. The modularity 

(noted as  ) index of Newman and Girvan, lays the foundation of many existing successful graph 

clustering algorithms [1]. The purpose of   is to capture the hidden structure of community sets in 
complex networks by maximizing intra-cluster links while minimizing inter-cluster ones. Consider a 

network constituted by   nodes which can be formally described as a graph        , where 

               is the set of vertices (or nodes) and                is the set of edges (or 

connections) between nodes. Then, the cardinalityof  ,      | | and the volume of  ,      | |. 
The degree of any vertex,     , is defined as the number of edges incident to  . Throughout this 

paper, the notation      is used to represent cardinality concept, while      is used to represent 

volume concept. 

Now, consider partitioning   of    into a co-clustering solution             such that each 

vertex          is exactly assigned to one cluster         . The impact of   in   can, now, 

be quantified in two distinct terms. The set of edges between vertices existing in two distinct clusters: 

 (     )                 and the set of edges found inside one cluster:               .  

Then, modularity in [1] will award   according to the fraction of connections inside its communities 
as formulated in Eq. 1, where two contradictory objectives are implicitly handled.  The left operand in 

Eq. 1 biases towards a solution   that is covered with a densely intra-connected modules, i.e. many 

edges fall within          . On the other hand, the right operand in Eq. 1 recommends that    with 

few edges fall at random without regarding the structure of           modules.  

     ∑ [
|        |

    
  

∑          

     
  ] 

                                                                 (1) 

3. Literature Review 
The problem of community detection in social networks is modeled, in the literature, as graph 

partitioning or graph co-clustering problem. Finding a globally optimal solution to the graph co-
clustering problem, however, is NP-hard. Informally, a community in a network is a sub-network 

having dense connections within its nodes and loose connections with other communities. Let      be 

the space of all possible partitions   of a graph  . Also, let a cluster      be a community belongs to 

a partition  , and let          be the set of edges connecting vertices of    , i.e.                 
          . Then, we can quantitatively and semantically formalize the following definitions. For 

vertex     : 

         |              |  ∑           
 is the number of intra-edges of  , and 

  ̅       |              |  ∑           
is the number of inter- edges of  . 

To this end, we can generalize the language of intra- and inter- connections to a single community    

and to the whole partition   as: 

       |        |  ∑            
is the number of intra-cluster connections of   . 

  ̅     | (     )|    
 ∑  ̅          

is the number of inter-cluster connections of  . 

      |    |  |             
 | is the number of intra-partition connections of  , and  

  ̅    |    |  |    | is the number of inter-partition connections of  , and  

Note that we usually refer to      as the degree of vertex  , while for a cluster or group of vertices  , 

     is said to be the volume of  . For example, in [14] Pizzuti refers to      as the volume of 

community  , while the number of nodes in  , i.e. | | is referred to as its cardinality. According to 

the volume of a community  , Radicchi et al. [8] semantically define   as either:weak community: if 

      ̅   , or strong community: if            ̅   . 
Due to NP-completeness, many algorithms define and formulate the community detection problem 

as modularity maximization problem. These optimization methods share a common ground by trying 
to optimize one or two objective functions realizing correlation among featured subgroups and divide 

the network's nodes according to these subgroups into sub-networks [16] – [18]. Recently, the relaxed 

nature of meta-heuristic based optimization methods makes them very suitable to reduce the 

complexity of the problem and to approach adequate solutions. The dominated optimization methods 
explored so far in this area of study is single- and multi-objective evolutionary algorithms (EAs) [10], 

[19–24] and [14],[25–28] with paramount performance for the multi-objective evolutionary algorithms 

(MOEAs).  
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Shi et al. [26] define the community detection problem as a multi-objective minimization problem. 

These objective functions are the two terms of the modularity function   in Eq. 1. Noting that   is 

defined as a maximization function, and using a minimization formula  
                                      , MOO can be expressed as: 

        ∑
     

    
 
                      (2) 

      ∑  
∑         

     
   

               (3) 

Pizzuti [14] formulated a multi-objective maximization model: 

                                  . For a partition  , the first objective is to maximize 

community score [23] while the second objective is to maximize the community fitness proposed by 
Lancichinettiet al. [18].  Formally speaking: 

      ∑
∑  

    

     
      

     
      

 
                                                  (4) 

Where     controls the size of community     found. For a given community  , its fitness       is 
maximized by maximizing the fitness of its nodes, i.e.: 

      
     

        ̅     
                                                              (5) 

Also, here     control the size of community   . Then Pizzuti [14] defines       as: 

      ∑      
 
                            (6)

 After evolving a set of solutions, Pizzuti suggested to select the partition with the maximum 

modularity value     , however, she concluded that      may fail to represent the true partition. As 

can be seen from both formulations of Shi et al. [26] and Pizzuti [14], the emphasize goes to       

while the impact of inter-cluster connections  ̅     is either indirectly or implicitly optimized (see Eq. 
2 and Eq. 5). 

If assuming and exploiting connections among nodes of a social network is essential in community 

detection problem, then it will be wise to isolate those connections that connect nodes within one 

community and those connect nodes within different communities. Recently, Gong et al. [28] 

formulate a very effective MOO model that explicitly emphasizes the impact of      and  ̅    . The 

first objective concerns with maximizing the density of intra-community links, while the second 

objective concerns with minimizing the density of inter-community links. In the language of 

minimization, Gong et al.'smodel is                                       .      is the kernel 

        (   ) while ratio cut (  ) is used to denote      , as expressed next. 

             ∑
     

     

 
              (7) 

      ∑
 ̅    

     

 
                (8) 

4. Multi-objective Evolutionary Algorithm with Decomposition: General Review 

By nature, many real life problems have contradictory objectives to be fulfilled simultaneously. 
Due to its success, the field of multi-objective optimization (MOO) has, recently, attracted several 

researchers in formulating and solving multi-objective optimization problems (MOPs). Instead of 

single optimal or near-optimal solution, a set of non-dominated solutions can simultaneously be 

obtained, by a MOO model, providing the decision maker with an optimal tradeoff between the 
conflicting objectives. Generally, MOP is formulated according to [15], [29],[30] as a vector function 

                            where                 is the vector of decision variables. 

     is optimized (in terms of domination)  to find a non-dominated vector       
    

      
   . Let 

us consider two solution vectors   and    from the solution space     . Then, solution   is said to 

dominate   if and only if the following two conditions hold: 

1. The solution   is no worse than   in all objectives, or formally,             for all  
       .Forexample in maximization, the word "no worse" means           . 

2. The solution   is strictly better than   in at least one objective, or formally,            for at 

least one          .Forexample in maximization, the word "strictly better" means       
     . 

The notation       is used to denote that solution   is better than solution   regardless of the type 

of the optimization problem at hand (maximization or minimization). Also, the notation      is used 
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in the same way to express that solution   is better than solution  . Hence, a dominated set can be 

defined as: among a set of solutions     , the non-dominated solutions set  ̅        are those 

that are not dominated by any member of the set     . 

Among the famous multi-objective evolutionary algorithms being successfully applied to many 

real-world problems is the multi-objective evolutionary algorithm with decomposition   (MOEA/D) 

put forward by Zhang and Li [15]. Consider a formulated MOP with   objective functions: 

                                              (9) 

Also, consider a reference point       
      

   to hold the best value obtained so far by MOEA/D 

for each objective function. The basic idea behind MOEA/D is to decompose (using Tchebycheff 

approach) the MOP into   scalar optimization sub-problems and treat each sub-problem as a complete 

individual solution. Each individual   is associated with one weight vector 

   (  
    

      
 )     ∑   

    
    from a set of   even spread weight vectors           . Each 

individual   is evolved using information gathered from its   neighbor solutions. Neighbor solutions to  

 , denoted by     , are those with the closest (using Euclidean distance) weight vectors to   . Thus, 

                 with                      .  
The problem of approximating the Pareto Front (PF) of the MOP defined in Eq. (13) can be 

decomposed into   scalar optimization sub-problems, each with its objective function: 

                          

  ( |     )     {  
 |        

 |}                     (10) 

MOEA/D minimizes all these    objective functions simultaneously in a single run. MOEA/D with the 

Tchebycheff approach evolves a population of  solutions                , where    is the 

current solution to the     sub-problem with  (  )     ( 
 )   ( 

 )     ( 
 )  . Also, MOEA/D 

maintains an external population   , for archiving the non-dominated solutions found during the 

search. At each generation  , MOEA/D performs four main operations while generating   new 

solutions           . Firstly,         , it produces a new offspring   , using problem-specific 

genetic operators (e.g., crossover and mutation), from   's neighbors     . Secondly, it updates the 

reference points.         , if   
    ( 

 ), then it sets   
    ( 

 ). Thirdly, it updates the 

neighbors          :         , if   ( 
 |      )    ( 

  |      ), then it sets        and 

 (   )   (  ). Finally, it updates     by removing from it all solutions   where  (  )       and 

insert     into   if              (  ).  

4. Multi-objective Community Detection Algorithm 

In what follow, we introduce three different definitions to qualify the neighborhood relation of 

node   in terms of its connections and community belongingness (the fourth relation will be defined 

later in section 5). Recall that a node   is neighbor to node   if and only if             . This 

will implies         and         . Also, recall that         is defined as the number of intra-

edges of   within community   . 

4.1Node Neighborhood Relation: Definition and Formulation 

Now, the number of intra-neighbors of community    can be defined as: 

             ∑        
     

        
                                (11) 

Definition A (Strongly-Neighborhood Node) Given a partition  and a set of communities    
         . A node    is said to be a strongly-neighborhood node to the nodes of community      

if and only if there exists no other community      such that          (    ). 

Definition B (Neutrally-Neighborhood Node) Given a partition  and a set of communities    
         . A node    is said to be a neutral-neighborhood node to the nodes of community      

if and only if there exists at least another community      such that          (    ). 

Definition C (Weakly-Neighborhood Node) Given a partition  and a set of communities        
     . A node    is said to be a weakly-neighborhood node to the nodes of community      if and 

only if there exists at least another community     such that          (    ). 
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4.2 Individual Representation and Genetic Operators 

The choice for a good genotype encoding (i.e. individual representation) is an essential issue for the 

applicability and effectiveness of any evolutionary algorithm. It is highly problem-related decision 

step. In all related works [14], [25 – 28] the adopted representation is the locus-based adjacency 

representation being proposed by Park and Song [31]. In locus-based representation, each individual   

is represented as a fixed-length vector of   genes where   is the total number of nodes in the network. 

The allele value of each gene can be varied from  to  . Thus,                             
         . 

The decoding function   of individual   will outline the structure of the communities of the 

network, i.e.               
 . By its nature, the locus-based representation can automatically 

determine the number of communities,  , being encoded in each individual  . Consider gene   is 

assigned with value  . This means that nodes   and   will be in the same community  . However, this 

decoding function may hold in some cases infeasible solutions if node   has no connection with all 

nodes (including  ) of community   (i.e.              ). 

Given that MOEA/D is population-based optimization algorithm, then a population   of   

solutions can be formally represented as: 

                         (12) 

Now, the adopted MOEA/D can be described as an iterative evolution function          
        with           , where    and      are the population at generation   and    , 

respectively.   and    are the non-dominated set of solutions at generation   and    , respectively. 

The population starts with an initial random population    and continues until a maximum number of 

iterations      has been reached. 

Uniform crossover and mutation operators are used with probability   and   , respectively. 

Consider two individuals    and    to be the two participating parents in the crossover. A child    can 

be formally generated by: 

         

  
  {

  
          

  
           

           (13)  

where        is a uniform random number. For the mutation operator, the allele of the mutated gene 

   can be altered to any value   such that          .  

4.3The Proposed Heuristic Migration Operators 

Almost all related works [14], [25] – [28]adopt similar genetic operators. However, to improve the 

performance of any evolutionary algorithm, one should design some problem-specific operators. This 
motivates us to propose a heuristic mutation operator coined as heuristic migration operator to be 

applied with probability    . This operator is proposed to act as a heuristic partition generator that can 

exploit information from the neighborhood relations between nodes of the network. 

For an individual   and under the control of    , the proposed heuristic migration operator will 

change the community belongingness of node    if it appears to be either weakly- or neutrally- 

neighborhood node within other nodes of its community. If    is a weakly-neighborhood node in 

community  , then the migration operator will migrate it to another community that would satisfy 

with its nodes the highest strongly-neighborhood relation. Otherwise if     is a neutrally-neighborhood 

node in community  , then the migration operator will either leave the node inside its community or 

migrate it to another community that would also satisfy inside it an equal neighborhood relation.  

Algorithm 1 recapitulates the main steps of the proposed heuristic migration operator. 
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Algorithm 1: Heuristic Migration ( ,  ,  ,   ) 

set        // decode   

for           do 

   // migrate node    with control 

if(         ) 
  set                     
  set                         

  set                  
  set           ̅        

  if (                ) //weakly neighborhood node  

   set                        

   set                    

  elseif(                ) //neutrally neighborhood node  

   // migrate or leave node    with equal probability 

if(      0.5) 
    set                   

           

    set                    

   end if 
  end if 

 end if  

end for 

 

5. Simulation Results 

In this section, we will test the performance of the proposed heuristic MOO model under one, more 

or less, commonly used setting found in the literature for an evolutionary algorithm. Population size 

     , neighborhood size    ,  maximum number of generation         , and       . 

Also, the results report the impact of the proposed heuristic migration operator on the final 

performance of the competent MOO models. Either heuristic migration operator with     
                     or mutation operator with        (i.e.        ) is used. 

First, a test-bed of four commonly used real life networks is explained in the light of their bounded 

difficulties. Then, the performance of the algorithm is evaluated in terms of convergence reliability 

and convergence velocity. Convergence reliability is expressed by evaluating the average of 

normalized mutual information (   ) over ten different runs for each network. Normalized mutual 

information between two partitions   and   of a network   of   nodes, is the normalization of the 

mutual information (  ) score between   and   being scaled between 0 (no mutual information) and 

1.0 (perfect correlation) [32]. Consider the confusion matrix   [   ]         and         , 

where     be the number of nodes of community   of   that are also in community   of  . Then, 

     ,   
  ∑ ∑                    

  
   

  
   

∑             
  
   

 ∑             
  
   

        (19) 

where   and    are the sum of elements of community   in   and community   in  , respectively. On 

the other hand, convergence velocity is evaluated by the maximum number of generations required to 

get the optimal      in all ten runs, if such case appears.  

5.1 Data Sets  

The first famous network used by all community detection algorithms is Zachary's network drawn 

from his 2-years "karate club" study [33]. The friendship relations among 34 club's members were 
considered in his study to construct networks of ties. However, due to a dispute between the club's 

administrator (denoted in Zachary's study by node number 1) and one of the club's instructors (node 

33), the club's members were split into two smaller club communities. The communities are:    of 
|  |   6 members centered around administrator 1 and    of |  |   8 members centered around 

instructor 33. The total number of friendship relations in the network is      | |    . 

The second well-known network is Bottlenose Dolphins network [34]. A New Zealand's population 

of 62 bottlenose dolphins living off Doubtful Sound was compiled by Lusseau's study to draw a seven 
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year complex couple relations. A total of       | |      relations is explored in this network 

with two large groups. 

The third network is American football game of Division I-A colleges being compiled by Girvan 

and Newman [5]. The network consists of 115 teams playing championship games against each other 
during the season of fall 2000. The teams are divided into 12 conferences coming from roughly 12 

different geographic grounds. With a total of 613 games, each conference plays the majority of games 

within its own teams. However, teams from two different conferences can play games against each 

other.  One can formally state this network as         ,          and |  |    . 

Finally, the fourth network is the Krebs' books on American politics being compiled by Krebs [7]. 

This network consists of 105 US politics books sold by the online bookseller Amazon.com. A total of 

440 co-purchasing by the same buyers is found in this network being divided into two political 
alignment groups and one small un-aligned group of 13 books. 

5.2 Results and Discussions 

Table-1 and Table-2 report, respectively,averageand best results over ten runs of MOEA/D 

(without and with heuristic, denoted respectively by,        and       ) on the four networks. 

For both Zachary's karate club network and Bottlenose Dolphins network, the performance should also 

be justified according to the convergence velocity while approachingoptimal       . Moreover, 
Figure 1 and 2 depict detection results on Zachary's karate club network and Dolphin network, 

respectively.  For Zachary's karate club network (see Figure 1-a), the results clarify that when no 

heuristic is used,       fails to detect the community belongingness of the neutrally-neighborhood 

node number 10 in all ten runs, resulting in local optima at            (see square-node 
connected with circle-nodes community in Figure 1-b). Note that member 10 in this club network has 

only two neighborhood relations, each being belong to a distinct club community. Moreover,      
  also fails (in two runs) to detect the correct community of the second neutrally-neighborhood node 

(i.e. member 3) which has five neighborhood relations inside its community and five other relations 
with other nodes of the opposite community. This results in approaching another local optima at local 

optima at            (average of 10 runs, then, will yield            as reported in Table 1). 

However, with the help of the proposed heuristic migration operator,        succeed in detecting 
the correct community of these neutrally-neighborhood nodes (see Figure 1-c). Moreover, the results 

demonstrate that increasing impact of the proposed heuristic operatoraccelerates         to 

approach the correct detection solution in all runs.  

Also, in Bottlenose Dolphin network (see Figure 2-a),       and        resemble its 

corresponding behavior in Zachary's network. For       , we see that it does not reach the optimal 

division, but it converges to different local optima with maximum reliability at            (see 

square-nodes 8, 20, and 28 being isolated from their correct square-nodes community in Figure 2-b). 

The correct division    (see Figure 2-c) is obtained in all runs of         (with        ). 

For the remaining two networks, again         performs better, on average, than       . 

However, both        and         do not reach the global optimum solution, and this is due to 

the increased complexities and nodes overlapping exist in these networks. This suggests further 
modification to the current work.   
 

Table 1-Convergence reliability (and convergence velocity written between parentheses if        is 

approached) on four real-life networks.Results reported as average     over ten runs. 

Network 
    

0.0 0.2 0.4 0.6 0.8 1.0 

Zachary's club 0.8370 0.8556 1(23) 1(8) 1(5) 1(2) 

Bottlenose 

Dolphins 
0.8073 0.9504 0.9669 1(13) 1(18) 1(4) 

Football 2000 0.6194 0.7653 0.8076 0.8379 0.8721 0.8768 

Kreb's books 0.5691 0.5825 0.5921 0.5950 0.5925 0.5906 
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Table 2-Convergence reliability (and convergence velocity written between parentheses if        is 

approached) on four real-life networks. Results reported as best     over ten runs. 

Network 
    

0.0 0.2 0.4 0.6 0.8 1.0 

Zachary's club 0.8372 1 1 1 1 1 

Bottlenose 

Dolphins 
0.9022 1 1 1 1 1 

Football 2000 0.6886 0.8032 0.8466 0.8662 0.9011 0.9083 

Kreb's books 0.6850 0.6588 0.6456 0.6446 0.6310 0.6138 
 

6. Conclusion 
Three types of node-neighborhood relations are introduced in this paper. Moreover, a problem 

specific heuristic operator is proposed, based also on the defined neighborhood relations, to improve 

the convergence velocity and convergence reliability of the adopted multi-objective optimization 

model. The basic idea of this heuristic operator is to allow nodes to migrate between different 
communities. The performance of the proposed MOEA is evaluated under four common real-life 

social networks. The results demonstrate the positive impact of injecting the roles of the defined 

neighborhood relations into the multi-objective community detection model. Moreover, remarkable 
improvement comes after introducing the heuristic operator, allowing the multi-objective community 

detection model to transcend its limits. Further research direction can be followed after the current 

work. One suggestion, which is our current interest, is to redirect the design of      according to the 

neighborhood relations of intra-community and inter-community nodes and thus to revisit and 
elaborate modularity metric in a new multi-objective optimization model (MOO) that can rigorous cast 

on the two contradictory properties of community structure. 
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                                   (b)                                                                          (c) 

 

 
Figure 1- (a) Zachary's Karate club network. (b) Local optimum community structure obtained by       (at 

        72). (c)Correct community structure obtained by        (at        ). 
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                                      (b)                                                                             (c) 

 
Figure 2- (a) Dolphin network. (b) Local optimum community structure obtained by       (at     

     2). (c) Correct community structure obtained by        (at        ). 
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