Zyarah and Al-Mothafaar

Iraqi Journal of Science, 2020, Vol. 61, No. 5, pp: 1104-1114 DOI: 10.24996/ijs.2020.61.5.19

ISSN: 0067-2904

Semiprime R_{Γ} -Submodules of Multiplication R_{Γ} -Modules

Ali Abd Alhussein Zyarah*, Nuhad Salim Al-Mothafar

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 20/8/ 2019 Accepted: 30/9/2019

Abstract

Let *R* be a Γ -ring and *G* be an \mathbb{R}_{Γ} -module. A proper \mathbb{R}_{Γ} -submodule *S* of *G* is said to be semiprime \mathbb{R}_{Γ} -submodule if for any ideal *I* of a Γ -ring *R* and for any \mathbb{R}_{Γ} submodule *A* of *G* such that $(I\Gamma)^2 A \subseteq S$ or $I\Gamma I\Gamma A \subseteq S$ which implies that $I\Gamma A \subseteq S$. The purpose of this paper is to introduce interesting results of semiprime \mathbb{R}_{Γ} -submodule of \mathbb{R}_{Γ} -module which represents a generalization of semiprime submodules.

Keywords: Γ – ring, R_{Γ} -module, R_{Γ} -submodule and prime R_{Γ} -submodule

المقاسات الجزئية شبة الأولية من النمط كاما للمقاسات للمقاسات الجدائية

علي عبد الحسين زيارة، نهاد سالم المظفر قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصه

 R_{Γ} لتكن R هي حلقة من النمط I و G هو مقاساً من النمط R_{Γ} و S هو مقاساً جزئي فعلي من النمط R_{Γ} لتكن R مقاس جزئي شبة أولي من النمط R_{Γ} اذا كان لكل مثالي / في R وأي مقاس جزئي A في G بحيث $S \supseteq A$ مقاس جزئي من البحث هو تقديم بحيث $S \supseteq I \Gamma A$ أو $S \supseteq I \Gamma I \Gamma A$ أو $S \supseteq A \Gamma I \Gamma A$ بحيث R_{Γ} من النمط R_{Γ} فأن $R \supseteq S$ من النمط R_{Γ} والذي يعتبر هو التعميم للمقاسات الجزئية شبة الأولية من النمط R_{Γ} والذي يعتبر هو التعميم المقاسات الجزئية شبة الأولية من النمط R_{Γ}

1. Introduction

Let *R* and Γ be additive abelian groups. We say that *R* is a Γ -ring if there exists a mapping of $\tau: \mathbb{R} \times \Gamma \times \mathbb{R} \to \mathbb{R}$ such that for every $r, s, g \in \mathbb{R}$ and $\alpha, \beta \in \Gamma$, the following conditions hold:" $(r+s)\alpha g = r\alpha g + s\alpha g', r(\alpha + \beta) g = r\alpha g + r\beta g', r\alpha (s+g) = r\alpha s + r\alpha g,$

 $(r\alpha s)\beta g = r\alpha (s\beta g)[1]$. A left R_r-module is an additive abelian group G 'together with a mapping' $\tau: \mathbb{R} \times \Gamma \times G \to G$ such that for all $e, e_1, e_2 \in G$ and $\gamma, \gamma_1, \gamma_2 \in \Gamma, r_1, r_2, r_3 \in \mathbb{R}$ the following conditions hold: $r_{3}\gamma(e_{1}+e_{2})=r_{3}\gamma e_{1}+r_{3}\gamma e_{2}, (r_{1}+r_{2})\gamma e=r_{1}\gamma e+r_{2}\gamma e, r_{3}(\gamma_{1}+\gamma_{2})e=r_{3}\gamma_{1}e+r_{3}\gamma_{2}e$ $r_1 \gamma_1 (r_2 \gamma_2 e) = (r_1 \gamma_1 r_2) \gamma_2 e$. A right R_{Γ} -module 'is defined in an analogous manner and a non-empty subset S of (G, +) is said to be' \mathbb{R}_{Γ} -submodule of G 'if S is a subgroup of G' and $R\Gamma S \subseteq S$, where $R\Gamma S = \{g \gamma w : \gamma \in \Gamma, g \in R, w \in S\}$,'that is for all $w, w_1 \in S$ and for all' $\gamma \in \Gamma, g \in R$; $w - w_1 \in S$ and $g \gamma w \in S$. So, In this case we write $S \leq G$. Let K, L be R_{Γ} submodule R_{Γ} -module 'then R_{Γ} -residual of K by L of an *G*', the is

^{*}Email: aliziara107@gmail.com

 $[K:_{R_{\Gamma}} L] = \{ g \in R \mid g \alpha_i l \in K, \forall \alpha_i \in \Gamma, l \in L \} [2].$ A proper \mathbb{R}_{Γ} -submodule *S* of *G* is called prime \mathbb{R}_{Γ} -submodule if for any ideal *T* of a Γ -ring *R* and for any \mathbb{R}_{Γ} -submodule *H* of *G*, $T \Gamma H \subseteq S$, implies $H \subseteq S$ or $T \subseteq [S:_{\mathbb{R}_{\Gamma}} G] [3].$ Let *G* and *G'* be arbitrary \mathbb{R}_{Γ} -modules. A mapping $\tau: G \to G'$ is a homomorphism of \mathbb{R}_{Γ} -modules (or \mathbb{R}_{Γ} -homomorphism) if for all $u, v \in G$ and for all $t \in \mathbb{R}$, $\gamma \in \Gamma$ we have:-

i. $\tau(u+v) = \tau(u) + \tau(v)$

ii. $\tau(t\gamma u) = t\gamma \tau(u)$

A R_{Γ} -homomorphism τ is R_{Γ} -epimorphism if τ is onto. We denote the set of all R_{Γ} homomorphism from G into G' by $Hom_{R_{\Gamma}}(G,G')$. In particular, if G = G' we denote $Hom_{R_{\Gamma}}(G,G)$ by End (G) and if $\tau: G \to G'$ is an \mathbb{R}_{Γ} -homomorphism, then Ker $\tau = \{u \in G ; \tau(u) = 0\}$ and, so, Im $\tau = \{w \in G'; \exists u \in G; \tau(u) = w\}$ [2]. An R_{Γ} -module G and $\varphi \neq F \subseteq G$, then the generated R_{Γ} submodule of G, denoted by $\langle F \rangle$ is the smallest R_r-submodule of G containing F, i.e., $\langle F \rangle = \bigcap \{S \mid S \leq G\}$. F is called the generator of $\langle F \rangle$ and $\langle F \rangle$ is finitely generated if $|F| < \infty$. If $F = \{z_1, z_2, ..., z_n\}$ we write $\langle z_1, z_2, ..., z_n \rangle$ instead of $\langle \{z_1, z_2, ..., z_n\} \rangle$. In particular, if $F = \{z\}$ then $\langle z \rangle$ is called the cyclic submodule of G, generated by z [2]. An R_r-submodule S of an R_{Γ} -module G is called R_{Γ} -direct summand of G if there is R_{Γ} -submodule Q of G such that $S \oplus_{\Gamma} Q = G$, i.e., if there are \mathbb{R}_{Γ} -homomorphism $\rho: S \to G$ and $i: G \to S$ such that $i \circ \rho = I_{S}$ [4]. A proper submodule S of R-module G is said to be prime submodule, if $g \ u \in S$ for $g \in R$ and $u \in G$, implies that either $u \in S$ or $g \in [S:G]$ and S is called semiprime submodule of R-module G, whenever $g \in R$ and $u \in G$ with $g^2 u \in S$, then $g u \in S$ [5]. A proper R_{Γ} -submodule S of G is called prime R_{Γ} -submodule if for any ideal I of a Γ -ring R and for any R_{Γ} -submodule K of G, $I \Gamma K \subseteq S$ implies $K \subseteq S$ or $I \subseteq [S:_{R_{\Gamma}} G]$ [3]. In this paper, we provide the definition of semiprime R_{Γ} -submodule of R_{Γ} -module and the relation with semiprime R-submodule of R-module, which is a generalization to semiprime R-submodule. Thus, we find the relation of semiprime R_{Γ} submodule with multiplication R_{Γ} -module. As a result, we have come up with an equivalent **Theorem 3.13.** Let G be a multiplication R_{Γ} -module and let S be a proper R_{Γ} -submodule of G. Then the following statements are equivalent:-

- 1. *S* is semiprime R_{Γ} -submodule of *G*.
- 2. $x \ \Gamma x \subseteq S$ implies $x \in S$ such that for all $x \in G$.
- 3. $rad_{\Gamma}(S) = S$.
- 4. G_{S} has no non-zero nilpotent.
- 5. $K_1 \Gamma K_2 \subseteq S$ implies $K_1 \cap K_2 \subseteq S$, for every K_1, K_2 are proper \mathbb{R}_{Γ} -submodules of G.

2. Semiprime R_{Γ} -Submodules of R_{Γ} -Modules

In this section we illustrate the concept of semiprime R_{Γ} -submodule and we introduce some basic properties.

Definition 2.1. Let *S* be a proper \mathbb{R}_{Γ} -submodule of \mathbb{R}_{Γ} -module *G*. Then *S* is called semiprime \mathbb{R}_{Γ} -submodule if for any ideal *I* of a Γ -ring *R* and for any \mathbb{R}_{Γ} -submodule *A* of *G* such that $(I\Gamma)^2 A \subseteq S$ or $I\Gamma I\Gamma A \subseteq S$ implies $I\Gamma A \subseteq S$.

Theorem 2.2. Let *G* be an \mathbb{R}_{Γ} -module. An \mathbb{R}_{Γ} -submodule *S* of *G* is semiprime \mathbb{R}_{Γ} -submodule if and only if, for each $u \in G$, $g \in \mathbb{R}$ such that $\langle g \rangle \Gamma \langle g \rangle \Gamma \langle u \rangle \subseteq S$ implies $g \Gamma u \subseteq S$.

Proof: Let *S* be a semiprime \mathbb{R}_{Γ} -submodule of *G* and let $\langle g \rangle \Gamma \langle g \rangle \Gamma \langle u \rangle \subseteq S$, where $u \in G$, $g \in R$. Since *S* is semiprime \mathbb{R}_{Γ} -submodule, then $\langle g \rangle \Gamma \langle u \rangle \subseteq S$ and hence $g \Gamma u \subseteq S$. Conversely, suppose that $I \Gamma I \Gamma A \subseteq S$, where *I* is an ideal of a Γ -ring *R* and *A* is a \mathbb{R}_{Γ} -submodule

of G. Then for any element $g \in R$ and $a \in A$, we have $\langle g \rangle \Gamma \langle g \rangle \Gamma \langle a \rangle \subseteq I \Gamma I \Gamma A \subseteq S$, then $g \Gamma a \subseteq S$. Thus, $I \Gamma A \subseteq S$ and S is a semiprime \mathbb{R}_{Γ} -submodule of G.

Theorem 2.3 [3]. Let *G* be an \mathbb{R}_{Γ} -module. An \mathbb{R}_{Γ} -submodule *S* of *G* is said to be prime if and only if, for each $u \in G$, $g \in \mathbb{R}$ such that $\langle g \rangle \Gamma \langle u \rangle \subseteq S$ implies $u \in S$ or $g \in [S :_{\mathbb{R}_{\Gamma}} G]$.

Lemma 2.4 [3]. Let *G* be an R_{Γ} -module. Let *S* be a prime R_{Γ} -submodule of *G*. Then $[S :_{R_{\Gamma}} G]$ is a prime ideal of a Γ -ring *R*.

Remarks and Examples 2.5

- i. Every semiprime R-submodule is semiprime R_{Γ} -submodule but the converse is not true in general, as in the following example:
- Let Z_8 be a $Z_{(\bar{2})}$ -module, $\Gamma = <\bar{2}>$ and $<\bar{4}>$ be a proper $Z_{<\bar{2}>}$ -submodule of Z_8 . Then $<\bar{4}>$ is semiprime $Z_{<\bar{2}>}$ -submodule, since for any I is an ideal of a Γ -ring Z and K is any $Z_{<\bar{2}>}$ submodule of Z_8 such that $I < \bar{2} > I < \bar{2} > K \subseteq S$, then $I < \bar{2} > K \subseteq S$. But $<\bar{4}>$ is not semiprime submodule since $2 \in Z$, $1 \in Z_8$, k=2 such that $2^2 \cdot 1 = 4 \in <\bar{4}>$ but $2 \cdot 1 = 2 \notin <\bar{4}>$.
- ii. Every prime R_{Γ} -submodule is semiprime R_{Γ} -submodule.

Proof. Let *S* be a prime \mathbb{R}_{Γ} -submodule of *G*. We have to show that *S* is semiprime \mathbb{R}_{Γ} -submodule. Let $I \Gamma I \Gamma A \subseteq S$, where *I* is an ideal of a Γ -ring *R* and *A* is \mathbb{R}_{Γ} -submodule of *G*. Since *I* is ideal of a Γ -ring *R*, then $I \Gamma A = A \Gamma I$. Since *S* is a prime \mathbb{R}_{Γ} -submodule of *G*, then either $A \subseteq S$ then $I \Gamma A \subseteq S$ or $I \Gamma I \subseteq [S :_{\mathbb{R}_{\Gamma}} G]$ then $I \subseteq [S :_{\mathbb{R}_{\Gamma}} G]$, since $[S :_{\mathbb{R}_{\Gamma}} G]$ is prime by lemma (2.4). Therefore, $I \Gamma A \subseteq I \Gamma G \subseteq S$ and hence $I \Gamma A \subseteq S$. Thus *S* is semiprime \mathbb{R}_{Γ} -submodule of *G*. The following example explains that the converse is not true in general:

Let 3Z be an Z_{2Z} - module, 6Z be a proper Z_{2Z} - submodule of 3Z. Let $f: Z \times 2Z \times 3Z \rightarrow 3Z$ and 6Z is semiprime Z_{2Z} - submodule of 3Z, for any ideal I in Z and any Z_{2Z} - submodules in 3Z, then $(I2Z)^2 A \subseteq 6Z$. But 6Z is not prime of Z_{2Z} - submodule of 3Z, since $x=3, r=2, \gamma=2, <3>2Z <2>\subseteq 6Z$ and $3\cdot 2\cdot 2=12 \in 6Z$ but $3 \notin 6Z$ and $2 \notin [6Z:_{R_{\Gamma}} 3Z]$.

Recall that an ideal *I* in a Γ -ring *R* is said to be semiprime ideal of a Γ -ring *R* if for any *J* is an ideal in Γ -ring *R* such that $J \Gamma J \subseteq I$ implies $J \subseteq I$ [6].

Proposition 2.6. Let G be an R_{Γ} -module and S be a semiprime R_{Γ} -submodule, then $[S:_{R_{\Gamma}}G]$ is semiprime ideal of a Γ -ring R.

Proof. Let *J* be an ideal in *R* such that $J \Gamma J \subseteq [S :_{R_{\Gamma}} G]$, then $J \Gamma J \Gamma G \subseteq S$. Since *S* is semiprime R_{Γ} -submodule, then $J \Gamma G \subseteq S$. Therefore, $J \subseteq [S :_{R_{\Gamma}} G]$ and $[S :_{R_{\Gamma}} G]$ are semiprime ideals of a Γ -ring *R*. To show that the converse is not true in general, the following example is shown:

Let $G = Z \oplus Z$ be a $Z_{\langle \bar{3} \rangle}$ -module and let *S* be an \mathbb{R}_{Γ} -submodule generated by $\langle (0,4) \rangle$, then $[S:_{\mathbb{R}_{\Gamma}} G] = \{0\}$ is semiprime ideal of a Γ -ring *Z*, but *S* is not semiprime \mathbb{R}_{Γ} -submodule of *G*. Let $\langle \overline{2} \rangle$ be an ideal, Γ be a abelian group define by $\langle \overline{3} \rangle$ and *S* be an \mathbb{R}_{Γ} -submodule generated by $\langle (0,4) \rangle$, then $\langle \overline{2} \rangle \langle \overline{3} \rangle \langle \overline{2} \rangle \subseteq [S:_{\mathbb{R}_{\Gamma}} G]$, then $\langle \overline{2} \rangle \langle \overline{3} \rangle \langle \overline{2} \rangle = (0) \subseteq [S:_{\mathbb{R}_{\Gamma}} G]$. Then $\langle (0,g) \rangle \langle (u,0) \rangle = \{(0,0)\} \subseteq [S:_{\mathbb{R}_{\Gamma}} G]$ for all $u \in G$, $g \in \mathbb{R}$. Thus $[S:_{\mathbb{R}_{\Gamma}} G] = \{0\}$ is semiprime ideal of a Γ -ring *Z*, but *S* is not semiprime \mathbb{R}_{Γ} -submodule of *G*. Let $(0,1) \in G, \langle \overline{3} \rangle \in \Gamma$ such that $\langle \overline{2} \rangle \langle \overline{3} \rangle \langle \overline{2} \rangle \langle \overline{3} \rangle \langle (0,1) = (0,36) \in S$ and $\langle \overline{2} \rangle \langle \overline{3} \rangle \langle (0,1) = (0,6) \notin S$.

Theorem 2.7. Let *S* be a proper R_{Γ} -submodule of R_{Γ} -module *G*, then the following statements are equivalents:

1. *S* is semiprime R_{Γ} -submodule of *G*.

2. The ideal $[S:_{R_{\Gamma}} K]$ is semiprime in Γ -ring R, for all K is a proper R_{Γ} -submodule of G such that $S \subset K$.

3. The ideal $[S:_{R_{\Gamma}} < u >]$ is semiprime in Γ -ring R, for all $u \in G$ and $u \notin S$.

Proof. $(1 \rightarrow 2)$

Let *K* be a proper R_{I} -submodule of *G*. Let *I* be an ideal of Γ -ring *R* such that $I \Gamma I \subseteq [S :_{R_{\Gamma}} K]$, then $I \Gamma I \Gamma K \subseteq S$. Since *S* is semiprime R_{Γ} -submodule of *G*, then $I \Gamma K \subseteq S$ and hence $I \subseteq [S :_{R_{\Gamma}} K]$. Thus, $[S :_{R_{\Gamma}} K]$ is semiprime ideal in Γ -ring *R*. $(2 \rightarrow 3)$

Let $u \in G$, $u \notin S$, let J be an ideal of Γ -ring R such that $J \Gamma J \subseteq [S:_{R_{\Gamma}} < u >]$ and let $g \in R$ such that $J = \langle g \rangle$, then $\langle g \rangle \Gamma \langle g \rangle \subseteq [S:_{R_{\Gamma}} < u >]$. We have to show that $\langle g \rangle \subseteq [S:_{R_{\Gamma}} < u >]$. Since $u \in G$ and $u \notin S$, then $\langle u \rangle$ is R_{Γ} -submodule of G, $\langle u \rangle \subseteq S + \langle u \rangle$, then $[S:_{R_{\Gamma}} < u >] \subseteq [S:_{R_{\Gamma}} S + \langle u \rangle]$ and $S \subseteq S + \langle u \rangle$. By hypothesis (2), $[S:_{R_{\Gamma}} S + \langle u \rangle]$ is semiprime ideal of R, then $J \subseteq [S:_{R_{\Gamma}} S + \langle u \rangle]$ and $J \Gamma \langle u \rangle \subseteq S$. Thus, $J \subseteq [S:_{R_{\Gamma}} < u \rangle]$ and $[S:_{R_{\Gamma}} < u \rangle]$ is semiprime ideal in Γ -ring R.

 $(3 \rightarrow 1)$

Let *I* be an ideal in Γ -ring *R* and $u \in G$, then $\langle u \rangle$ is R_{Γ} -submodule of *G*. Let $I \cap I \cap \langle u \rangle \subseteq S$, to show that $I \cap \langle u \rangle \subseteq S$. Since $[S:_{R_{\Gamma}} \langle u \rangle]$ is semiprime ideal in *R*, then $I \subseteq [S:_{R_{\Gamma}} \langle u \rangle]$ and, hence, $I \cap \langle u \rangle \subseteq S$. Thus *S* is semiprime R_{Γ} -submodule of *G* by Proposition (2.6).

Proposition 2.8. Let *S* be a proper R_{Γ} -submodule of R_{Γ} -module *G*, if *S* is prime R_{Γ} -submodule of *G* and $S = \bigcap_{i \in \Lambda} S_i$ where each S_i is prime R_{Γ} -submodule of *G*, then *S* is semiprime R_{Γ} -submodule of *G*.

Proof. Let *K* be a proper \mathbb{R}_{Γ} -submodule of *G* and let *I* be an ideal of a Γ -ring *R* such that $I\Gamma I\Gamma K \subseteq S$. We have to show that $I\Gamma K \subseteq S$. Since S_i is a prime \mathbb{R}_{Γ} -submodule of *G*, then S_i is semiprime \mathbb{R}_{Γ} -submodule of *G* by Remark ((2.5), ii). Then $I\Gamma K \subseteq S_i$ for all $i \in \Lambda$, which implies that $I\Gamma K \subseteq \bigcap S_i = S$. Thus, *S* is semiprime \mathbb{R}_{Γ} -submodule of *G*.

Proposition 2.9. Let *G* be R_{Γ} -module and let *S* be a proper R_{Γ} -submodule of *G*. If *S* is semiprime R_{Γ} -submodule of *G* and *L* is a proper R_{Γ} -submodule of *G* such that $L \not\subset S$, then $L \bigcap S$ is semiprime R_{Γ} -submodule of *G*.

Proof. Let $w \in L$, $g \in R$ such that $\langle g \rangle \Gamma \langle g \rangle \Gamma \langle w \rangle \subseteq S \cap L$, then $\langle g \rangle \Gamma \langle g \rangle \Gamma \langle w \rangle \subseteq S$ and $\langle g \rangle \Gamma \langle g \rangle \Gamma \langle w \rangle \subseteq L$. But $w \in L$, hence $g \Gamma w \subseteq L$. As S is semiprime \mathbb{R}_{Γ} -submodule of G, then $g \Gamma w \subseteq S$, hence $g \Gamma w \subseteq S \cap L$ which implies that $L \cap S$ is semiprime \mathbb{R}_{Γ} -submodule of G.

Proposition 2.10. Let G be R_{Γ} -module and S_{α} be a family semiprime R_{Γ} -submodule of G, for each $\alpha \in \Lambda$, then $\bigcap S_{\alpha}$ is semiprime R_{Γ} -submodule of G.

Proof. Let *I* be an ideal of Γ -ring *R* and *H* be a proper \mathbb{R}_{Γ} -submodule of *G* such that $I \Gamma I \Gamma H \subseteq \bigcap_{\alpha \in \Lambda} S_{\alpha}$, to show that $I \Gamma H \subseteq \bigcap_{\alpha \in \Lambda} S_{\alpha}$. Then $I \Gamma I \Gamma H \subseteq S_{\alpha}$ for all $\alpha \in \Lambda$, since S_{α} is semiprime \mathbb{R}_{Γ} -submodule of *G*, then $I \Gamma H \subseteq S_{\alpha}$ for all $\alpha \in \Lambda$. Thus $I \Gamma H \subseteq \bigcap_{\alpha \in \Lambda} S_{\alpha}$ for all $\alpha \in \Lambda$. Hence $\bigcap_{\alpha \in \Lambda} S_{\alpha}$ is semiprime \mathbb{R}_{Γ} -submodule of *G*.

Recall that T is an ideal of Γ -ring R. The radical of T, denoted by $rad_{\Gamma}(T)$, is defined to be the intersection of all prime ideals containing T [3].

Recall that *G* is an \mathbb{R}_{Γ} -module and *S* is an \mathbb{R}_{Γ} -submodule of *G* that is said to be primary if for any \mathbb{R}_{Γ} -submodule *V* of *G* and for any ideal *I* of a Γ -ring *R*, $I \Gamma V \subseteq S$ and $V \not\subset S$ implies $I \subseteq rad_{\Gamma}[S:_{\mathbb{R}_{\Gamma}}G][3]$.

Proposition 2.11. Let *G* be R_{Γ} -module and *S* be a proper R_{Γ} -submodule of *G*. If *S* is primary R_{Γ} -submodule of *G*, then $[S:_{R_{\Gamma}} G]$ is semiprime ideal of a Γ -ring *R* if and only if *S* is semiprime R_{Γ} -submodule of *G*.

Proof. Suppose that $[S:_{R_{\Gamma}}G]$ is semiprime ideal of *R*. Let *I* be an ideal of Γ -ring *R* and *K* be a proper R_{Γ} -submodule of *G* such that $I \Gamma I \Gamma K \subseteq S$. We have to show that $I \Gamma K \subseteq S$. Since $[S:_{R_{\Gamma}}G]$ is semiprime ideal of *R*, then $I \Gamma I \subseteq [S:_{R_{\Gamma}}G]$. Since $I \Gamma I \Gamma K \subseteq S$ then $I \Gamma I \subseteq [S:_{R_{\Gamma}}G]$, and as $[S:_{R_{\Gamma}}G]$ is an ideal of a Γ -ring *R*, we obtain $[S:_{R_{\Gamma}}G]\Gamma K \subseteq S$ and $I \subseteq [S:_{R_{\Gamma}}G]$. Thus $I \Gamma K \subseteq S$ and S is semiprime R_{Γ} -submodule of *G*. The converse is true, by Proposition (2.6).

Proposition 2.12. - Let G, G' be R_{Γ} -modules and let $\varphi: G \to G'$ be an R_{Γ} -epimorphism, then :

1) If S is semiprime R_{Γ} -submodule of G and Ker $\varphi \subseteq S$, then $\varphi(S)$ is semiprime R_{Γ} -submodule of G'.

2) If S' is semiprime R_{Γ} -submodule of G', then $\varphi^{-1}(S')$ is semiprime R_{Γ} -submodule of G. **Proof.**

1) Let $h \in R$, $u' \in G'$ such that $(h\Gamma)^2 u' \subseteq \varphi(S)$, $(h\gamma)^2 u' \in \varphi(S)$ for all $\gamma \in \Gamma$. Since φ is epimorphism, then there exists $u \in G$ such that $u' = \varphi(u)$.

 $(h\gamma)^2 \varphi(u) \in \varphi(S)$, then $\varphi((h\gamma)^2 u) \in \varphi(S)$. Since φ is \mathbb{R}_{Γ} -homomorphism and there exists $v \in S$ such that $\varphi((h\gamma)^2 u) = \varphi(v)$, then $v - (h\gamma)^2 u \in Ker \ \varphi \subseteq S$ and $(h\gamma)^2 u \in S$. Since S is semiprime \mathbb{R}_{Γ} -submodule of G, then $h \ \gamma u \in S$ and $\varphi(h \ \gamma u) \in \varphi(S)$. Thus, $h \ \gamma u' \in \varphi(S)$ and, hence, $\varphi(S)$ is semiprime \mathbb{R}_{Γ} -submodule of G'.

2) Let $h \in R$, $u \in G$ such that $(h\Gamma)^2 u \subseteq \varphi^{-1}(S')$, $u = \varphi^{-1}(u')$, $u' \in G'$ for all $\gamma \in \Gamma$. $(h\gamma)^2 u \in \varphi^{-1}(S')$, then $\varphi((h\gamma)^2 u) \in S'$ and $(h\gamma)^2 \varphi(u) \in S'$. Since S' is semiprime R_{Γ} -submodule of G', then $h \gamma \varphi(u) \in S'$ and $h \gamma u \in \varphi^{-1}(S')$. Hence, $\varphi^{-1}(S')$ is semiprime R_{Γ} -submodule of G.

Corollary 2.13. Let *S* be a proper R_{Γ} -submodule of R_{Γ} -module *G* and let *H* be any proper R_{Γ} -submodule of *G* such that $H \subseteq S$, then *S* is semiprime R_{Γ} -submodule of *G* if and only if S_{H} is a semiprime R_{Γ} -submodule of G_{H} .

3. Semiprime R_{Γ} -Submodules of Multiplication R_{Γ} -Modules

Notice that *G* is multiplication R_{Γ} -module, if for any *S* be a proper R_{Γ} -submodule of *G*, there exists an ideal *I* of a Γ -ring *R* such that $S = I \Gamma G$ [3, 7].

Proposition 3.1. Let *G* be multiplication R_{Γ} -module and *S* be a proper R_{Γ} -submodule of *G*, then *S* is semiprime R_{Γ} -submodule of *G* if and only if $[S:_{R_{\Gamma}}G]$ is semiprime ideal of Γ -ring R.

Proof. The first side is clear.

Conversely, suppose that $[S :_{R_{\Gamma}} G]$ is semiprime ideal of R. Let $g \in R$, $w \in G$; $w \notin S$, then $\langle g \rangle$ is an ideal in Γ -ring R and $\langle w \rangle$ is R_{Γ} -submodule of G such that $\langle g \rangle \Gamma \langle g \rangle \Gamma \langle w \rangle \subseteq S$, to show that $\langle g \rangle \Gamma \langle w \rangle \subseteq S$. Since G is multiplication R_{Γ} -module, then $S = [\langle w \rangle :_{R_{\Gamma}} G] \Gamma G$ where $\langle w \rangle$ is R_{Γ} -submodule of G generated by w and $[\langle w \rangle :_{R_{\Gamma}} G]$ is an ideal in R. $\langle w \rangle = [\langle w \rangle :_{R_{\Gamma}} G] \Gamma G$ and $w = v_1 \gamma_1 k_1 + v_2 \gamma_2 k_2 + ... + v_n \gamma_n k_n$, where $k_i \in [\langle w \rangle :_{R_{\Gamma}} G]$, $\gamma \in \Gamma$ and $v_i \in G$, for all $i = 1, 2, 3, ..., n \cdot g \gamma k_i \in [\langle g \gamma w \rangle :_{R_{\Gamma}} G]$ and $g \gamma w \in S$. Then $[\langle g \gamma w \rangle :_{R_{\Gamma}} G] \subseteq [S :_{R_{\Gamma}} G]$ and $g \gamma k_i \in [S :_{R_{\Gamma}} G]$,

 $w = g \gamma k_1 \gamma_1 v_1 + g \gamma k_2 \gamma_2 v_2 + \ldots + g \gamma k_n \gamma_n v_n \in S$. Then $g \Gamma w \subseteq S$ and, hence, S is semiprime \mathbb{R}_{Γ} -submodule of G.

Theorem 3.2. Let *G* be a multiplication \mathbb{R}_{Γ} -module and let *S* be a semiprime \mathbb{R}_{Γ} -submodule of *G* such that $K_1 \cap K_2 \subseteq S$, where K_1, K_2 are \mathbb{R}_{Γ} -submodules of *G*, then $K_1 \subseteq S$ or $K_2 \subseteq S$. **Proof.**

Let *S* be a semiprime \mathbb{R}_{Γ} -submodule of *G* and $K_1 \cap K_2 \subseteq S$. Then $[K_1 \cap K_2 :_{R_{\Gamma}} G] \subseteq [S :_{R_{\Gamma}} G]$ and $[K_1 :_{R_{\Gamma}} G] \cap [K_2 :_{R_{\Gamma}} G] \subseteq [S :_{R_{\Gamma}} G]$. Since $[S :_{R_{\Gamma}} G]$ is semiprime ideal of a Γ -ring *R* by Proposition (2.6), then $[K_1 :_{R_{\Gamma}} G] \subseteq [S :_{R_{\Gamma}} G]$ or $[K_2 :_{R_{\Gamma}} G] \subseteq [S :_{R_{\Gamma}} G] \subseteq [S :_{R_{\Gamma}} G] \subseteq [S :_{R_{\Gamma}} G] \cap [K_2 :_{R_{\Gamma}} G] \cap [S :_{R_{\Gamma}} G] \cap [K_2 :_{R_{\Gamma}} G] \cap$

Recall that *G* is an R_{Γ} -module that is called irreducible or (simple), if $G \Gamma R \neq 0$ and it has only the trivial R_{Γ} -submodules {0} and *G* itself [4].

Proposition 3.3. Let *G* be an R_{Γ} -module. If *S* is irreducible R_{Γ} -submodule of *G*, then *S* is semiprime R_{Γ} -submodule of *G* if and only if *S* is a prime R_{Γ} -submodule of *G*.

Proof. The first side is clear. Conversely, suppose that *S* is not prime \mathbb{R}_{Γ} -submodule of *G*. Let $h \in \mathbb{R}$, $h \notin [S:_{\mathbb{R}_{\Gamma}} G], u \in G$, $u \notin S$ and $\alpha \in \Gamma$ such that $h \alpha u \in S$. Since $h \notin [S:_{\mathbb{R}_{\Gamma}} G]$, there exists $v \in G$ such that $h \alpha v \notin S$. We claim that $K_1 \cap K_2 = S$. Let $w \in K_1 \cap K_2$ and $K_1 = S + \langle u \rangle$, $K_2 = S + \langle h \alpha v \rangle$. Let $s_1, s_2 \in S$ and $t_1, t_2 \in \mathbb{R}$ such that $w = s_1 + t_1 \alpha u = s_2 + t_2 \alpha h \alpha v$, then $w = s_1 - s_2 + t_1 \alpha u = t_2 \alpha h \alpha v$. By multiplying this equation by $h_1 \in \mathbb{R}$, we obtain $h_1 \gamma s_1 - h_1 \gamma s_2 + h_1 \gamma t_1 \alpha u = h_1 \gamma t_2 \alpha h \alpha v$ where $\gamma \in \Gamma$. $h_1 \gamma s_1 - h_1 \gamma s_2 + h_1 \gamma t_1 \alpha u = h_1 \gamma t_2 \alpha h \alpha v \in S$. Since *S* is semiprime \mathbb{R}_{Γ} -submodule of *G*, then $t_2 \alpha h \alpha v \in S$ and $h_2 \alpha v \in S$ such that $t_2 \alpha h = h_2$, also $s_2 + t_2 \alpha h \alpha v = w \in S$. Hence, $K_1 \cap K_2 = S$, which is a contradiction, since *S* is irreducible. Thus *S* is prime \mathbb{R}_{Γ} -submodule of *G*.

Recall that an R_{Γ}-module *G* is called R_{Γ}-faithful if its R_{Γ}-annihilator $l_R(G) = 0$ [4].

Definition 3.4. Let *G* be an \mathbb{R}_{Γ} -module. If *J* is a maximal ideal of Γ -ring *R*, then we define $T_{J\Gamma}(G) = \{ u \in G, \alpha \in \Gamma ; (1-j) \alpha u = 0 \}$ for some $j \in J$. Clearly, $T_{J\Gamma}(G)$ is \mathbb{R}_{Γ} -submodule of *G*.

Definition 3.5. Let G be an \mathbb{R}_{Γ} -module and J is a maximal ideal of a Γ -ring R. We say that G is J-cyclic if there exist $j \in J$, $u \in G$ and $\alpha \in \Gamma$ such that $(1-j)\Gamma G \subseteq R\Gamma u$.

Theorem 3.6. Let *R* be a commutative Γ -ring with identity. Then an \mathbb{R}_{Γ} -module *G* is a multiplication \mathbb{R}_{Γ} -module if and only if, for every maximal ideal *J* of Γ -ring *R*, either $G = T_{J\Gamma}(G)$ or *G* is *J*-cyclic. **Proof.**

Suppose that *G* is a multiplication \mathbb{R}_{Γ} -module. Let *J* be a maximal ideal of a Γ -ring *R*. Suppose that $G = J \Gamma G$, and let $u \in G$. Then $J \Gamma u = I \Gamma G$ for some *I* is an ideal of a Γ -ring *R* and, hence, $R \Gamma u = I \Gamma G = I \Gamma J \Gamma G = J \Gamma I \Gamma G = J \Gamma u$ and $1 \alpha u = j \alpha u$ such that $1 \in R$, $j \in J$, $\alpha \in \Gamma$. Thus, $(1 - j) \alpha u = 0$ and $u \in T_{J\Gamma}(G)$. It follows that $G = T_{J\Gamma}(G)$. Now suppose that $G \neq J \Gamma G$, there exist $w \in G$ and $w \notin J \Gamma G$. There exists an ideal *B* of Γ -ring *R* such that $R \Gamma w = B \Gamma G$. Clearly, $B \not\subset J$ and, hence, $1 - t \in B$ for some $t \in J$. Clearly, $(1 - t)\Gamma G \subseteq R \Gamma w$ and *G* is *J*-cyclic. Conversely, suppose that, for each maximal ideal *J* of a Γ -ring *R*, either $G = T_{J\Gamma}(G)$ or *G* is *J*-cyclic. Let *S* be a \mathbb{R}_{Γ} -submodule of *G* and $K = ann_{\mathbb{R}_{\Gamma}}(G / S)$. Clearly, $K \Gamma G \subseteq S$. Let $y \in S$ and $H = \{h \in R ; h \gamma y \in K \Gamma G\}$. Suppose that $H \neq R$, then there exists a maximal ideal *Q* of a Γ -ring *R* such that $H \subseteq Q$. If $G = T_{O\Gamma}(G)$, then $(1 - s)\gamma y = 0$ for some $s \in Q, \gamma \in \Gamma$ and, hence, $(1-s) \in H \subseteq Q$, which is a contradiction. Thus, by hypothesis, there exist $s_1 \in Q$, $z \in G$ such that $(1-s_1)\Gamma G \subseteq R \Gamma z$. It follows that $(1-s_1)\Gamma S$ is a \mathbb{R}_{Γ} -submodule of $R\Gamma z$ and hence $(1-s_1)\Gamma S = F \Gamma z$ where F is an ideal such that $F = \{h \in R ; h \gamma z \in (1-s_1)\Gamma S\}$ of a Γ -ring R. $(1-s_1)\Gamma F \Gamma G = F \Gamma (1-s_1)\Gamma G \subseteq F \Gamma z \subseteq S$ and hence $(1-s_1)\Gamma F \subseteq K$. It follows that $(1-s_1)\gamma (1-s_1)\gamma y \in (1-s_1)\Gamma (1-s_1)\Gamma S = (1-s_1)\Gamma F \Gamma z \subseteq K \Gamma G$. But this gives a contradiction of $(1-s_1)\gamma (1-s_1)\in H \subseteq Q$. Thus, H = R and $y \in K \Gamma G$. It follows that $S = K \Gamma G$ and G is multiplication \mathbb{R}_{Γ} -module.

Theorem 3.7. Let *R* be a commutative Γ -ring with identity and *G* be an R_{Γ} -faithful R_{Γ} -module. Then *G* is a multiplication R_{Γ} -module if and only if

i. $\bigcap_{\lambda \in \Lambda} (I_{\lambda} \Gamma G) = (\bigcap_{\lambda \in \Lambda} I_{\lambda}) \Gamma G$ for any non-empty collection of ideals $I_{\lambda} (\lambda \in \Lambda)$ of a Γ -ring R.

ii. For any R_{Γ} -submodule *S* of *G* and an ideal *A* of a Γ -ring *R*, such that $S \subset A \Gamma G$, there exists an ideal *B* with $B \subset A$ and $S \subseteq B \Gamma G$.

Proof.

To prove (i), suppose that G is a multiplication R_{Γ} -module. Let $I_{\lambda}(\lambda \in \Lambda)$ be any non-empty collection of ideals of a Γ -ring R and let $I = \bigcap_{\lambda \in \Lambda} I_{\lambda}$. Clearly, $I \Gamma G \subseteq \bigcap_{\lambda \in \Lambda} (I_{\lambda} \Gamma G)$. Let $x \in \bigcap_{\lambda \in \Lambda} (I_{\lambda} \Gamma G)$ and let $J = \{g \in R ; g \gamma x \in I \Gamma G\}$. Suppose that $J \neq R$, then there exists a maximal ideal P of R such that $J \subseteq P$. Clearly, $x \notin T_{P\Gamma}(G)$ and hence G is P-cyclic by Theorem 3.6. There exist $t \in P$ and $m \in G$ such that $(1-t)\Gamma G \subseteq R \Gamma m$. Then $(1-t)\beta x \in \bigcap (I_{\lambda}\Gamma m)$ for each $\beta \in \Gamma$. There exists $a_{\lambda} \in I_{\lambda}$ such that $(1-t)\beta x = a_{\lambda}\beta m$. Choose $\alpha \in \Lambda$ for each $\lambda \in \Lambda$, $a_{\alpha}\beta m = a_{\lambda}\beta m$ and, $(a_{\alpha}-a_{\lambda})\beta m=0.$ so, Now, $(1-t)\Gamma(a_{\alpha}-a_{\lambda})\Gamma G = (a_{\alpha}-a_{\lambda})\Gamma(1-t)\Gamma G \subseteq (a_{\alpha}-a_{\lambda})\Gamma R\Gamma m = 0$ implies $(1-t)\Gamma(a_{\alpha}-a_{\lambda})=0$. Therefore, $(1-t)\Gamma a_{\alpha}=(1-t)\Gamma a_{\lambda}\in I_{\lambda}$, $(\lambda\in\Lambda)$ and, hence, $(1-t)\Gamma a_{\alpha} \in I$. Thus $(1-t)\Gamma(1-t)\Gamma x = (1-t)\Gamma a_{\alpha}\Gamma m \in I \Gamma G$. It follows that $(1-t)\Gamma(1-t) \in J \subseteq P$, which is a contradiction and, hence, J = R and $x \in I \Gamma G$. Thus $\bigcap (I_{\lambda} \Gamma G) \subseteq I \Gamma G .$

Now to prove that (ii), let *S* be a \mathbb{R}_{Γ} -submodule of *G* and *A* be an ideal of a Γ -ring *R* such that $S \subseteq A \Gamma G$. There exists an ideal *C* of a Γ -ring *R* such that $S \subseteq C \Gamma G$. Let $B = A \cap C$. Clearly, $B \subset A$ and $S = A \Gamma G \cap C \Gamma G = (A \cap C) \Gamma G = B \Gamma G$, by (i).

Conversely, suppose that (i) and (ii) hold. Let *S* be a R_Γ-submodule of *G* and let $S = \{I \mid I \text{ be an ideal} of a <math>\Gamma$ -ring *R* and $S \subseteq I \Gamma G\}$, let $I_{\lambda}(\lambda \in \Lambda)$ be any non-empty collection of ideals in *S*. By (i), $\bigcap_{\lambda \in \Lambda} I_{\lambda} \in S$. By Zorn's Lemma, *S* has a minimal member *A*, then $S \subseteq A \Gamma G$. Suppose that $S \neq A \Gamma G$

, by (ii) there exists an ideal *B* with $B \subset A$ and $S \subseteq B \Gamma G$. In this case, $B \subset S$, contradicting the choice of *A*, and, thus, $S = A \Gamma G$. It follows that *G* is a multiplication R_{Γ} -module.

Lemma 3.8. Let *P* be a prime ideal of a Γ -ring *R* and *G* a R_{Γ} -faithful multiplication R_{Γ} -module. Let $h \in R$, $\alpha \in \Gamma$ and $u \in G$, satisfying that $h\alpha u \in P \Gamma G$. Then $h \in P$ or $\alpha u \in P \Gamma G$.

Proof

Suppose that $h \notin P$ and let $J = \{s \in R ; s \gamma u \in P \sqcap G\}$. Suppose that $J \neq R$, then there exists a maximal ideal Q of a Γ -ring R such that $J \subseteq Q$. Clearly, $u \notin T_{Q\Gamma}(G)$. By Theorem 3.6., G is Q-cyclic, that is there exist $m \in G$, $q \in Q$ such that $(1-q) \sqcap G \subseteq R \sqcap m$. In particular, $(1-q)\alpha u = h \alpha m$ and $(1-q)\alpha h \beta u = p \alpha m$ for some $\beta \in \Gamma$, $p \in P$ and $s \in R$, thus $(h \gamma s - p)\gamma m = 0$; $\gamma \in \Gamma$. Now, $[(1-q) \sqcap ann_{R_{\Gamma}}(G)] \sqcap G = 0$ implies $(1-q) \sqcap ann_{R_{\Gamma}}(G) = 0$, because G is R_{Γ} -faithful, and, hence, $(1-q)\alpha h\beta s = (1-q)\alpha p \in P$. But $P \subseteq J \subseteq Q$ so that $s \in P$ and $(1-q)\alpha u = s \alpha m \in P \sqcap G$. Hence, $(1-q) \in J \subseteq Q$, which is a contradiction. Thus J = R and $\alpha u \in P \sqcap G$.

Corollary 3.9. The following statements are equivalent for a proper R_{Γ} -submodule *S* of a multiplication R_{Γ} -module G :-

i.*S* is prime R_{Γ} -submodule of *G*.

ii. $ann_{R_r}(G/S)$ is a prime ideal of a Γ -ring R.

iii. $S = P \Gamma G$ for some prime ideal P of a Γ -ring R with $ann_{R_{\Gamma}}(G) \subseteq P$.

Proof. $(1 \rightarrow 2)$

Let *I* and *J* be ideals of a Γ -ring *R* such that $I \Gamma J \subseteq ann_{R_{\Gamma}}(G/S)$. Then, $G \Gamma I \Gamma J \subseteq S$. Since *S* is a prime R_{Γ} -submodule of *G*, $G \Gamma I \subseteq S$ or $J \subseteq ann_{R_{\Gamma}}(G/S)$. Therefore, $I \subseteq ann_{R_{\Gamma}}(G/S)$ or $J \subseteq ann_{R_{\Gamma}}(G/S)$.

$$(2 \rightarrow 3)$$

Let *S* be \mathbb{R}_{Γ} -submodule of *G*. Then $S = I \Gamma G$ for some *I* is an ideal of a Γ -ring *R*, therefore $I \subseteq ann_{\mathbb{R}_{\Gamma}}(G/S) \subseteq P$. Then, $S = I \Gamma G \subseteq P \Gamma G \subseteq S$. Consequently, $S = P \Gamma G$. (3 \rightarrow 1)

Suppose that *P* is a prime ideal *P* of *R* such that $ann_{R_{\Gamma}}(G) \subseteq P$. Let *K* be a R_{Γ} -submodule of *G* such that $K \not\subset S$ and let *I* be an ideal of a Γ -ring *R*, $I \not\subset ann_{R_{\Gamma}}(G/S)$. But $K \ \Gamma I \subseteq S$, where *K* is a R_{Γ} -submodule of *G*. Since *G* is multiplication R_{Γ} -module, then $G \ \Gamma J \subseteq K$ where *J* is an ideal of a Γ -ring *R*. Then $K \ \Gamma I = G \ \Gamma J \ \Gamma I$ and, so, $J \ \Gamma I \subseteq ann_{R_{\Gamma}}(G/S)$ by (ii), and $I \not\subset ann_{R_{\Gamma}}(G/S)$, $J \subseteq ann_{R_{\Gamma}}(G/S)$. Therefore $K = G \ \Gamma J \subseteq S$. This is a contradiction.

Theorem 3.10. Let *G* be a multiplication \mathbb{R}_{Γ} -module and let *S* be a proper \mathbb{R}_{Γ} -submodule of *G*, then $G - rad_{\Gamma}(S) = \sqrt{A}\Gamma G$, where $A = ann_{R_{\Gamma}}(G/S)$.

Proof. Let *P* denotes the collection of all prime ideals of a Γ -ring *R* such that $A \subseteq P$. If $B = \sqrt{A}$ then $B = \bigcap_{i \in \Lambda} P$ and, hence by Theorem 3.7, $B \Gamma G = \bigcap_{i \in \Lambda} P \Gamma G$. Let $G = P \Gamma G$ then $G - rad_{\Gamma}(S) \subseteq P \Gamma G$. If $G \neq P \Gamma G$ then $S = A \Gamma G \subseteq P \Gamma G$ implies $G - rad_{\Gamma}(S) \subseteq P \Gamma G$ by Corollary 3.9. It follows that $G - rad_{\Gamma}(S) \subseteq B \Gamma G$.

Conversely, suppose that *K* is a prime \mathbb{R}_{Γ} -submodule of *G* containing *S*. By Corollary (3.9), there exists a prime ideal *Q* of *R* such that $A \subseteq Q$ and by Lemma (3.8) and hence $B \subseteq Q$, thus $B \Gamma G \subseteq K$. It follows that $B \Gamma G \subseteq G - rad_{\Gamma}(S)$ and, therefore, $B \Gamma G = G - rad_{\Gamma}(S)$.

Theorem 3.11. Let *G* be a multiplication \mathbb{R}_{Γ} -module and *S* be a proper \mathbb{R}_{Γ} -submodule of *G*, then $rad_{\Gamma}(S) = \{ u \in G ; (u \Gamma)^n \subseteq S \text{ for some } n \ge 0 \}.$

Proof.

Let $K = \{ u \in G ; (u \Gamma)^n \subseteq S \text{ for some } n \ge 0 \}$, to show that K is \mathbb{R}_{Γ} -submodule of G. Let $x, y \in K$ and I, J be ideals, respectively, of x, y. Then, $(x\Gamma)^s = (I\Gamma)^s$ and $(y\Gamma)^r = (J\Gamma)^r$ such that $(I\Gamma)^s \subseteq S$ and $(J\Gamma)^r \subseteq S$ for some s, r > 0. Let $k = \max\{s, r\}$, then $(x - y)^k = (I\Gamma - J\Gamma)^k = ((I - J)\Gamma G)^k$, that is $x - y \in K$. Also, for $x \in K$ and $h \in R$, we have $(x\Gamma r)^s \subseteq S$ since $(x\Gamma)^s \subseteq S$. Thus K is \mathbb{R}_{Γ} -submodule of G. Suppose that $u \in K$ and B is presentation of u. Then $(u\Gamma)^n = B^n\Gamma G \subseteq S$ for some n > 0 and, hence by Theorem (3.10), we have $G - rad_{\Gamma}((u\Gamma)^n) = \sqrt{B^n\Gamma G} = \sqrt{B}\Gamma G \subseteq G - rad_{\Gamma}(S)$.

Thus $G - rad_{\Gamma}((u\Gamma)^n) = \sqrt{B^n \Gamma G} = \sqrt{B} \Gamma G \subseteq G - rad_{\Gamma}(S)$, which this implies that $K \subseteq G - rad_{\Gamma}(S)$. Conversely, let $u \in G - rad_{\Gamma}(S) = \sqrt{I} \Gamma G$, where $I = ann_{R_{\Gamma}}(G/S)$. Then $u = \sum_{i=1}^n h_i \alpha_i u_i$ for $h_i \in \sqrt{I}$, $\alpha_i \in \Gamma$ and $u_i \in G$. Thus, $h_i^{n_i} \in I$ for some $n_i > 0$. Thus, for a sufficiently large n, we have $(u\Gamma)^n \subseteq I \Gamma G = S$ and, hence, $G - rad_{\Gamma}(S) \subseteq K$. Therefore, $G - rad_{\Gamma}(S) = K$.

Lemma 3.12. Let *G* be a multiplication \mathbb{R}_{Γ} -module, *S* be a \mathbb{R}_{Γ} -submodule of *G*, and $\varphi: G \to G/S$ is a natural \mathbb{R}_{Γ} -homomorphism. Then, every \mathbb{R}_{Γ} -submodules S_1 and S_2 of *G*, $S_1 \Gamma S_2 \subseteq S$ if and only if $\overline{S_1} \Gamma \overline{S_2} = \overline{0}$.

Proof.

Let $S_1 = I_1 \Gamma G$, $S_2 = I_2 \Gamma G$ and $S = J \Gamma G$ for some ideals I_1, I_2 and J of a Γ -ring R. Obviously, G / S is multiplication R_{Γ} -module. Then $\overline{S_1} \Gamma \overline{S_2} = \overline{0}$ if and only if $(I_1 + J) \Gamma (I_2 + J) \Gamma G / S = S$, which is equivalent with $(I_1 + J) \Gamma (I_2 + J) \Gamma G \subseteq S$. But $S = J \Gamma G$, therefore $(I_1 + J) \Gamma (I_2 + J) \Gamma G \subseteq S$ if and only if $S_1 \Gamma S_2 = (I_1 \Gamma I_2) \Gamma G \subseteq S$.

Theorem 3.13. Let *G* be a multiplication R_{Γ} -module and *S* be a proper R_{Γ} -submodule of *G*. Then the following statements are equivalent:

- 6. *S* is semiprime R_{Γ} -submodule of *G*.
- 7. $x \ \Gamma x \subseteq S$ implies $x \in S$ such that for all $x \in G$.
- 8. $rad_{\Gamma}(S) = S$.
- 9. G_{Λ} has no non-zero nilpotent.

10. $K_1 \Gamma K_2 \subseteq S$ implies $K_1 \cap K_2 \subseteq S$, for every K_1, K_2 are proper \mathbb{R}_{Γ} -submodules of *G*. **Proof.** $(1 \rightarrow 2)$

Let $x \ \Gamma x \subseteq S$ for some $x \in G$. Let I be an ideal in R; $I \ \Gamma x = R \ \Gamma x$. Since S is semiprime \mathbb{R}_{Γ} submodule of G, then $(I \ \Gamma)^2 G \subseteq S$ and, hence, $x \in R \ \Gamma x = I \ \Gamma x \subseteq S$. Thus, $x \in S$. $(2 \rightarrow 3)$

It is clear that $S \subseteq rad_{\Gamma}(S)$. Let $m \in rad_{\Gamma}(S)$ by Theorem (3.11), then.

i. If *n* is even, n=2k; 0 < k < n, then $((m\Gamma)^k)^2 = (m\Gamma)^n \subseteq S$. Let $(m\Gamma)^k = m_0\Gamma$ then $m_0\Gamma \subseteq S$ and so $(m\Gamma)^k \subseteq S$, which is a contradiction. ii. If *n* is odd, n=2k+1; 0 < k < n, then $((m\Gamma)^{k+1})^2 = (m\Gamma)^{n+1} \subseteq (m\Gamma)^n \subseteq S$. Let $(m\Gamma)^{k+1} = m_0\Gamma$ then $m_0\Gamma \subseteq S$ and, so, $(m\Gamma)^{k+1} \subseteq S$, which is a contradiction. Then, n=1 and, thus, $rad_{\Gamma}(S) = S$.

 $(3 \rightarrow 4)$

Let $m+S \in G/S$. Suppose that G/S is nilpotent, then $(m+S)^n = S$ for some $n \ge 0$. By Lemma (3.12), $m^n \subseteq S$, and by Theorem (3.11), $m \in rad_{\Gamma}(S) = S$, then m+S = S, which is a contradiction. Thus, $\frac{G}{S}$ has no non zero nilpotent.

$$(4 \rightarrow 5)$$

Let $K_1 \Gamma K_2 \subseteq S$, for some K_1, K_2 are proper \mathbb{R}_{Γ} -submodules of G. Let $w \in K_1 \cap K_2$, then $w \in K_1$ and $w \in K_2$ and, so, $w \Gamma w \subseteq K_1 \Gamma K_2 \subseteq S$. Then by Lemma (3.12), $(w + S)^2 = (w + S)\Gamma(w + S) = S$. Since G/S has no non zero nilpotent, hence w + S = S. Thus, $w \in S$.

 $(5 \rightarrow 1)$

Let $I \ \Gamma I \ \Gamma G \subseteq S$ for some I is an ideal in Γ -ring R, then $(I \ \Gamma G)(I \ \Gamma G) = (I \ \Gamma G)^2 \subseteq S$ by (5), then $I \ \Gamma G \subseteq S$. Thus, S is semiprime \mathbb{R}_{Γ} -submodule of G.

Definition 3.14. Let *G* be an R_{Γ} -module and *S* be a proper R_{Γ} -submodule of *G* that is called R_{Γ} -injective envelope of *S* in *G*, denoted by $E_{G\Gamma}(S) = \{h = g \gamma m ; g \in R, m \in G \text{ such that } g \gamma g \gamma m \in S\}$

Proposition 3.15. Let G be an R_{Γ} -module and S be a proper R_{Γ} -submodule of G, then S is semiprime if and only if $E_{G\Gamma}(S) = S$.

Proof: Suppose that S is semiprime R_{Γ} -submodule of G, to show that $E_{G\Gamma}(S) = S$.

Clearly, $S \subseteq E_{G\Gamma}(S)$. Let $h = g \gamma m \in E_{\Gamma G}(S)$, where $g \in R$, $m \in G$ such that $g \gamma g \gamma m \in S$. But *S* is semiprime R_{Γ} -submodule of *G*, then $h = g \gamma m \in S$, thus $E_{\Gamma G}(S) = S$.

Conversely let $g \in R$, $m \in G$ such that $g \gamma g \gamma m \in S$, then $g \gamma m \in E_{\Gamma G}(S) = S$. Thus, S is semiprime R_{Γ} -submodule of G [8-10].

Refrences

- Nobusawa, N. 1964. "On a Generalization of the Ring Theory". Osaka Journal of Mathematics, 1(1): 81-89.
- 2. Ameri, R. and Sadeghi, R. 2010. "Gamma Modules". Ratio mathematica, 2010. 20(1): 127-147.
- **3.** Sengu, U.T.U. **2005**. "On Prime ΓM-Submodules of ΓM-Modules". *International journal of Pure and Applied Mathematics*, **19**: 123-128.
- **4.** Abbas, H.A. **2018**. "Projective Gamma Modules and Some Related Concepts", in department of Mathematics, Al Mustansiryah University: Baghdad, Iraq.
- 5. Athab, E.A. 1996. "Prime and Semiprime Modules", in Department of Mathematics ,College of Science, University of Baghdad: Baghdad, Iraq.
- 6. Nobusawa, N. 1964. On a generalization of the ring theory. *Osaka Journal of Mathematics*, 1(1): 81-89.
- Abbas, M.S. 2018. FR-Multiplication and FR-Projective Gamma Modules. *International Journal of Contemporary Mathematical Sciences*, 13(2): 87-94. Nekooei, M.E.a.R., "On Generalizations of Prime Ideals". *Communications in Algebra*, 2012. 40 (4).
- 8. Estaji, A.A., Khorasani, A.A.S. and Baghdari, S. 2014. "On Multiplication Γ-Modules". *Ratio Mathematica*, 2014. 26: 21-38.

- 9. Al-Mothafar, N.S. and Athab, I.A. 2017. "J- Semiprime Submodules". International Journal of Science and Research (IJSR), July 2017. 6(7).
- 10. Kasch, F. 1982. "Modules and Rings", London: Academic Press I ns