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Abstract

In this paper, some estimators for the unknown shape parameters and reliability
function of Basic Gompertz distribution were obtained, such as Maximum
likelihood estimator and some Bayesian estimators under Squared log error loss
function by using Gamma and Jefferys priors. Monte-Carlo simulation was
conducted to compare the performance of all estimates of the shape parameter and
Reliability function, based on mean squared errors (MSE) and integrated mean
squared errors (IMSE's), respectively. Finally, the discussion is provided to illustrate
the results that are summarized in tables.
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1. Introduction
The Gompertz distribution plays an important role in modeling survival times, human mortality and
actuarial data. It was formulated by Gompertz (1825) to fit mortality tables[1].
The probability density function of the Gompertz distribution is defined as follows [2]:
f(t;0) =dexp[ct+2(1—e)] ; t20 ¢A>0

where ¢ is the scale parameter and X is the shape parameter of the Gompertz distribution.
In this paper, we’ll assume that c=1, which is a special case of Gompertz distribution known as
Basic Gompertz distribution with the following probability density function [3]

f(t;2) =rexp[t+A(1—eY] ; t=0 1>0 (1)
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The corresponding cumulative distribution function F(t) and reliability or survival function R(t) of
Basic Gompertz distribution are given by
F(t) =1 —exp[r(1 —eY)] ; > )
R(t) = F(t) =exp[M(1—eY)] ; t>0
2. Maximum likelihood Estimator of the Shape Parameter (A)

Assume that t = ty, t,,... , t, are a random sample of size n from the Basic Gompertz distribution
defined by eq.(1), then the likelihood function for the sample observation will be as follows [4]

n

L (ty, tp..., by ) = ﬂf(ti;x)
i=1

=\" exp[zn:ti + ki(l — e')] 3)
i=1

i=1

By letting %ln L(t;; A) = 0, the MLE of A becomes
XML = _Tn 4

where T=Y1L (1 — e%)
Based on the invariant property of the MLE, the MLE for R(t) will be as follows
R(®)mr, = exp[Amr, (1 — eD)]
3. Bayesian Estimation
We provide Bayesian estimation method for estimating A and R(t) of Basic Gompertz distribution,
including informative and non-informative priors.
3.1 Posterior Density Functions Using Gamma Distribution
In this subsection, we assumed that X is distributed Gamma as a prior distribution with density [5].
g1 () == r e P ;. A>0, 0,p>0 )
In general, the posterior probability density function of unknown parameter A with prior g() can
be expressed as

n(}\‘lz) _ L (tl,tz,...,tn; 7\.) g(}\,)

ka L(ty, ty,..., ty A) g(W)dA
Now, combining eqg. (3) with eqg. (5) in eq. (6) yields:

(6)

AT BB, (1-et) ]

At) =
1 (M) fg’knw_le_ MB-2,(1- €)1 g

After simplification, we get

(B _ T)n+akn+a_1e—x(B—T)
AMt) =
™ (M1E) T(n+ o)
Notice that, the posterior p.d.f. of the parameter A is obviously Gamma distribution, i.e.
AMt~Gamma (n + o, B — T); with: E(/1|§) = % , Var(ﬂlg) = (;lj;r)z

3.2 Posterior Density Functions Using Jeffreys Prior
Assume that A has a non-informative prior density defined, using Jeffrey’s prior information gz(x),
as follows [6]

g2 (M) « \/@

where I(1)is Fisher information which is defined as
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I(A) = —nE (a i“f)

Hence,
921nf(t; 1)
g2() =k |-nE| ———= : (7)
o

where k is a constant.
By taking the natural logarithm for p.d.f of Basic Gompertz distribution and taking the second
partial derivative with respect to A, we get

2Inf(t; 1) 1
El—=— ==
] A

After substitution into eq. (7), we have
k
g, (W) = . vn , A>0

After substituting in eq.(6), the posterior density function based on Jeffreys prior can be written as
n-1 n t;
A e A Bk eti-)

nz(klg) o foo}yn 1 —XZ?=1(eti—1)d7u

pnyl e P
T T
where P=Y7 (et — 1) =
The posterior density m, (x|g)|s recognized as the density of the Gamma distribution, i.e.

(X|t1, ...,tn)~Gamma (n,P) , with E(X|t1, ...,tn) = % ; ver(k|t1, ...,tn) = %

3.3 Bayes Estimation under Squared Log Error Loss Function

This loss function was used by Brown in 1968 and takes the following formula [7]
o\ 2

L(2) = (Ini-Inn)* = <ln%>

This is coordinated with lim L(X, 1) > wasX — 0 or .

Any equivalent loss function considers the estimation error and the convenience quality, however,
the unequal loss function simply gets the estimation error. This loss function is convex toward % <e
and otherwise is concave, yet its risk function has a unique minimum with X [8].

According to the above mentioned loss function, we drive the corresponding Bayes estimators for A
using Risk function R(X — 1), which minimizes the posterior risk,

R(R1) = E[L(RA)] = jw(lni —In3)* Aty e t)d
0

= (In®)” — 2(Ink) E(Inx |t) + E(An1)?|t)
Taking the partial derivative for R(i, /1) with respect to A and setting it equal to zero, gives
Ink = E(lnkl‘g)
Hence,
A = Exp (E(ln%|‘£)) (8)
3.3.1 Bayes Estimation under Squared Log Error Loss Function with Gamma Prior
Bayes estimator relative to Squared log error loss function based on Gamma prior can be

derived as follows
(B _ )n+(l n+oa—1

E(In |t InA——— 1\ e MB=Dq) 9
= [ m S ®
By using the transformation technique by assuming that,
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y = MB — T), which implies that,
B-1 B-T)

Substituting into eq. (9) gives
0 1 y y \n+o-1 dy

E(InAt) = —Tn+af 1( )( ) -y

(Infe) = (B =) o Tn+a) \B—T/\B—T CTB-T

“lnyytte-ley InB-T) (* ...
— _ -1a-v4 10
fo I'(n + a) y I'h+oa) J, y ¢ (10)

Recall that T'(n + a) is a Gamma function which is defined as

I'h+oa) = f yite-le vdy (11)
0
And we can say that

fwlnyym_le_yd _ InC(n + o) = Y(n + ) 12
LTIt YT gmrgMta =yt (12)
Such that, Y (n) = % where (n) is a Digamma function.

Substituting eq. (11) and eq. (12) into eq. (10) gives
E(InA|t) = ¢(n+ o) —In(B—T)
From eq. (9)and eq. (8), we have
A =Exp(¥(n+a) —In(B —T))
Thus, Bayesian estimation for the shape parameter of Basic Gompartz distribution under Squared
log error loss function with Gamma prior is
Age = Exp(¥(n + o) — In(B — T)) (13)
Now, according to eg.(8), the Bayesian estimation for R(t) under Squared log error loss function
with Gamma prior can be obtained as follows

R(t) = Exp (E(inAJt) ) (14)

00 (B _ T)n+a n+a—1 ~ ~
E(nR®)[D) = | M1 —et) o2 MB-T)
(nROIY = | (1= e Tomoh PO

_ j FB D wta ety gy ot f TB =D wra e g,
o IT'n+a) o IT'(n+a)

n+a
E(InR(t)[t) = 5=T (1-e9 (15)
Combining equations (14) and (15) gives
~ n+a ¢
R(t)pc = Exp (ﬂTT (1-e ))
Where, R(t)g¢ represents Bayesian estimation for R(t) under Squared log error loss function with
Gamma prior.

3.3.2 Bayes Estimation under Squared Log Error Loss Function with Jefferys Prior
Similarly, we can obtain the Bayes estimator for the shape parameter A under Jefferys prior by
using eq. (8) as follows

o0 PTl
E(ln )t =f Inkh ——<A""te *Pd) 16
(20 =), v (e
By letting y = AP which implies that,

v=2and di=2
P P

After substituting into eq.(16), we get
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0 pn n—-1 d
E(Inat) =f0 In (%)@(%) e‘y?y

:fwmyy”‘le—ydy_ InP wyn_le_ydy an
0 F(n) I'(n) 0

E(ln)l|£) =ypn)—ImnP (18)

So, from eq. (8) and eq.(18), we get the Bayes estimator of parameter A under Squared log error loss
function, based on Jefferys prior, as the following form
Ag; = Exp(y(n) — InP)
Similarly, we can find the corresponding estimator for R(t) by using eq. (14) where
E(InR(t)|t) = J, InR()m,(A|t)d) (19)

E(InR(®)[©) = % [ AL = e e P,

nre® Pn+1 nr® Pn+1 —\P
- — —)\n _)“PCD\,— t_f — )n di
Pfo T+ ° “PJ,Ta+D" ¢

n
E(InR(D)|t) = 5 (1-—eYH (20)
Substitute eq. (20) into eq. (14) gives

~ n(1l—eb)
R(t)p; = exp (T)
Recall that P = -T, thus, R(t); is equivalent to MLE for R(t)my,
4. Simulation Study

In this section, a Monte Carlo simulation was performed to compare the performance of the
different estimators of the unknown shape parameter A and Reliability function R(t) for Basic
Gompertz distribution. The process was repeated 5000(L=5000) times with different sample sizes (n =
15, 50, and100).

The default values of the shape parameter A and two values of the Gamma prior parameters were
chosen to be less than and greater than one, as A= 0.5, 3; a=0.8, 3; p=0.5,3.
All estimators for A that were derived in the previous section are evaluated based on their mean
squared errors (MSE's), where,

~ L 7.2
MSE(R) = Zzolit) : =123 ...L

The integrated mean squared error (IMSE) was employed to compare the performance of the Bayesian
estimators for R(t). IMSE is an important global measure and more accurate than MSE, which is
defined as the distance between the estimated value and actual value of reliability function given by
equation, where,

IMSER(1) = { Zh [ B, (Ri(t) — R(6) )12

= Ty MSE(R (£)))
where i=1,2,...,L,n; the random limits of t;.
In this paper, we chose t=0.1, 0.2, 0.3, 0.4, 0.5.
The expected values (EXP) and mean squared errors (MSEs) of all estimates of the shape
parameter of Basic Gompertz distribution A were tabulated in Tables-(1-2) for all sample sizes. The
integrated mean squared error (IMSE) values for the estimates of R(t) were tabulated in Tables- (3-4).
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Table 1- Expected values (EXP) and MSEs of the different estimates of the shape parameter A
of Basic Gompertz distribution when A =0.5

stimate Jeffreys Gamma prior
n MLE prior 0a=0.8 a=13
Crited B=0.5 B=3 =0.5 B=3

15 EXP 0.5353497 | 0.5169348 | 0.5351083 | 0.4893851 | 0.6118625 | 0.5595807

MSE 0.0235674 | 0.0210955 | 0.0225615 | 0.0146673 | 0.0403994 | 0.0225792

50 EXP 0.5102127 | 0.5026106 | 0.5080449 | 0.4952185 | 0.5301548 | 0.5167699

MSE 0.0056782 | 0.0054159 | 0.0055315 | 0.0049467 | 0.0068623 | 0.0056429

100 EXP 0.5053571 | 0.4978777 | 0.5005705 | 0.4942800 | 0.5114384 | 0.5050112
MSE 0.0026505 | 0.0025493 | 0.0025594 | 0.0024645 | 0.0028022 | 0.0025636

Table 2-Expected values (EXP) and MSEs of the different estimates of the shape parameter A of Basic
Gompertz distribution when A = 3

stimate Jeffreys Gamma prior
n MLE prior 0=0.8 a=3
Critexia B=0.5 B=3 B=0.5 B=3

15 EXP 3.2120990 | 3.1016020 | 2.9363160 | 1.9585270 | 3.3574840 | 2.2394540
MSE 0.8484274 | 0.7594381 | 0.5280226 | 1.1832750 | 0.8128504 | 0.7073729
50 EXP 3.0612750 | 3.0156660 | 2.9713070 | 2.5815020 | 3.1006220 | 2.6938410
MSE 0.2044161 | 0.1949720 | 0.1780807 | 0.2751655 | 0.2031455 | 0.2026478
100 EXP 3.0321400 | 2.9872730 | 2.9656800 | 2.7578700 | 3.0300660 | 2.8177440
MSE 0.0954172 | 0.0917731 | 0.0887214 | 0.1239551 | 0.0922897 | 0.1014135

Table 3- IMSEs of the different estimates for reliability function R(t) of Basic Gompertz distribution
when A =0.5

Gamma prior
0=0.8 o=73
B=0.5 =3 B=0.5 =3
15 0.0014595 0.0014595 0.0012712 | 0.0011462 | 0.0021770 | 0.0007793
50 0.0003847 0.0003847 0.0003709 | 0.0003508 | 0.0004564 | 0.0003111
100 0.0001869 0.0001869 0.0001837 | 0.0001780 | 0.0002053 | 0.0001678

0 MLE Jeffreys prior

Table 4-IMSEs of the different estimates for reliability function R(t) of Basic Gompertz distribution
when A =3

Gamma prior
0=0.8 o=3
B=0.5 B=3 B=0.5 =3
15 0.0069471 0.0069471 0.0080101 | 0.0797167 | 0.0055115 | 0.0629822
50 0.0021114 0.0021114 0.0022277 | 0.0175773 | 0.0019502 | 0.0145029
100 0.0010669 0.0010669 0.0010965 | 0.0059061 | 0.0010238 | 0.0050060

0 MLE Jeffreys prior

4. Results, Discussion and Analysis

The discussion of the results obtained from applying the simulation study can be summarized as
follows:
1. When the shape parameter A=0.5,
e The best estimator for A is Bayes estimator under Squared log error loss function based on Gamma
prior, with 0=0.8 and =3 for all sample sizes (see Table-1).
e From Table-3, it is clear that the best estimator for R(t) is Bayes estimator under Squared log error
loss function with Gamma prior, when a.= 3 and 3 = 3 for all sample sizes.
2. When the shape parameter A=3,
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e From Table-2, notice that the performance of Bayes estimator under Squared log error loss function
based on Gamma prior, is the best with 0=0.8 and f=0.5 for all sample sizes .
e Table-4 shows that the best estimate for R(t) is Bayes estimator under the Squared log error loss
function based on Gamma prior with =3 and f=0.5 for all sample sizes.
3. In general, MSEs and IMSEs are increasing with the increase of the shape parameter value.
4. From Tables-(3, 4), it is observed that IMSE values for Maximum likelihood and Bayes estimates
under the Squared log error loss function with Jefferys prior are the same.
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