

ISSN: 0067-2904 GIF: 0.851

دراسة أصل تكوين حلقات زحل وخواصها الفيزياوية

فرید مصعب مهدی *

قسم الفيزياء، كلية التربية للعلوم الصرفة، جامعة الأنبار، الانبار، العراق

الخلاصة

تم بناء برنامج حاسوبي لحساب حد روش لحلقات وأقمار كوكب زحل ، وتبين إن العديد من حلقات الكوكب تقع خارج حد روش لها وهي لازالت على حالها ولم تتجمع وتتكثل منذ القدم ، وإن العديد من أقمار زحل تقع داخل حد روش لها ولم تؤثر عليها قوى المد والجزر من الكوكب وتقتتها . تم دراسة تغير عرض الحلقات كدالة نسبية للكتلة مع البعد عن الكوكب وتغير أقطار أقمار الكوكب كدالة نسبية للكتلة مع البعد عن الكوكب ومقارنة النتائج مع حالة الكواكب السيارة والشمس وتبين إن التغير متشابه في الحالتين تقريبا ، مما يدعوننا للاستنتاج بأن أغلب أقمار زحل هي بالأصل كانت حلقات تدور حول الكوكب وهذه الحلقات قديمة ومن ضمن المادة الأولية للكوكب منذ نشأته وليست بقايا قمر تدمر بالاصطدام أو بتأثير قوى المد والجزر عند تجاوزه لحد روش . وإن تفاعل المد والجزر ألجذبي ليس المؤثر الوحيد والأقوى في تحديد حالة التابع وشكله ومداره .

Study the Genesis of Saturn Rings and their Physical Properties

Farid M. Mahdi*

Department of Physics, College of Education for Pure Science, Anbar University, Anbar, Iraq

Abstract

A computer program has been created to calculate the Roche Limit of the rings and satellites of Saturn, showing that many of the rings of the planet are located outside the Roche Limit and still intact and do not accumulate and clump since ancient times, and that many of Saturn satellites are located within the Roche Limit and have not been influenced and crumbled by the tidal forces of the planet. The change of the rings width was studied as a relative function of the mass with the distance from the planet, and the satellite diameters change as a relative function of the mass with the distance from the planet. The results were compared with the condition of the planets and the sun showing almost similar change in the two cases, which induces to conclude that most of Saturn satellites were originally rings moving around the planet and these rings are old and among the raw material of the planet since its inception and not the remains of the satellite destroyed by collision or influenced by the tidal forces when by passing the Roche Limit. The tidal gravitational interaction is not only the most powerful and influential in determining the shape, condition and orbit of the satellite.

Keywords: roche limit, rings, satellites, Saturn, tidal forces

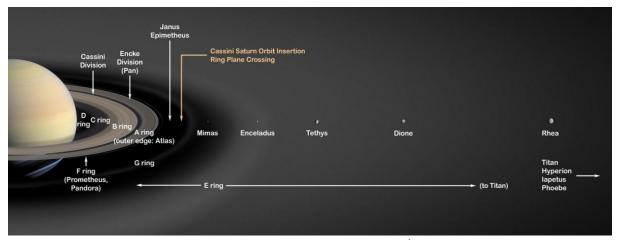
1 - مقدمة:

يتميز كوكب زحل بكثافته الواطئة وهي اقل من كثافة الماء وتعادل (0.687gm/cm3) وكذلك وجود حلقات جميلة واضحة للعيان تحيط به ، وهو ذو مدار اهليليجي حول الشمس يتغير مابين (20.48 a.u. – 9.048 a.u.) عنها ، بشذوذ مركزي (eccentricity) يقارب (0.0557) ، و يكمل الكوكب دورة واحدة حول الشمس كل (29.457) سنة شمسية وتعادل سنة زحلية

^{*}Email: Fareedm1969@gmail.com

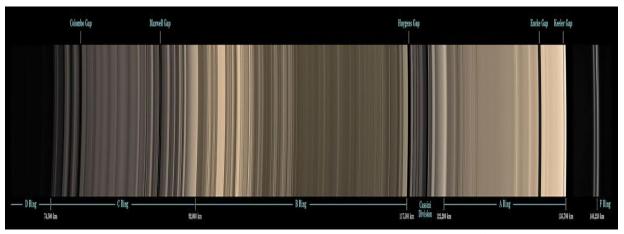
واحدة (مدة إكمال الكوكب دورة واحدة حول الشمس) ، بمتوسط سرعة مدارية تعادل (9.69 km/sec) . مستوي مدار الكوكب يميل عن الاستواء السماوي بمعدل ($^{\circ}$ 5.5) ، وعن مستوي مدار الأرض حول الشمس بحدود ($^{\circ}$ 2.48) ، يكمل الكوكب دورة واحدة حول نفسه كل (10.57 hr) بمعدل سرعة دورانية (9.87 km/sec) . يمتلك الكوكب غلاف جوي ارتفاعه ($^{\circ}$ 59.5 km) مكون أغلبيته من الهيدروجين ونسبة قليلة من الهليوم وغازات أخرى ، والحقل المغناطيسي للكوكب أقل بقليل من الحقل المغناطيسي الأرضي ويعادل ($^{\circ}$ 1/20) من الحقل المغناطيسي لكوكب المشتري ، وكرة هيل للكوكب (Hell sphere) تمتد لغاية ($^{\circ}$ 1.6 km) عن سطحه . يمتلك الكوكب بما يقرب من ($^{\circ}$ 200) قمر مرصود تدور حوله ، منها ($^{\circ}$ 6) قمر معروف ، ($^{\circ}$ 7) منها تم تسميتهم رسميا ، أكبرها القمر تيتان ($^{\circ}$ 7) وهو ثاني أكبر قمر في المجموعة الشمسية بعد جيانميد ($^{\circ}$ 8) قمر المشتري ، وهو أكبر من كوكب عطارد حجما ، وهو القمر الوحيد الذي يملك غلاف جوي واضح [$^{\circ}$ 8] .

يحيط بالكوكب ثمانية حلقات رئيسية متداخلة تتخللها بعض الحلقات الثانوية ، مكونة قرص من الجليد وقليل من الأحجار والغبار ، تدور حول الكوكب في مستوى استواءه وتبعد أقربها عنه بمقدار نصف قطر الكوكب وهي تعطيه شكلا مميزا . هذه الحلقات غير مرئية من الأرض بالعين المجردة ، أول من اكتشفها هو غاليليو غاليلي (Galileo Galilei) عام (1610) م ، وتوقع إنها كواكب تدور حول زحل ، وكان كريستيان هيغنز (Christian Huygens) أول من وصف الحلقات كقرص محيط بالكوكب عام (1655) م ، وفي العام (1675) م اكتشف جيوفاني دومينيكو كاسيني (Giovanni D. Cassini) إن كوكب زحل محاط بحلقات صغيرة تتخللها بعض الثغرات والتي سميت أكبرها باسمه لاحقا والتي تفصل بين الحلقتين (A,B) . وفي العام (1787) وصفها بيير سايمون لابلاس (Pierre S. Laplace) بأنها عبارة عن سلسلة من الجدائل الصغيرة تدور حول زحل ، وقد القترح جيمس كلارك ماكسويل (James C. Maxwell) بأن الحلقات مكونة من العديد من الجسيمات الصغيرة تدور حول زحل ، وقد تم إثبات اقتراح ماكسويل من خلال الدراسات الطيفية على الحلقات التي أجراها جيمس كيلر (James keeler) عام (1895) م


يظهر زحل للعين المجردة في سماء الليل كنقطة مصفرة لامعة ذات قدر ظاهري يتراوح بين ((1+)-0) ، وقد يصل في أقصى درجات لمعانه الى (0.24-0.24) ، وأوضح رؤية لزحل وحلقاته عندما تكون الزاوية بينه وبين الشمس (0.24-0.24) . يقسم تاريخ مراقبة واستكشاف كوكب زحل الى ثلاث مراحل رئيسية : الأولى هي الأرصاد القديمة بالعين المجردة مع بعض الأدوات البسيطة ، والمرحلة الثانية هي استخدام المقاريب التي اخترعت أوائل القرن السابع عشر وأخذت بالتطور والتحسن الى أن وصلت الى التاسكوبات الحديثة ، والمرحلة الثالثة هي الأرصاد الأرضية الحديثة وزيارة المركبات الفضائية للكوكب والدوران حوله أو التحليق فوقه بواسطة المسابير الفضائية وأخرها رحلة المركبة كاسيني (Cassini) في عام (2006) م [-8] .

2 - نظریات نشوء حلقات زحل وحساب حد روش:

حلقات زحل هي نظام حلقي متداخل يشكل قرص مركزه هو مركز الكوكب ويدور حوله بمستوى استوائه ، يمتد بين – 66300 (mm) (20 mm) . القرص الحلقي مكون من أجسام مختلفة الإحجام تتراوح بين (120700 من خط استواء الكوكب ومتوسط سمك الحلقات يقارب (mc.m -1 m) . وتتكون مادتها من (93%) جليد الماء (lce) مع قليل من الشوائب و (7%) كربون غير متبلور تتراوح بين (amorphous carbon) . الكتلة الكلية الكلية الكلية ، وهي تشكل ما يعادل (10-8 ألك الكلية ، وهي اقل بقليل من كتلة الكلية المساس (Mimas) ، وتشير بعض الدراسات الحاسوبية الحديثة المعتمدة على أرصاد المسبار كاسيني (Cassini probe) والتي قامت بها وكالة ناسا لفضاء (NASA) الى إن كتلة الحلقات قد تعادل ثلاثة أضعاف هذا الرقم . وحلقات زحل تمثلك غلاف جوي خاص بها بمعزل عن الكوكب ، يتكون من غاز الأوكسجين الجزيئي (O) الناتج من تفاعل الأشعة فوق البنفسجية (Ultra violet) القادمة من الشمس مع جليد الماء الموجود في الحلقات ، كذلك تنتج الهيدروجين الجزيئي (H2) ، وكثافة هذا الغلاف واطئة جدا [9-11].


هنالك ثلاث نظريات رئيسية لتفسير أصل نكون هذه الحلقات وضعت في القرن التاسع عشر ، الأولى تفيد بأنها ناتجة من بقايا مواد قرص الكوكب الأولي والتي كانت دون حد روش للكوكب (Roche limit) ، ونتيجة لذلك لم تتمكن من التجمع وتشكيل أقمار . والثانية تشير الى إن مواد هذه الحلقات ناتجة عن حطام قمر تفتت نتيجة اصطدام ما حدث مسبقا . والنظرية الثالثة تشير الى إن

مواد الحلقات ناتجة من حطام قمر قطره المفترض (km 600 km) ، تفتت نتيجة تغير الاجهادات الجذبية التي عانى منها القمر عند مروره داخل حد روش للكوكب [13,12].

صورة توضيحية 1- لكوكب زحل تظهر حلقاته وأقماره [6]

الأنموذج المطور لنظرية القمر المدمر وضع من قبل كانوب (R. M. Canup) أشار فيه الى إن أصل الحلقات هو غطاء جليدي كبير لقمر اكبر من حجم تيتان ، هذا القمر الذي أزيلت طبقته الخارجية المتجمدة قد ابتلع داخل الغيمة السديمية الأولية للكوكب ، وهذا يفسر ندرة المواد الصخرية داخل الحلقات . ويعتقد إن حلقات زجل كانت أكبر وأوسع بحدود (1000) مرة من حجمها الحالي ، لكن المكونات الخارجية للحلقات قد اندمجت وكونت القمر تيثيس (Tethys) وزمرته والتي تعاني من ندرة المكونات الحالية الي والتطورات والتصادمات اللاحقة للقمر انسيلادوس (Enceladus) أدت الى فقدان الجليد من هذا القمر ورفع كثافته الصخرية فيها . والتطورات والتصادمات اللاحقة للقمر انسيلادوس (Rhea) أدت الى فقدان الجليد من هذا الحالية المنظمة الحلقات في الوقت المبكر من تشكيل زحل أوضحت كيفية تشكيل زمرة أقمار ريا (Rhea) ، حيث كانت قطع الصخور من السليكات المكونة للحلقات يزيد قطرها عن (100 km) تكونت بسبب تراكم المزيد من الجليد في هذه الحلقات . وبسبب التفاعلات الجذبية مع مكونات الحلقات وتفاعل المد والجزر ألجنبي (Tidal Interaction) مع الكوكب أدى الى طرد هذه الكثل الى مدارات أوسع خارج مكونات الحلقات وتفاعل المد والجزر ألجنبي (Tidal Interaction) مع الكوكب أدم دروش للكوكب ، وبسبب تواجدها الكثيف تم تلاحمها مع مواد أخرى وشكلت أقمار رحل خارج مدار القمر ريا ، وكذلك قلة هذه المادة في . هذه العملية قد تفسر أسباب الاختلاف في المحتوى من السليكات بين أقمار زحل خارج مدار القمر ريا ، وكذلك قلة هذه المادة في المحتوى المديد عليه المديد المديد المديد الكوكب الكوكب الكوكب المديد المديد المديد المديد المديد المديد الكوكب الكوكب الكوكب الكوكب الكوكب المديد الكوكب المديد المدي

الصورة 2- تبين حلقات زحل مأخوذة بواسطة المسبار كاسيني (2007) [14]

تم تسمية الحلقات أبجديا حسب أسبقية اكتشافها وهي بالترتيب من الأبعد (A,B,C) من ضمنها فاصل كاسيني ، ثم الحلقة (الأكثر خفوتا والأقرب الى الكوكب ، ثم الحلقة (F) التي تحيط بالحلقات السابقة وهي حلقة ضيقة ، تحيطها حلقات باهنة ، ثم الحلقات الأكثر خفوتا (E,G) والتي تعاني بعض الاضطرابات بسبب تأثير الأقمار التي تدور بالقرب منها . وأبعد حلقة هي حلقة فويب (Phoebe) وتقع على بعد (10⁶ km) وتميل عن باقي الحلقات بمقدار (20°) وقد تم اكتشافها عام (2009) م وهي حلقة رقيقة تمتد بين (128–207) ضعف قطر الكوكب وقد تصل الى (300) ضعف . تحتوي الحلقات أيضا على العديد من الفجوات أهمها فجوة ماكسويل وفجوة كلير وفجوة انكي . هذه الحلقات تكون لها بنية معقدة ، حيث تتألف من ألاف الثغرات الرقيقة والجدائل ، والعديد من الأقمار تدور داخلها تسمى الأقمار الرعاة (shepherd satellites) لدورها في المحافظة على حافة الحلقات وشكلها [16,1] .

تعد الحلقتان (A,B) الأكثر كثافة في النظام والتي يفصل بينها فاصل كاسيني (Cassini Division) ، الى جانب الحلقة (C) والتي تشبه في طبيعتها فاصل كاسيني . هذه الحلقات تمثل المناطق الرئيسية للنظام الحلقي للكوكب ، وتحتوي على جزيئات كبيرة نسبة الى باقي الحلقات المكونة من الغبار مثل الحلقة (D) . وتتسم الحلقة الضيقة (F) بصعوبة تصنيفها ، لان بعض أجزائها كثيفة جدا وتحتوي أيضا على قدر كبير من الجزيئات الغبارية الصغيرة . النظام الحلقي الذي يحيط بالحلقة الضيقة (F) مكون من عدة حلقات غبارية منها حلقة يانوس – ابيميثوس (Janus – Epimetheus Ring) وهي حلقة باهتة تملأ المنطقة التي تمثلها مدارات القمرين جانوس وابيميثوس ، ومصدر مادتها هو الغبار المتطاير من سطوح هذه الأقمار بعد ارتطام النيازك بها . أما الحلقة (G) فهي من الحلقات المغبرة (Dusty rings) ، بسبب صغر حجم الجزيئات المكونة لها والتي يقارب قطرها (micron) ومكونة من جليد الماء تقريبا أيضا ، تحتوي هذه الحلقة على قوس مشرق يصل عرضه الى (1/6) عرض الحلقة مكون من أجسام جليدية كبيرة نسبيا ، ويقع في قسمها الداخلي ويحتوي على قمر صغير قطره (0.5 km) يدعى ايجايون (Aegaeon) [16,15].

يتواجد خارج الحلقة (G) قوس حلقة ميثوني (Methone Ring Arc) النابع للقمر ميثوني ويعنقد العلماء بأنه نكون بسبب الغبار المتسرب الذي طرد من القمر لاصطدامه بالنيازك الصخرية . ويحيطه قوس حلقة أنثي (Anthe Ring Arc) الذي يمثل بقايا الغبار المتسرب من القمر أنثي . ثم حلقة بالليني (Pallene Ring) وهي أيضا حلقة غبارية تحيط مدار القمر بالليني ومصدرها سطح القمر نفسه . أما الحلقة (E) تقع بين مداري القمرين ميماس وتيتان وتتألف من جسيمات مجهريه على عكس باقي الحلقات ويعتقد إن مصدرها من القمر انسيدلاوس وهي حلقة سميكة يصل سمكها الى (2000 km) ، ولأنها عريضة جدا فهي تحوي العديد من الأقمار حيث تتراكم مادتها على سطوح هذه الأقمار . الحلقة الأخيرة هي حلقة فويب (Phoebe Ring) وهي عبارة عن قرص من المواد الغبارية يحيط بمدار القمر فويب ، وهي حلقة كبيرة جدا وسميكة ، سمكها يصل الى (20) مرة بقدر قطر الأرض و مادتها تجمعت من النيازك الصغيرة . ويعتقد العلماء إن هنالك حلقة حول مدار القمر ريا (Rhea) ثاني اكبر أقمار زحل ، حيث تم الاستدلال عليها من خلال ملحظات المسبار كاسيني التي تشير الى استنزاف الالكترونات النشطة للغلاف المغناطيسي لكوكب زحل في المنطقة القريبة من القمر ريا [17,8] .

حد روش ويسمى أحيانا نصف قطر روش نسبة للعالم ادوارد روش (Eduard Roche) الذي وضعه في عام (1848) م وهو يمثل المسافة من مركز الجرم السماوي الى الفضاء المحيط والتي فيها تكون قوى المد والجزر للجرم أقوى من قوى التماسك بين جزيئات أي جسم ضمن هذه المسافة وتؤدي هذه القوى الى تفككه وتحوله الى حلقات مكونة من أجزاء صغيرة ، وخارج هذا الحد يمكن أن تتحد هذه الأجزاء مع بعضها بفعل الجاذبية المتبادلة . و يمكن حساب حد روش لأقمار وحلقات زحل من العلاقة التالية [18,17]:

$$r_R = 2.455 \times R \times \sqrt[3]{\frac{\rho_M}{\rho_m}}$$

. القمر ρ_m ، يمثل حد روش ، R نصف قطر الكوكب ، ρ_M كثافة الكوكب ، ρ_m كثافة الحلقة الواحدة ρ_m القمر

3 - الأنموذج المقترح:

a) من خلال ما قدمته الفرضية السديمية من تفسيرات مقبولة حول أصل المنظومة الشمسية والتي تشير الى إن السديم الأولي قد تحول الى قرص مفلطح بفعل الحركة الدورانية وأدى ذلك الى انفصال الأجزاء الخارجية على شكل حلقات بسبب قوة الطرد

- المركزي ، وكل حلقة تجمعت بسبب قوة الجذب المتبادلة بين أجزائها لتكون كوكب وتوابعه بنفس الطريقة . ولا زالت أجزاء من النظام الشمسي لم تتجمع وتتحد لتكون كتلة موحدة كبيرة ومنها حزام الكويكبات وكذلك حزام كوبير (Kuiper belt) اللذان يضمان ألاف الأجرام مختلفة الحجم بين ذرات الغبار ومئات الكيلومترات ولا زالت هذه الأجسام تدور في مدارات وأحزمة حول الشمس منذ بلابين السنين . من ذلك نجد إن :
- ا. حالة كوكب زحل وحلقاته مشابه بشكل كبير لحالة الشمس وكواكبها ، وهي حالة مصغرة للنظام الشمسي في التوزيع ، إلا إن زحل ليس نجم . ونجد ذلك عند مقارنة الشكل البياني (1) الذي يبين تغير عرض الحلقات كدالة للكتلة مع البعد مع الشكل البياني (8) الذي يمثل تغير أقطار الكواكب كدالة للكتلة مع بعدها عن الشمس مع ملاحظة إن تغير الكثافة في الحالتين متقارب.
- ii. مركز السديم الكوكبي الأولى وهو الشمس ذو كثافة واطئة ومتكون من غازات في الأغلب ، والأجزاء الخارجية المنفصلة عنه بسبب القوة الطاردة المركزية المعتمدة على الكتلة ، مشابه لحالة كثافة كوكب زحل الواطئة والحلقات الخارجية المكونة من الصخور ذات الكثافة العالية نسبيا .
- iii. حزام الكويكبات الذي يقع بين مداري المريخ والمشتري وحزام كويبر الذي يقع في المنطقة الماوراء نبتونية هما بقايا السديم الكوكبي الأولي التي لم تتمكن من التجمع والالتحام لتكوين كواكب ، وحلقات زحل مشابه في إنها لم تتمكن من التجمع والالتحام لتكوين أقمار تابعة للكوكب ، وقد تكون أقمار في طور التكوين ، ولاسيما إن الكوكب من الكواكب الغازية المستمرة بالتكتل وكثافته أقل من كثافة الماء .
- d) إذا كان أصل حلقات زحل هو قمر تم تدميره بسبب اصطدام ما ، وهو قمر ذو كتلة صغيرة بنصف قطر (500 km) (كما جاء في نظرية القمر المدمر) ، واحتمالية التدمير هذه ضعيفة جدا ، حيث إن احتمالية الاصطدامات لو كانت كبيرة في زمن ما ، فألا جدر أن يتم تدمير أكثر من قمر ولكانت كتلة هذه الحلقات كبيرة جدا نسبة الى الأقمار التابعة للكوكب .
- (c) إن سبب ندرة المواد الصخرية في الحلقات ليس سببه إن الحلقات كانت عبارة عن قشرة جليدية لقمر ما أزيلت لأسباب غير معروفة (كما جاء في فرضية كانوب) ، وإنما لان أغلب المواد الصخرية أما تكتلت مع بعضها وكونت أقمار صغيرة وهي الأقمار مابين الحلقات والتي تسمى الأقمار الرعاة أمثال الأقمار بان ودافيس و (s/2009s1) وغيرها . وقسم من هذه الكتل الصخرية اندفعت الى الخارج بفعل قوتها الطاردة المركزية وكونت أقمار خارجية . لذلك نرى كثافة الأقمار الخارجية أكبر من الداخلية كما في الأقمار تيتان و فويب وريا و انسيلادوس وهيلين . ونعتقد إن أصل الجليد هو المذنبات القادمة من حزام كوبير والتي تفقد جزء من مادتها عند مرورها قرب الكوكب أو عند أسرها من قبله كما في المذنب شيوماكر ليفي (Shoemaker-Levy 9.9) بعد أن فقد الكثير من أجزاءه الخارجية الجليدية .
- d) تأثير قوى المد والجزر على الأجسام التي تقع داخل حد روش لها سيكون ضعيف نسبيا ، وهذه القوى ليست العامل الأكثر تأثيرا في واقع ومدارات الأقمار والحلقات بسبب بعدها المناسب عن الكوكب وكثافتها ، لذلك نجد الكثير من الأقمار المكتشفة وفي طور الاكتشاف تدور داخل حد روش لها وما زالت متماسكة ولم تتفتت بل وتتكون أقمار جديدة من هذه الحلقات .
- (e) تم بناء برنامج حاسوبي بلغة (Quick basic) لحساب حد روش للحلقات باعتبار مكوناتها هي (93%) جليد الماء (lce) بمعدل كثافة (0.92 gm/cm³) مع قليل من الشوائب و (7%) كربون غير متبلور (Amorphous carbon) بمعدل كثافة (1.95 gm/cm³) وكانت قيمته هي :

 $r_{\text{R}} = 2.445 * 60268 * (0.687/((0.92*93/100)) + (1.95*(7/100))))^{1/3}$ $r_{\text{R}} = 131,272.831 \text{ km}$

وهذا يمثل حد روش لمادة الحلقات والتي تكون بمعدل كثافة لمكوناتها يقارب $(0.9921~{
m gm/cm}^3)$.

عند مقارنة أبعاد الحلقات عن مركز الكوكب الموجودة في الجدول-2 مع القيمة المستخرجة لحد روش أعلاه نجد إن العديد من الحلقات تقع خارج حد روش لها وهي الحلقات (F,G,E,Phoebe) والحلقات الثانوية بينها وكذلك الجزء الخارجي من الحلقة (A) ، وما زالت هذه الحلقات على حالها وشكلها منذ أمد بعيد والتي من المفترض أن تكون قد تجمعت وتكتلت بسبب ضعف تأثير قوى المد والجزر عليها من الكوكب وغلبة قوى التجاذب بين مكوناتها .

- ii. بنفس الطريقة أعلاه تم حساب حد روش لبعض أقمار الكوكب زحل ووضع النتائج في الجدول رقم (1) ، وعند مقارنة هذه القيم مع أبعاد الأقمار عن مركز الكوكب نجد إن العديد من هذه الأقمار تقع داخل حد روش لها (اللون الغامق في الجدول) هذه الأقمار بقيت على حالها ولم تتفتت أو تتجزأ بتأثير قوى المد والجزر من الكوكب .
- f) من الجدول -2 تم رسم العلاقة بين تغير عرض الحلقات وبعدها عن مركز الكوكب كما في الشكل البياني (1) ، وتبين إن العلاقة نبضية . وكذلك العلاقة بين تغير سمك الحلقات مع البعد وتبين أن العلاقة نبضية أيضا (ما عدا الحلقتين E و فويب العريضة والسميكة جدا والتي تشبه الهالة حول الكوكب).
- g) من الجدول-3 تم رسم العلاقة بين تغير عرض الفجوات داخل الحلقة (C) مع بعدها عن الكوكب ، ومن الجدول-4 تم رسم العلاقة بين تغير عرض مكونات فاصل كاسيني مع البعد عن الكوكب . تبين من الشكلين إن التغير هو تغير نبضي نسبيا
- من جدول -5 تم رسم العلاقة بين تغير أقطار أقمار زحل كدالة نسبية للكتلة مع بعد هذه الأقمار عن مركز الكوكب كما في الأشكال (6,7,8) ، وتبين إن العلاقة تتغير تغير نبضي . ومن الجدول -6 تم رسم العلاقة بين تغير أنصاف أقطار الكواكب السيارة كدالة نسبية للكتلة مع بعد هذه الكواكب عن الشمس كما في الشكل -8 ومنه تبين إن التغيير نبضي أيضا .

الاستنتاحات:

- 1. تشابه توزيع كتلة الأقمار وكتلة الحلقات حول كوكب زحل مع توزيع كتلة الكواكب حول الشمس . وعدد حلقات زحل وكثافتها يعتمد على حداثة تكوين الكوكب وكثافته ، وهذه الحلقات تمثل المادة الخارجية للكوكب . والتوزيع النبضي يعتمد قوة جذب الكوكب وسرعة الدوران وعلى كتلة المادة الأولية الخارجية المنفصلة عن الكوكب على شكل حلقات والتي قسم منها تجمع وكون أقمار وقسم منها في طور التجمع .
- 2. أصل حلقات زحل والكواكب الأخرى في النظام الشمسي هو القرص السديمي الأولي لتكوين الكواكب ، ومادة الحلقات هي أصل المادة المكونة للأقمار وليس العكس كما أشارت بعض النظريات ، وقد يكون هنالك تبادل بالمادة بين الحلقة والقمر ، والسبب هو حداثة تكتل وتجمع قسم من مادتها على سطح القمر المتكون حديثا وضعف تماسكها ، وخاصة في الحلقات الخارجية للكوكب وهنالك بعض المذنبات التي صادف مرورها ضمن كرة هيل للكوكب ففقدت قسم من مادتها بسبب التأثير المغناطيسي للكوكب وقلة كثافة هذه المذنبات ، حيث أضيفت هذه المادة الى مادة الحلقات الأصلية ، واغلب المادة المفقودة من المذنبات مكونة من الحلاد .
- 3. أصل أقمار زحل هو الحلقات التي دارت حول الكوكب والتي كانت اكبر بكثير من حجمها الحالي عند التكوين ، ولا زالت بعض الأقمار في طور التكوين وتأخذ مادتها من هذه الحلقات وتتزايد حجما وكتلة يتبعها تتاقص حجم وكتلة هذه الحلقات . لكن هنالك بعض الأقمار اللانظامية شكلا ومدارا قد تكون قدمت من المنطقة المحيطة بالنظام الشمسي وتم أسرها من قبل كوكب زحل عند مرورها ضمن كرة هيل له والتي تكون خاضعة لسطوته .
- 4. قوى المد والجزر للكوكب التي تؤثر على توابعه وتصنع حدا للتأثير يسمى حد روش هي ليست المؤثر الوحيد والرئيسي على حالة وشكل ومدار التوابع بل هنالك قوى أخرى لها تأثير قد يكون أكبر منها كثافة المادة المكونة للتابع إضافة الى قوى التماسك بين أجزائه .

المصادر:

- 1. Seidelmann, P. Kenneth, Archinal, B. A., and A'hearn, M. F.. 2007. Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements: 2006. Celestial Mech. Dyn. Astr.
- 2. James, E.1998. The History and Practice of Ancient Astronomy, Oxford University Press.p7 -292.
- **3.** Munsell, Kirk. **2005.** Saturn-story/moons.cfm , *NASA Jet Propulsion Laboratory*, California Institute of Technology.
- **4.** Thompson, Richard .**1997**. Planetary Diameters in the Surya-Siddhanta, *Journal of Scientific Exploration*, [6-193].2(11): 193-200.
- 5. Fortney, Jonathan J. 2004. Looking into the Giant Planets, Science, (5689): 305, 1414-1315.
- **6.** Lovett, L., Horvath, J. and Cuzzi, J. **2006**. *Saturn: A New View*, New York: Harry N. Abrams, Inc. JSBN 0810930900.

- 7. Miner, Ellis D., Wessen, Randii R., and Cuzzi, Jeffrey N. 2007. *Planetary Ring Systems*, The scientific significance of planetary ring systems, Springer Praxis Books in Space Exploration. Praxis. pp:1–16.
- **8.** Nicholson, P.D., and 16 co-authors .**2008**. A close look at Saturn's rings with Cassini VIMS, *Icarus* 193 (1): 182–212.
- **9.** Stewart, Glen R., Robbins, S. J., and Colwell, J. E. **2007**. Evidence for a Primordial Origin of Saturn's Rings. Bulletin of the American Astronomical Society. American Astronomical Society, DPS meeting #39 (American Astronomical Society) 39: 420.
- **10.** Johnson, R. E., Smith, H. T., Tucker, O. J., Liu, M., Burger, M. H., Sittler, E. C., and Tokar, R. L. **2006**. The Enceladus and OH Tori at Saturn". *The Astrophysical Journal* (The American Astronomical Society) 644 (2): L137.
- 11. Kerr, Richard A. 2008. Saturn's Rings Look Ancient Again, Science, 319 (5859): 21.
- **12.** Canup, R. M. **2010**. *Origin of Saturn's rings and inner moons by mass removal from a lost Titansized satellite*, Nature 468 (7326): 943–926.
- 13. Charnoz, S., Crida, A., Castillo-Rogez, J. C., Lainey, V., Dones, L., Karatekin, Ö., Tobie, G., Mathis, S., Le Poncin-Lafitte, C., and Salmon, J. 2011. Accretion of Saturn's mid-sized moons during the viscous spreading of young massive rings: Solving the paradox of silicate-poor rings versus silicate-rich moons, Icarus 216 (2): 535–550.
- **14.** Porco, C.C., Baker, E. et al.**2005**. Cassini Imaging Science: Initial Results on Saturn's Rings and Small Satellites. Science 307 (5713): 1226–1236.
- **15.** Hedman, M. M., Burns, J. A., Tiscareno, M. S., Porco, C. C., Jones, G. H., Roussos, E., Krupp, N., Paranicas, C., and Kempf, S. **2007**. *The Source of Saturn's G Ring. Science* 317 (5838): 653–656.
- **16.** Hedman, M. M., Murray, C. D., Cooper, N. J., Tiscareno, M. S., Beurle, K., Evans, M. W., and Burns, J. A. **2008**. *Three tenuous rings/arcs for three tiny moons*, Icarus, 199 (2): 378–386.
- **17.** Hedman, M. M., Burns, J. A., Hamilton, D. P., and Showalter, M. R.**2012**. *The three-dimensional structure of Saturn's E ring*, Icarus 217: 322–338.
- **18.** Frank H. Shu. **1982.** *The Physical Universe: an Introduction to Astronomy*, University Science Books, p. 431, ISBN 0-935702-05-9.

جدول 1- يبين حد روش لعدد من أقمار زحل مرتبة حسب البعد (برنامجنا + المصدر [1])

G ()	Orbital Radius	N. 1 14	· · · · · · · · · · · · · · ·
Satellites		Mean density	Roche Limit (km)
	(km)	(kg/m^3)	(our results)
Pan (SXVIII, S/1981 S13)	133,583	420	174,827.74
Daphnis (XXXV, S/2005 S1)	136,500	340	187,586.64
Atlas (SXV, S/1980 S28)	137,670	500	164,956.75
Prometheus (SXVI, S/1980 S27)	139,353	480	166,760.87
Pandora (SXVII, S/1980 S26)	141,700	490	166,071.36
Epimetheus (SXI, S/1980 S3)	151,422	640	151,926.47
Janus (SX, S/1980 S1)	151.472	630	152,726.1
Mimas (SI)	185,520	1150	124966.66
Enceladus (SII)	238,020	1610	11178.13
Tethys (SIII)	294,660	985	131587.51
Calypso (SXIV, S/1980 S25)	296,788	1000	131,962.26
Dione (SIV)	377,400	1480	114882.7
Helene (SXII, S/1980 S6)	378,500	1300	118,962.54
Rhea (SV)	527.04	1240	121867.02
Titan (SVI)	1,221.83	1880	106081.78
Hyperion (SVII)	1,481,100	550	159798.44
Iapetus (SVIII)	3,561,300	1090	127,218.79
Phoebe (SIX)	12,944,000	1640	111,022.79
	Daphnis (XXXV, S/2005 S1) Atlas (SXV, S/1980 S28) Prometheus (SXVI, S/1980 S27) Pandora (SXVII, S/1980 S26) Epimetheus (SXI, S/1980 S3) Janus (SX, S/1980 S1) Mimas (SI) Enceladus (SII) Tethys (SIII) Calypso (SXIV, S/1980 S25) Dione (SIV) Helene (SXII, S/1980 S6) Rhea (SV) Titan (SVI) Hyperion (SVII) Iapetus (SVIII)	Pan (SXVIII, S/1981 S13) 133,583 Daphnis (XXXV, S/2005 S1) 136,500 Atlas (SXV, S/1980 S28) 137,670 Prometheus (SXVI, S/1980 S27) 139,353 Pandora (SXVII, S/1980 S26) 141,700 Epimetheus (SXI, S/1980 S3) 151,422 Janus (SX, S/1980 S1) 151.472 Mimas (SI) 185,520 Enceladus (SII) 238,020 Tethys (SIII) 294,660 Calypso (SXIV, S/1980 S25) 296,788 Dione (SIV) 377,400 Helene (SXII, S/1980 S6) 378,500 Rhea (SV) 527.04 Titan (SVI) 1,221.83 Hyperion (SVII) 1,481,100 Iapetus (SVIII) 3,561,300	Pan (SXVIII, S/1981 S13) 133,583 420 Daphnis (XXXV, S/2005 S1) 136,500 340 Atlas (SXV, S/1980 S28) 137,670 500 Prometheus (SXVI, S/1980 S27) 139,353 480 Pandora (SXVII, S/1980 S26) 141,700 490 Epimetheus (SXI, S/1980 S3) 151,422 640 Janus (SX, S/1980 S1) 151.472 630 Mimas (SI) 185,520 1150 Enceladus (SII) 238,020 1610 Tethys (SIII) 294,660 985 Calypso (SXIV, S/1980 S25) 296,788 1000 Dione (SIV) 377,400 1480 Helene (SXII, S/1980 S6) 378,500 1300 Rhea (SV) 527.04 1240 Titan (SVI) 1,221.83 1880 Hyperion (SVII) 1,481,100 550 Iapetus (SVIII) 3,561,300 1090

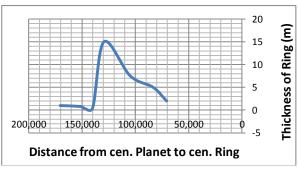
جدول 2- يتضمن التقسيم الرئيسي لحلقات زحل [9,8,1]

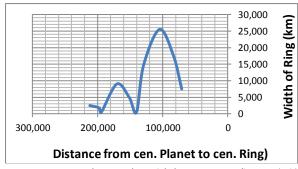
Se.	Name of Ring	Distance from center of Planet to center of Ring (km)	Width (km)	Ring Radius (Eq. Radius)	Thickness (m)
1	D Ring	70,705	7,500	1.173	2
2	C Ring	83,329	17,500	1.383	5
3	B Ring	104,790	25,500	1.739	7.5
4	Cassini Division	119,875	4,700	1.989	
5	A Ring	129,472.5	14,600	2.148	15
6	Roche Division	138,077.5	2,600	2.291	
7	F Ring	140,180	500	2.326	0.4
8	Janus-Epimetheus Ring	151,500	5,000	2.5137	
9	G Ring	170,500	9,000	2.86	1
10	Methone Ring Arc	194,230	500	3.2227	
11	Anthe Ring Arc	197,665	1,800	3.2797	
12	Pallene Ring	212000	2,500	3.5217	
13	E Ring	330000	300,000	5.5	2000 km
14	Phoebe Ring	8500000	9,000,000	141.0375	20 planet dim.

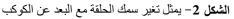
جدول 3 - يتضمن مكونات الحلقة (C) [9.8,1]

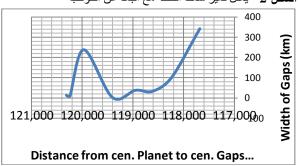
Se.	Name	Distance from Saturn's center (km)	Width (km)
1	Colombo Gap	77,870	150
2	Titan Ringlet	77,870	25
3	Maxwell Gap	87,491	270
4	Maxwell Ringlet	87,491	64
5	Bond Gap	88,700	30
6	1.470R _s Ringlet	88,716	16
7	1.495R _S Ringlet	90,171	62
8	Dawes Gap	90,210	20

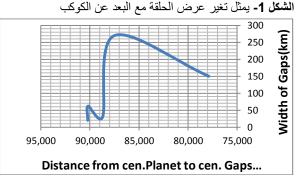
جدول 4- يتضمن مكونات فاصل كاسيني (Cassini Division)

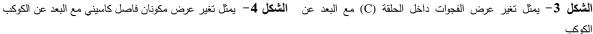

Se.	Name	Distance from Saturn's center (km)	Width (km)
1	Huygens Gap	117,680	345
2	Huygens Ringlet	117,848	17
3	Herschel Gap	118,234	102
4	Russell Gap	118,614	33
5	Jeffrey Gap	118,950	38
6	Kuiper Gap	119,405	3
7	Laplace Gap	119,967	238
8	Bessel Gap	120,241	10
9	Barnard Gap	120,312	13

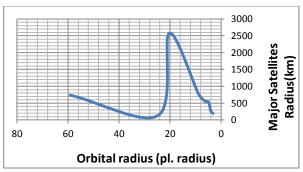

جدول 5- يتضمن الخواص الفيزياوية والمدارية لأقمار زحل [9,8,1]

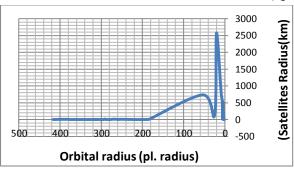

Major Satellites						
Co	Catallitas	Orbital Se	Dading (loss)			
Se.	Satellites	(10^3 km)	(Saturnian Radii)	Radius (km)		
1-	Mimas (SI)	185.52	3.0783	198		
2-	Enceladus (SII)	238.02	3.9494	252		
3-	Tethys (SIII)	294.66	4.8892	531		
4-	Dione (SIV)	377.40	6.2620	561		
5-	Rhea (SV)	527.04	8.7449	763		
6-	Titan (SVI)	1,221.83	20.273	2,575		
7-	Hyperion (SVII)	1,481.1	24.575	139		
8-	Iapetus (SVIII)	3,561.3	59.091	735		
Lesser Satellites						
9-	Pan (SXVIII, S/1981 S13)	133.583	2.18	14		
10-	Daphnis (XXXV, S/2005 S1)	136.500	2.26	4		
11-	Atlas (SXV, S/1980 S28)	137.670	2.2820	16		
12-	Prometheus (SXVI, S/1980 S27)	139.353	2.2843	46		
51-	Ymir (SXIX, S/2000 S1)	23,040	383	9		
52-	Loge (SXLVI, S/2006 S5)	23,070	383	3		
53-	Fornjot (SXLII, S/2004 S8)	25,110	417	3		
Recently Discovered (Unnamed) Satellites						
54-	S/2004 S07	21,000	348	3		
55-	S/2004 S12	19,890	330	3		
61-	S/2007 S3	18,980	315	3		
62	S/2009 S1	117	1.94	0.3		

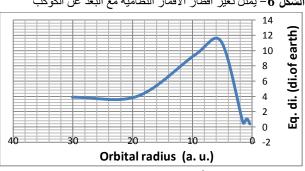

جدول 6- يتضمن الخواص الفيزياوية والمدارية لكواكب المجموعة الشمسية [4]


Se.	planet	Equatorial diameter (eq. of earth)	Orbital Radius (a.u.)	Orbital Period (yr)	Mass (mass of earth)
1-	Mercury	0.382	0.39	0.24	0.06
2-	Venus	0.949	0.72	0.62	0.82
3-	Earth	1.00	1.00	1.00	1.00
4-	Mars	0.532	1.52	1.88	0.11
5-	Jupiter	11.209	5.20	11.86	317.8
6-	Saturn	9.449	9.54	29.46	95.2
7-	Uranus	4.007	19.22	84.01	14.6
8-	Neptune	3.883	30.06	164.8	17.2









الشكل 6- يمثل تغير أقطار الأقمار النظامية مع البعد عن الكوكب

الشكل 5 - يمثل تغير أقطار أقمار زحل مع البعد عن الكوكب Orbital radius (pl. radius)

الشكل 8- يمثل تغير أقطار كواكب المجموعة الشمسية مع البعد عن

الشكل 7- يمثل تغير أقطار أقمار زحل اللانظامية مع البعد عن الكوكب