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Abstract 

        A prey-predator model with Michael Mentence type of predator harvesting and 

infectious disease in prey is studied. The existence, uniqueness and boundedness of 

the solution of the model are investigated. The dynamical behavior of the system is 

studied locally as well as globally. The persistence conditions of the system are 

established. Local bifurcation near each of the equilibrium points is investigated. 

Finally, numerical simulations are given to show our obtained analytical results. 
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 المفترس مع حصاد المفترس من نهع ميكائيل مينتين ومرض معد في الفريسة –نمهذج الفريسة 
 
 ، رائد كامل ناجي*هبة عبدالله ابراهيم

 .قسم الرياضيات، كمية العمهم، جامعة بغداد، بغداد، العراق

 الخلاصة
المفترس مع حصاد المفترس من نهع ميكائيل مينتينس ومرض معد في  –الفريسة تمت دراسة نمهذج      

. وجهد ووحدانية وقيد الحل لمنمهذج تحققت. تمت دراسة السمهك الديناميكي لمنظام محميًا وشاملًا. الفريسة
. التشعب المحمي بالقرب من كل نقطة من نقاط التهازن اثبتت. المحاكاة العددية وجدت لمنظام الاصرار شروط

 تظهر نتائجنا التحميمية التي تم الحصهل عميها.
1. Introduction: 

 There has been growing interest in the study of diseases in prey-predator models, due to the 

existence of many species in the environment which are in contact with each other continuously in 

different ways. This is helping the transition of disease between the species rapidly. On the other hand, 

the impact of harvesting on the community is very important from both ecological and economical 

points of view. In fact, the presence of disease in the prey, predator, or both is natural in the ecological 

environment.  

 Many researchers focused on the study of disease in the prey only [1-5], while others concentrated 

on the study of disease in the predator only [6-9]. However, there are some studies about the diseases 

in both prey and predator [10-13]. 

It is known that the harvesting of the species is required for the cohabitation of the species, and hence 

it attracted a lot of attention from the researchers in their suggested ecological models. Various kinds 

of harvesting have been suggested and studied including constant harvesting, density dependent 

proportional harvesting, and nonlinear harvesting [14-18]. 

     In this paper, a prey-predator system with Michael Mentence type predator harvesting and 

infectious disease in prey is proposed and studied. In the next section we formulate the system 
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mathematically. The existence, uniqueness, and boundedness of the solution are also discussed for the 

proposed model. Section three deals with the stability analysis of the proposed model and its 

persistence. Section four is concerned with the study of local bifurcation, while numerical simulation 

is carried out in section five. Finally, section six includes the discussion and conclusions of our 

obtained results. 

2.  Mathematical Model 

     In this section, the dynamics of a prey-predator model with Michaelis–Menten type of harvesting 

from predator and infectious disease in prey is proposed and studied. The following hypotheses are 

adopted to formulate the mathematical model.  

(1) The prey population is divided into two classes: the susceptible individuals  ( ) and the infected 

individuals  ( ). Here  ( ) represents the density of the susceptible prey population at time  , while 

 ( ) represents the density of the infected prey population at time  . Moreover, the density of the 

predator population at time    is represented by  ( ). 

(2) The prey population, in the absence of the predator, grows logistically with an intrinsic growth rate 

of     and an environmental carrying capacity of    . It is assumed that the infected prey does 

not grow or reproduce, which is due to the fact that the disease makes the infected prey individuals 

weak. However, this population still competes with the susceptible one for food and space.  

(3) The susceptible prey population becomes infected by contact according to a saturated incidence 

rate with an infection rate of     , and the inhibition rate of disease is denoted by       However 

the infected individuals cannot return to the susceptible state. Moreover, it is assumed that the disease 

causes death with a disease death rate denoted by       
(4) The predator population consumes the infected prey according to Holling type-II functional 

response with a maximum attack rate of  
  

  
   and a half-saturation constant of 

 

  
  . Moreover, 

the constant    (   ) is the conversion rate from infected prey to predator. 

(5) Finally the predator population is assumed to be harvested with the Michael Mentence type of 

harvesting function, where     represents hunting effort,      is the catchability coefficient of the 

predator, and           are positive constants. Furthermore, in the absence of prey the predator 

decays exponentially with a natural death rate of     . 

Keeping the above hypothesis in view, the dynamics of prey – predator model can be describe in the 

following set of differential equations : 

 

  

  
   .  

   

 
/  

   

     
        

  

  
 

   

     
 

      

      
              

  

  
 

        

      
 

     

         
     

                         (1)  

where  ( )     ( )          ( )   . The flow chart of the proposed system is shown in the 

following block diagram. 

 
Figure 1- Block diagram for prey-predator model given by system (1). 
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     Clearly, system (1) included 13 parameters, which makes the analysis difficult. Therefore, in order 

to simplify the system, the number of parameters is reduced to 8 by using the following dimensionless 

variables and parameters:  

 
        

 

 
    

 

 
    

    

       
     

 

   
     

 

   
     

  

 
  

   
 

    
    

     

     
    

  

 
    

      

         
     

      

          

                                        (2) 

Therefore, system (1) reduces to the following dimensionless system: 
  

  
  0  (   )  

    

     
1     (     )

  

  
  0

    

     
    

 

     
1     (     )  

  

  
  0

    

     
    

  

    
1     (     )

                       (3) 

    The interaction functions in the right hand side of system (3) are continuous and have continuous 

partial derivatives on   
 . Therefore, these functions are Lipschitizian functions and hence system (3) 

has a unique solution. Further, in the following theorem, the uniformly boundedness of all the 

solutions of the system (3) in   
  is established. 

Theorem 1. All solutions of system (3) are uniformly bounded.  

Proof.  According to the first equation of system (3), we get  
  

  
  ,   -                                                                                           

By the usual comparison theorem, we have  ( )  
  

      (    )
       ( )  and then for      we 

get  ( )   . 

Now, define the function  ( )    ( )   ( )   ( )  then the time derivative of  ( ) along the 

solution of system (3) is determined by 
  

  
      ω   where      *        +  and this gives 

that 
  

  
   ω   . Hence, due to the Granwall lemma [19], we obtain  ( )     

     
 

 
(       ). Thus, for      we have that     ( )  

 

 
 . 

Hence, all solutions of system (3) are uniformly bounded and therefore we have finished the proof.  

3. The stability analysis and persistence 
     In this section, the existence of the equilibrium points, stability analysis and persistence of system 

(3) are discussed. It is observed that system (3) has at most four equilibrium points, which can be 

stated as follows: 

The trivial equilibrium point    (     ) always exists. 

The axial equilibrium point (AEP) that is given by      (     ) always exists. 

The predator free equilibrium point (PFEP) is given by    (     ) , where  ̅  
   (    )

  
  and   

represents a unique positive root of  the following second order polynomial equation: 

    
                                                              (4) 

 where   

    (     )   ,  

                   
   

            
  . 

Thus, by Descartes' rule of sign [20], equation (4) has a unique positive root given by: 

  
    √  

       

   
                                                                                                     (5) 

provided that the following condition holds: 

                                                                                                                        (6) 

The positive equilibrium point (PEP) of system (3) is denoted by    (        ) where 

   
(     ) (     )       

(     )
                                                                            (7a) 

   
(               ) (              )  

((     )        )
                                                                           (7b) 

while    is a unique positive root of the following fourth order polynomial equation: 
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                                                                                           (7c)         

here  

          , 

     (       )            ,                  
                      (                    )       (                 )

    (       )         
 

              
 (         )           

                    
   

       (              ) , 

with             ,         ,               ,  

                 ,          ,          , 

        ,        ,          ,               , 

                ,       (    )    (    ) , 

             ,              ,             . 

     Note that from the third equation of system (3), it is clear that the following condition is a 

necessary condition for growth and hence existence of the predator 

                                                                                                                                       (8)  

This leads to     . Thus, by Descartes' rule of sign, equation (7c) has a unique positive root, 

provided that one set of the following sets of conditions holds: 

                                                                                                                       (9a) 

                                                                                                                       (9b) 

                                                                                                                       (9c) 

     Consequently, the positive equilibrium point    (        ) exists uniquely in the        
 , 

provided that, in addition to condition (8) with one of conditions (9a) or (9b) or (9c), the following 

conditions hold. 

(        )   (     )                                (10a) 
    

     
    

  (       )

(     )     

  
  (       )

(     )     
    

    

     

}                                  (10b) 

     Now, the local stability analysis of the above feasible equilibrium points of system (3) is studied 

using a linearization technique. Note that it is easy to verify that the Jacobian matrix of system (3) at 

the trivial equilibrium point    (     )  can be written in the form:  

  (  )  [

   
     

   .   
  

  
/
]                                                                                     (11) 

     The eigenvalues of  (  ) are given by                   ,      .   
  

  
/   . 

Therefore, the trivial equilibrium point is a saddle point. 

The Jacobian matrix at the (AEP),       (     ), can be written in the form: 

  (  )  

[
 
 
 
    .  

  

  
/  

 
  

  
    

   .   
  

  
/]
 
 
 
 

                                                                        (12) 

Hence, the eigenvalues of  (  ) are given by         ,     
       

  
  and      .   

  

  
/   . Clearly, the AEP is locally asymptotically stable, if the following condition holds: 

                                                                                                                                  (13) 

Moreover, it is a saddle point if the condition (6) holds. 

The Jacobian matrix at the (PFEP),    ( ̅    ), can be written in the form: 
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 (  )  

[
 
 
 
 
 
   ̅  ( ̅  

     ̅

(    )
 )  

   

(    )
 

   ̅  

(    )
  

 

(    )

  
   

(    )
    

  

  ]
 
 
 
 
 
 

                                     (14) 

The characteristic equation of  (  ) can be determined as follows: 

(         ) .
   ̅

(    )̅
    

  

  
  /                                                                       (15) 

where 

     ̅  
   ̅  

(    )
   

   (  ̅) ( 
   ̅  

(    )
 )  ( ̅  

     ̅

(    )
 ) (

   

(    )
)  

Obviously,      and     . Therefore, the two eigenvalues     
  

 
 

 

 
√  

     ,     
  

 
 

 

 
√  

      that are obtained from the quadratic term in Eq. (15) have negative real parts. While, the 

third eigenvalue that is given by     
   

(    )
    

  

  
  will be negative, provided that the following 

condition holds: 
   

(    )
    

  

  
                                                                                                                  (16) 

     Accordingly, the (PFEP) is locally asymptotically stable provided that condition (16) holds. 

The Jacobian matrix at the positive equilibrium point    (        ) can be written in the form 

 (  )  [   ]   
                                                                                                      (17) 

where 

          ,      .   
      

(     ) 
/   ,         

    
    

(     )
  ,      

      

(     ) 
 

     

(     ) 
 ,      

  

(     )
    

     ,     
        

(     ) 
  ,     

     

(      ) 
  .   

Then, the characteristic equation of   (  ) is  

      
                                                                                                            (18) 

where 

    (           )  

                                       

                                  
while  

 

             (       ),             -

 (       ),             -

       ,            -          

 

 

here 

    (       ),             -    

    (       ),             -    

          ,            -    

     Now, according  to the Routh-Hawirtiz Criterion [21], the roots of the Jacobian matrix  (  ) have 

negative real parts, provided that                    . Direct computation shows that these 

conditions hold provided that 

  .
   

(     ) 
 

  

(      ) 
/  

        

(     )
                                                                       (19a) 

   

(      ) 
0.

    

(     ) 
 

   

(     ) 
/  

  

     
.  

     

(     ) 
/1  

      

(     ) 
                                   (19b) 
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                                                                                                                       (19c) 

Therefore, the positive equilibrium point is locally asymptotically stable.  

     Now, the persistence of the system (3) is studied. Biologically, the system is persisting , if and only 

if every species exists for all positive time. Moreover, from a mathematical point of view, the solution 

of system (3) is said to be persistent, if the solution do not have omega limit set in the boundary planes 

of positive cone. Accordingly, we will show at first that there is no possible omega limit set in the 

boundary  planes, except the equilibrium points.   

Clearly, system (3) has only one possible subsystem lying in the non-negative quadrant of     plane. 

This subsystem can be written as: 

  0  (   )  
    

     
1    (    )

  0
    

     
   1    (    )                

                                                                                       (20) 

     We define the Dulac function as (   )  
 

   
 . It is obvious that  (   )            function in the 

      
  of the    plane . Now, we have  

 (   )  
 (    )

  
 

 (    )

  
  (

 

 
 

  

(     ) 
)    

     Then  (   )  does not identically zero in the       
  of the    plane and does not change sign. 

Thus, due to the Dulac-Bendixson criterion [22], there is no closed curve in the       
  of the 

   plane. Hence, according to the Poincare-Bendixon theorem [22], the unique equilibrium point in 

the       
  of the    plane, that is given by   , will be a globally asymptotically stable whenever it is 

locally asymptotically stable. 

Theorem 2.  System (3) is uniformly persistent provided that condition (6) and the following 

condition hold 
   

     
    

  

  
                                                                                                   (21) 

Proof. Consider the following function (     )              , where               are positive 

constants. Clearly,  (     )            (     )        
  and  (     )    when             

           . 

Consequently we obtain 

 (     )  
  (     )

 (     )
   [  (   )  

    

     
]

   [
    

     
    

 

     
]

    [
    

     
    

  

    
]

 

Now, the  proof  follows  if   ( )    for any boundary equilibrium point  , with suitable choice of 

constants                    . 

 (  )    .
   

  
   /    .    

  

  
/  

 (  )    (
    

    
    

  

  
)  

     Clearly,  (  )    under condition (6) with suitable choice of positive constants     and    , 

where    is sufficiently large with respect to the constant    . While  (  )    under condition (21). 

Hence, the proof is complete.                                                                                          

     Now, the global stability of each equilibrium point of system (3) is studied using suitable Lyapunov 

function, as given in the following theorems. 

Theorem 3.  Assume that the AEP is locally asymptotically stable, then it is a globally asymptotically 

stable in the       
  provided that the following condition holds. 

    .  
    

    
/                                                                                              (22) 

Proof. Recognize the following function 
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  (     )  ∫
   

 
      

 

  
 

 

 

 

     Clearly, the function     is a positive definite so that    (     )    and   (     )    for all 

(     )    
  with (     )  (     ). 

Now, straightforward calculations give that 

  
   

  
   (   )   0   

     

    
   1   0

  

  
 

   

  (    )
1  

Hence, under condition (22) we obtain that  
   

  
  will be negative definite. Then,    is a Lyapunov 

function. Therefore, AEP is a globally asymptotically stable.                                       

Theorem 4. Assume that the PFEP is locally asymptotically stable, then it is a globally asymptotically 

stable in the       
  provided that the following conditions hold. 

   
                                                                                                                   (23a) 

     

     
    

   

    
                                                                                                              (23b) 

 

(     )(     )
 

    ̅

(     )(     )
                                           (23c) 

 

Proof. Consider the following function 

  (     )  ∫
   ̅

 
   ∫

   

 
   

 

 

  

 

 ̅

 

     Clearly, the function    (     )    is a continuously differentiable real valued function for all 

(     )    
  with (     )  ( ̅   ̅  ) and   ( ̅   ̅  )    . 

Now, straightforward calculations give that 
   

  
     (   ̅)     (   ̅)(   )     (   )

 

   [   
   

    
 

     

     
]

 

where               
    

(     )(     )
 ,     

    ̅

(     )(     )
 

 

(     )(     )
. 

Accordingly, using the given conditions (23a)–(23c), we obtain 
   

  
  [√   (   ̅)  √   (   )]

 
   0   

   

    
 

     

     
1  

Then  
   

  
  will be negative definite and    is a Lyapunov function. Therefore the PFEP is a globally 

asymptotically stable .                                                                                                                                                                                                            

Theorem 5.  Assume that the PEP,    (        )  is locally asymptotically stable in the       
  , 

then it is a globally asymptotically stable provided that the following conditions hold : 

   
                                                                                                                            (24a) 

   (    )  [√   (    )  √   (    )]
 
                                                             (24b) 

   

    
   

      

    
                                                                      (24c) 

Proof. Consider the positive definite function 

  (     )   ∫
    

 
   ∫

    

 
   

 

  

(     )

      
∫

    

 
  

 

  

 

  

 

Now, the derivative of this function with respect to time can be written as 
   

  
     (    )     (    )(    )     (    )     (    )  

here                      
      

    
  

    

  
,     

      

    
  

   

    
  and      

(     )   

          
 . 

with           (     )   
  (      ), 

                  (     )   
  (      ), 
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                     (     )   
  (      ). 

Accordingly, using the given conditions (24a)–(24c) we obtain 
   

  
  [√   (    )  √   (    )]

 
    (    )   

     Then  
   

  
  will be negative definite and    is a Lyapunov function. Therefore, the PEP is a globally 

asymptotically stable.                                                                                          

4. Local Bifurcation 
     In this section, the local bifurcation near the possible equilibrium points of system (3) is 

investigated using the Sotomayor’s theorem [19]. It is well known that the existence of non-hyperbolic 

equilibrium point is a necessary but not a sufficient condition for bifurcation to occur. Therefore the 

candidate bifurcation parameter is selected so that the equilibrium point will be non-hyperbolic at a 

specific value of that parameter. Now rewrite system (3) in the form: 
  

  
  ( )                                      (25) 

     where   (     )  and   (           )
  with            represent the interaction functions in 

the right hand side of system (3). Then, according to Jacobian matrix of system (3), straightforward 

computation shows that for any non-zero vector    (        )
 , we have the following second and 

third directional derivatives. 

   (     )(   )                                                                                                      

(

 
 

    
   .  

    

(     ) 
/       

     

(     ) 
  

 

 
    

(     ) 
      . 

     

(     ) 
 

    

(     ) 
/   

   
   

(     ) 
    

  
      

(     ) 
  

   
     

(     ) 
      

     

(     ) 
  

 

)

 
                    (26a) 

   (     )(     )                                                                                                  

(

 
 

 
     

(     ) 
    

   
       

(     ) 
  

 

  
         

 

(     ) 
  .

      

(     ) 
 

    

(     ) 
/  

   
     

   

(     ) 

 
      

(     ) 
  

   
     

(     ) 
  

     
     

(     ) 
  

 

)

 
                   (26b) 

Theorem 6. System (3) undergoes a transcritical bifurcation at AEP when the parameter    passes 

through the value   
      .  

Proof. According to the Jacobian matrix  (  ) that is given in Eq. (12), system (3) at AEP and 

     
  has the following Jacobian matrix  (     

 )    . 

   [

   (    )  
   

   (   
  

  
)
] 

     Clearly,     has a zero eigenvalue given by    
    and, hence, AEP is a nonhyperbolic point. 

Now, let  , -  .  
, -

   
, -

   
, -

/
 

be the eigenvector corresponding to the eigenvalue     
    . 

Thus,      
, -     gives that  , -  .   

, -
   

, -
  /

 
, where    (    )    and    

, -
 represents 

any nonzero real number. Also, let  , -= .  
, -

   
, -

   
, -

/
 

 represents the eigenvector corresponding 

to the eigenvalue     
      of     

 . 

Hence,   
  , -     gives that   , -= .    

, -
  /

 
, where    

, -
 stands for any nonzero real number. 

Now because  
  

   
    

(    )  . 
   

    
 

   

    
  /

 
  

thus    
(     

 )  (     )  , which gives ( , -)
 
   

(     
 )   . So, according to Sotomayor’s 

theorem for local bifurcation, system (3) has no saddle-node bifurcation at      
 .  Furthermore 

because we have 
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(     

 )  

[
 
 
   

 

  
 

 
 

  
 

   ]
 
 
 
, 

we can show, 

( , -)
 
(    

(     
 ) , -)  .    

, -
  / ( 

 

  
  

, -
 
 

  
  

, -
  )

 

 
 

  
  

, -
  

, -
   

Moreover, using Eq. (26a) with      
  and  , -  gives  

   (     
 )( , -  , -)   .  

, -
/
 
(      (    )           

  

  
  )

 

 

Hence, it is obtained that 

( , -)
 
   (     

 )( , -  , -)      .  
 

  
/  

, -
.  

, -
/
 

  . 

     Thus, based on Sotomayor’s theorem, system (3) has a transcritical bifurcation at AEP as the 

parameter    passes through the bifurcation value   
 , and that completes the proof.                       

           

Theorem 7. System (3) undergoes a transcritical bifurcation at PFEP when the parameter    passes 

through the value    
  

   

(    )
 

  

  
 , provided that the following condition holds.  

     

(     ) 
    

   

  
                                            (27) 

where     is given in the proof. Otherwise it undergoes a pitchfork bifurcation while saddle node 

bifurcation cannot occur. 

Proof. From the Jacobian matrix  (  ) that is given in Eq. (14), system (3) at PFEP and      
  has 

the following Jacobian matrix  (     
 )    , which has zero eigenvalue, say    

   . 

   

[
 
 
 
 
 
   ̅  ( ̅  

     ̅

(    )
 )  

   

(    )
 

   ̅  

(    )
  

 

(    )

   ]
 
 
 
 
 
 

 [   ] 

Now, let  , -  .  
, -

   
, -

   
, -

/
 

represents the eigenvector corresponding to the eigenvalue     
  

 . 

Therefore,    
, -    gives that  , -  .    

, -
     

, -
   

, -
/
 

 where    
        

              
   , 

    
        

              
   and   

, -
 represents any nonzero real number. Also, let  , -= 

.  
, -

   
, -

   
, -

/
 

 represents the eigenvector corresponding to the eigenvalue     
     of    

 . 

Hence   
  , -     gives that  , -= .      

, -
/
 

, where    
, -

 stands for any nonzero real number. 

Now since we have 
  

   
    

(    )  (      )    

it follows that    
(     

 )  (     )  , which gives ( , -)
 
   

(     
 )   . So, according to 

Sotomayor’s theorem for local bifurcation, system (3) has no saddle-node bifurcation at      
 .  

Furthermore because we have 

    
(     

 )  [
   
   
    

], 

we can show that 

( , -)
 
(    

(     
 ) , -)  .      

, -
/ .       

, -
/
 

    
, -

  
, -

   

Moreover, using Eq. (26a) with      
  and  , -  gives  
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   (     
 )( , -  , -)                                                                         

 .  
, -

/
 

(

 
 
 
 
 

   
  (  

    

(    )
 )     

      ̅

(     )
   

 

    

(    )
      

      ̅

(     )
   

  
   

(     )
   

     

(     )
     

   

  
 

)

 
 
 
 
 

 

Hence, it is obtained that 

( , -)
 
   (     

 )( , -  , -)    (
     

(    )
     

   

  
 
)  

, -
.  

, -
/
 
 

Clearly,  ( , -)
 
   (     

 )( , -  , -)     provided that condition (27) holds, and then by 

Sotomayor’s theorem, system (3) has a transcritical bifurcation at PFEP as the parameter    passes 

through the bifurcation value   
  . However, if the condition (27) is violating, then we get that   

( , -)
 
   (     

 )( , -  , -)   , and hence further computation shows   

( , -)
 
   (     

 )( , -  , -  , -)                                                

  (
     

(    )
    

  
   

  
 
)  

, -
.  

, -
/
 

  
 

     Therefore system (3) has a pitckfork bifurcation at PFEP as the parameter    passes through the 

bifurcation value   
 , and hence the proof is complete.                                                                ■            

Theorem 8. System (3) undergoes a saddle- node bifurcation at PEP when the parameter    passes 

through the value   
  

(     ) 

  .
           

              
/  provided that condition (19a) with the following 
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                       (28) 

where       for all           are the elements of Jacobian matrix given by Eq. (17).          

Proof. From the Jacobian matrix  (  ) that is given in Eq. (17), system (3) at PEP and      
  has 

the following Jacobian matrix  (     
 )     [   

 ]
   

, where    
                    with 

   
     (  

 ). Straightforward computation shows that      in the characteristic equation given 

by Eq. (18) and then    becomes a nonhyperbolic equilibrium point with zero eigenvalue given by 

    . 

Now, let  , -  .  
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, -/

 
 be the eigenvector corresponding to the eigenvalue       of    . 
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Hence   
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Now, since 
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thus    
(     

 )  .     
  

     /
 

 , which gives that 

( , -)
 
   

(     
 )   

  

         
, -

  . 

     So, according to Sotomayor’s theorem for local bifurcation, the transcritical and pitchfork 

bifurcation cannot occur, while the first condition of the saddle- node bifurcation is satisfied. 

Moreover, from Eq. (26a) with      
  and  , -  we obtain that: 
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Hence we get that 
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     Hence, system (3) has saddle-node bifurcation at    with parameter      
  . Otherwise, when 

condition (28) is not satisfied the system (3) has no any type of bifurcation.                                  

5. Numerical Simulation 

 Numerical simulation results are equally important to those obtained from analysis. The objective 

is to confirm the analytical findings and study the effects of varying the parameters values on the 

dynamical behavior of the system (3). All the numerical simulation results for system (3) are 

represented in some figures using MATLAB Now, for the following set of hypothetical parameters 

set: 

                                                                   (29) 

     We obtained that the trajectories of system (3) with three different sets of positive initial conditions 

approach asymptotically to the PEP,    (              )  as shown in Figure-2. 

 
Figure 2- The trajectories of system (3) using data given by Eq. (29) with different initial points 

approach asymptotically to PEP, represented by    (              )  (a) 3D Phase plot of system 

(3). (b) Time series of the trajectories of  . (c) Time series of the trajectories of  . (d) Time series of 

the trajectories of  . 
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Clearly, Figure-2 shows that PEP is a globally asymptotically stable. Now, we investigate the effect of 

varying the parameter    on the dynamical behavior of system (3), with the rest of parameters fixed, 

as in Eq. (29), in the ranges of          ,             ,             and        

respectively. It is observed that the trajectory of system (3) approaches asymptotically to AEP, PFEP 

in the interior of    plane, PEP in the       
  and again to PFEP in the interior of    plane at the 

typical values of   , as shown in Figure-3. 

 

 

 
Figure 3-The trajectories of system (3) using data given by Eq. (29) with typical values of   . (a) 

System (3) approaches to AEP for        . (b) Time series of the trajectory given in (a). (c) System 

(3) approaches to PFEP in the interior of    plane for        . (d) Time series of the trajectory 

given in (c).  (e) System (3) approaches to PEP for        . (f) Time series of the trajectory given 

in (e).  

 

     The effect of varying    on the dynamics of system (3) is studied. It is observed, for the data given 

by Eq. (29), that with                        and       , the trajectory of system (3) 

approaches asymptotically to PEP in the       
  , PFEP in the interior of    plane, and AEP, 

respectively, as illustrated in Figure-4 for the typical values of   . 
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Figure 4- The trajectories of system (3) using data given by Eq. (29) with typical values of   . (a) 

System (3) approaches to PEP for       . (b) Time series of the trajectory given in (a). (c) System 

(3) approaches to PFEP in the interior of    plane for       . (d) Time series of the trajectory 

given in (c).  (e) System (3) approaches to AEP for       . (f) Time series of the trajectory given in 

(e).  

 

     According to Figures 3 and 4, the dynamics of system (3) is sensitive to varying in the value of    

or   . Now, the effect of varying the parameter    in the ranges          ,           and 

    , while keeping the rest of parameters as in Eq. (29). is studied. It is observed that the trajectory 

of system (3) approaches asymptotically to PEPand PFEP in the interior of    plane, and to AEP, 

respectively, as illustrated in Figure-5 for some the typical values.  
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Figure 5- The trajectories of system (3) using data given by Eq. (29) with typical values of   . (a) 

System (3) approaches to PEP for       . (b) Time series of the trajectory given in (a). (c) System 

(3) approaches to PFEP in the interior of    plane for        . (d) Time series of the trajectory 

given in (c).  (e) System (3) approaches to AEP for     . (f) Time series of the trajectory given in 

(e).  
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   plane, as shown in Figure-6 for the typical values        ,         and          
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Figure 6- The trajectories of system (3) using data given by Eq. (29) with typical values of   . (a) 

Periodic dynamics in the       
  for        . (b) Time series of the trajectory given in (a). (c) 

System (3) approaches to PEP for        . (d) Time series of the trajectory given in (c).  (e) System 

(3) approaches to PFEP in the interior of    plane for        . (f) Time series of the trajectory 

given in (e).  

 

     The effect of varying    on the dynamical behavior of system (3) is investigated by solving the 

system numerically using the data given in Eq. (29) with different values of   . It is observed that for  

         , the trajectory of system (3) approaches asymptotically to PFEP in the interior of 

   plane. However, for        , the trajectory of system (3) approaches to the PEP, as explained 

for the typical values given in Figure-7. 
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Figure 7- The trajectories of system (3) using data given by Eq. (29) with typical values of   . (a) 

System (3) approaches to PFEP in the interior of    plane for       . (b) Time series of the 

trajectory given in (a). (c) System (3) approaches to PEP for        . (d) Time series of the 

trajectory given in (c).   

 

     The effect of varying    on the dynamical behavior of system (3) is studied numerically. It is 

observed that for           and          with the rest of parameters are as given in Eq. (29), 

the trajectory of system (3) approaches asymptotically to the PEP and PFEP in the interior of 

   plane, respectively,  as shown in Figure-8 for some typical values of   . 

 

 

 

 
Figure 8- The trajectories of system (3) using data given by Eq. (29) with typical values of   . (a) 

System (3) approaches to PEP for        . (b) Time series of the trajectory given in (a). (c) System 

(3) approaches to PFEP in the interior of    plane for       . (d) Time series of the trajectory 

given in (c).   
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     The effect of varying    on the dynamical behavior of system (3) is also studied numerically. It is 

observed that varying     while keeping the rest of parameters as in Eq. (29) has similar effects on the 

dynamical behavior of system (3) as those shown with varying   . However, varying the parameter 

   in the ranges of          and         while keeping the rest of parameters as in Eq.(29), 

has similar effects on the dynamical behavior of system (3) as those occurred when varying    in the 

ranges           and          respectivelly.  

6. Discussion and Conclusions  

 In this paper, a prey-predator model with infectious disease in prey and harvesting of predator is 

formulated mathematically and investigated analytically as well as numerically.  The dynamical 

behavior of the proposed model is investigated locally as well as globally using the concepts of 

stability theory. The persistence and local bifurcation of the model, which are given by system (3), are 

also investigated. Finally, to complete our understanding of the global dynamical behavior of system 

(3), numerical simulation is used using hypothetical set of parameters values given by Eq. (29). In the 

following, the obtained numerical simulation results using data given by Eq. (29) are summarized. 

1. The trajectory of system (3) approaches asymptotically to PEP starting from different initial points 

using the data Eq. (29), which indicates the existence of globally asymptotically stable PEP.  

2. Decreasing the infection rate    below a specific value causes a loss of persistence in system (3), 

while the trajectory approaches asymptotically to PFEP in the interior of    plane. Further decreasing 

this parameter leads to extinction in the infected species and then the trajectory approaches to AEP. 

However, increasing the infection rate above a specific value leads to extinction in predator species 

again and the trajectory approaches asymptotically to PFEP in the interior of    plane. Otherwise, the 

system still persists at a PEP.    

3. Increasing the inhibition rate of disease    or disease death rate    above a specific value leads to 

extinction in predator species due to the lack in their food. Further increasing at least one of these 

parameters causes extinction in the infected prey specie, and the trajectory of system (3) approaches 

asymptotically to AEP. Otherwise, the system still persists at a PEP.    

4. Decreasing the half saturation constant    below a specific value leads to a destabilized PEP, but 

the system still persists in the form of periodic dynamics in the       
 . However, increasing this 

parameter above a specific value leads to extinction in predator species, and the trajectory of system 

(3) approaches asymptotically to PFEP in the interior of    plane. Otherwise, the system still persists 

at a PEP.  

5. Decreasing the conversion rate    of the infected prey to a predator or the hunting effort    from 

a predator below a specific value lead to extinction in predator species, and the trajectory of system (3) 

approaches asymptotically to PFEP in the interior of    plane. Otherwise, the system still persists at a 

PEP. 

6.  Increasing the death rate    of predator species or the catchability coefficient    above a specific 

value leads to extinction in predator species, and the trajectory of system (3) approaches 

asymptotically to PFEP in the interior of    plane. Otherwise, the system still persists at a PEP. 

Keeping the above in view, system (3) is sensitive to varying in their parameters and the bifurcation 

occurs at all the parameters of the system, especially the infection rate.    
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