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Abstract 

     In this paper, we have derived Bayesian estimation for the parameters and 

reliability function of Perks distribution based on two different loss functions, 

Lindley’s approximation has been used to obtain those values. It is assumed that the 

parameter behaves as a random variable have a Gumbell Type  prior with non-

informative is used. And after the derivation of mathematical formulas of those 

estimations, the simulation method was used for comparison depending on mean 

square error (MSE) values and integrated mean absolute percentage error (IMAPE) 

values respectively. Among of conclusion that have been reached, it is observed 

that, the LE-NR estimate introduced the best perform for estimating the parameter λ. 
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 مقارنة طريقة بيز مع الامكان الاعظم لمعلمات ودالة المعولية لتوزيع باركس
 
سحر احمد محمد، *شروق احمد كريم  

، كلية العلوم، الجامعة المستنصرية، بغداد، العراق.سم الرياضياتق  
 

 الخلاصة
وبالاعتماد على دالتي خسارة في هذا البحث تم اشتقاق مقدرات بيز لمعلمات ودالة المعولية لتوزيع باركس      

وتم استخدام تقريب ليندلي للحصول على تلك القيم.وتم افتراض ان المعلومات الاولية للمعلمات تخضع لتوزيع 
وبعد اشتقاق الصيغ الرياضية لتلك المقدرات تم الاستعانة باسلوب المحاكاة  لاجراء  .كامبل من النوع الثاني

.من بين  متوسط مربعات الخطأ ومتوسط النسبة المئوية التكاملية للخطأ المطلق المقارنة وبالاعتماد على معيار
.λ  قدم افضل اداء لتقدير معلمة   LE-NR   الاستنتاجات التي تم التوصل اليها لوحظ ان.    

 
1. Introduction  

     Perks distribution (PD) has been introduced by perks [1]. The PD plays an important role in 

actuarial Science include: models for pensioner mortality data [2], parametric mortality projection 

models [3].  

     The moments for this distribution do not appear to be available in closed form [4]. The PD has its 

probability density function as  

 (     )       
(   )

(      ) 
                                ( ) 

where   is the shap parameter and   is the scale parameter. 
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The corresponding cumulative distribution function of the PD is given by                                         

 (     )    
(   )

(      )
                                           ( ) 

The reliability function at time t is  

 (     )  
(   )

(      )
                                      ( ) 

and the hazard rate function at time t is 

 (     )  
     

(      )
                                                                 ( ) 

Illustration by drawing, see [5] 

2. Maximum Likelihood Estimators   

Let   (          ) be a random sample of size n from PD. The complete –data likelihood function 

is : 
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Therefore, to obtain the maximum likelihood estimates of   and  , we find 
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mmmmmWe propose here to use Multivariate Newton Raphson (MNR) algorithm to determine the 

maximum Likelihood estimates of the parameters.  

Multivariate Newton- Raphson (MNR) Algorithm 

In this algorithm, the solution of the likelihood equation is obtained through an iterative procedure as 

follows: [6] let (
(0)

,
(0)

) denote the starting values of     at  the (k+1)
th
 step 
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where    and    denote the first order derivatives of the natural log- likelihood with respect to the 

parameter  and  respectively and             denote the second –order derivatives of the natural 

log-likelihood with respect to the parameters are obtained as follows. 

   
   (     ̃)

   
     ̂
   ̂

 
  

  
 

 

(   ) 
  ∑ (

    

       
)
 

 
                               (  )  

   
   (     ̃)

    
     ̂
   ̂

 
   (     ̃)

    
     ̂
   ̂

 

  ∑
   

   

       
  ∑    (

    

       
)   

   
 
                                                            (  )  

   
   (     ̃)

    
     ̂
   ̂

 
  

  
  ∑

   
     

       
  ∑ (

    
   

       
)
 

 
   

 
                 (  )  

The iteration process then continues until | (   )   ( )|             

 | (   )   ( )|        . 

Now ,depending on the invariant property  of MLE, the MLEs of  ( )of PD at time t via MNR  

algorithm can be obtained as, 

 ̂  ( )  
(   ̂)

(   ̂  ̂ )
                                                                     ……………………………………...(13) 
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3. Bayes Estimations  

     Consider the prior distributions of   and  of PD are taken to be in dependent Gumbel type II 

(   )  and Gumbel type   (   ) With pdfs.  
2

a/

1

1
( ) a e ; 0,a 0  

      
 

       ……………...…(14) 

and 
2

b/

2

1
( ) b e ; 0,b 0  

      
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     The joint posterior density function of   and  is, 

 (   | )  
 (   | )

∫ ∫  (   | )    
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 The squared error loss function (SElF) was proposed by Legendre (1805) and  Gauss (1810) in 

order to develop least square theory. The formula of this loss function for   is , [7] 
2

s s
ˆ ˆL( , ) ( )    

                                                      
  ……………………………….…(18) 

where 
s
̂  is an estimate of  based on SElF. 

Now, according to equation (18) Bayes estimator of  based on SElF is obtained as,  

 ̂     (   )                                                                                                   (  ) 

Therefore, Bayes estimator based on SElF represents the mean of the posterior probability density 

function.  

Entropy loss function was first introduced by James and stein for the estimation of dispersion  matrix 

of the multivariate normal distribution. The formula of Entropy loss function (ELF) for  is, [8] 

e e

e

ˆ ˆ
ˆL( , ) c ln 1 ,c 0

   
       
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      ………………...(20) 

Where 
e
̂  is an estimate of  based an ELF. now, according to equation (20), Bayes estimator of   

based on EIF is obtained as,  
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   (   ) is the posterior distribution. 

According to equation (18) and (20), 
S
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
   and 

e
ĝ ( , )

   denote Bayes estimation of any 

function of the parameters, say  ( ), based on  SELF and the ELF respectively. where 
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     we can approximate these Bayes estimators by using the Lindley’s approximation form to obtain 

Bayes estimators of the parameters and the reliability function of PD.  

Lindley's Approximation 

Now,   ( (   )  )  
∫ ∫  (   ) 
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Where 

  ( ) is a function of  and  only,  

  ( ) is natural Log- joint prior density function   

Where   ( )     (   )                                          ………………………………………………...(25) 

Now,  ( )   ( ( )  )  let equation (24) can be written as, (see [9]) 
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Where ̂  and ̂ are the MLE's of  and  respectively. 
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 Differentiating  the  natural Log- joint prior density function   ( ), given by equation (25),partially 

with respect to       
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3.1Approximate Bayes Estimate of        ( ) based on SELF 

     Assume that   ( )     in equation (26) and then,  
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     where   ̂   denote the Bayes estimate of  based on SELF according to Lindley’s approximation.  

Now, assume that   ( )     in equation (26) and then, 
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 where  ̂  ( ) denote the Bayes estimate of  ( ) based on SELF according to Lindley’s 

approximation. 
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 3.2Approximation Bayes Estimate of ,  and  R(t)  based on ELF 

Assume that  (   )  
 

 
 in equation (26) and then,  
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where  ̂   denote the Bayes estimate of  based on ELF according to Lindley’s approximation.  

Now, assume that  (   )  
 

 
 in equation (26) and then,  
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where  ̂   denote the Bayes estimate of  based on ELF according to Lindley’s approximation. 

and, assume that  (   )  
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     where  ̂  ( )denote the Bayes estimate of  ( ) based on ELF according to Lindley’s 

approximation. 

4. Simulation Study and Results 

     A Monte Carlo simulation study has been considered to assess the behavior of the obtained 

estimators for the unknown parameters along with the reliability function of PD. The simulation 

program has been written by using MATLAB (R2010 b) program.  

The general description of the basic four stage of simulation study as follow:  

Stage (1): *Choose the sample size (n): n= 15, 60 and 100 

*set the true values for the parameters       of PD  

        ():=0.5 and 1 

         () =0.5 and 1.  

* Choose the value of hyper- parameters associated with Gumbel typeII prior distributions to be 

a=b=c=d=0.0001 in order to deal with anon-information.  

*Choose four time(t) to assess the estimating reliability function: 

t= 1, 2, 3, 4.  

*choose the number of sample replicated (L): L= 1000. 

 Stage (2): Generate a random sample, say   of size n distributed as PD through the adoption of 

inverse transformation method by  

  
 

 
  {
 

 
(
   

   
  )}        

Where   has the  (   ) distribution  

Stage (3): The initial values required for iterative proceeding algorithm,             . 
Stage (4): Repeat the above steps 1000 times and then compare the different estimators for the 

parameters according to mean squared error and compare different estimators of reliability function 

with different times according to integrated mean absolute  percentage error (IMAPE) as,  
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Where,  

j
̂ ,

j
̂  is the estimate of       respectively at the j

th
 run. 

 : is the number of sample replicated.  

    is the number of times chosen to be (4).  

j i
R̂ (t ) : is the estimates of   ( ) of the j

th
 run and i

th
 time.  

The computational results have been summarized in Tables-(1, 3).  

5. Conclusions and Recommendations  

     From Table-1, approximate Bayes estimate of    based on ELF via Multivariate Newton- Raphson 

Algorithm  (LE-MNR ) introduced the best perform compared with approximate Bayes estimate of    

based on SELF via Multivariate Newton- Raphson Algorithm (LS-NR) for all sample sizes and for all 

cases. 

From Table-2, LS-MNR estimate introduced the best perform compared with LE-MNR according to 

Lindley´spproximation to estimate    of PD for for all cases and for all sample sizes except for large 

sample size with          . 

     From Table-3, LE-MNR estimate introduced the best perform compared with LS-MNR according 

to Lindley´s approximation to estimate  ( )  of PD for all cases and for all sample sizes except 

with          for moderate and large sample sizes. 

Based on above conclusions, we recommend  

1-choosing LE-MNR to compute Bayes estimates of   of PD for all sample sizes. 

2-choosing LS-MNR to compute Bayes estimates of   of PD especially for small and moderate 

sample sizes. 

3- choosing LE-MNR to compute Bayes estimates of  ( ) of PD especially for small sample size. 

Table 1-MSE values for Bayes Estimates of   of PD 

N LS-NR LE-NR Best Bayes Estimate 

            

15 8.7403284 3.5242685 LE-NR 

60 3.3423432 2.3470552 LE-NR 

100 2.5465965 2.0684431 LE-NR 

          

15 5.7705938 3.2152459 LE-NR 

60 5.6961760 2.5993199 LE-NR 

100 5.3056150 2.4448109 LE-NR 

          

15 6.4042988 2.9285690 LE-NR 

60 5.4974443 2.8097650 LE-NR 

100 5.0957422 2.3290137 LE-NR 
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Table 2-MSE values for Bayes Estimates of   of PD 

n LS-NR LE-NR Best Bayes Estimate 

            

15 0.4336745 138.9139602 LS-NR 

60 0.4223907 1.5252986 LS-NR 

100 0.4221468 0.3835587 LE-NR 

          

15 1.7960259 412.8577770 LS-NR 

60 1.7534983 55.0697165 LS-NR 

100 1.6756107 11.4447716 LS-NR 

          

15 0.4665281 299.6428458 LS-NR 

60 0.3995523 1.9794051 LS-NR 

100 0.3981496 0.6421438 LS-NR 

 

Table 3-IMAPE values for Bayes Estimates of  ( ) of PD 

n LS-NR LE-NR Best Bayes Estimate 

            

15 0.6271342 0.5056127 LE-NR 

60 0.4492340 0.4715720 LS-NR 

100 0.3985375 0.4563974 LS-NR 

          

15 0.6025052 0.5642312 LE-NR 

60 0.5532955 0.4745899 LE-NR 

100 0.5068743 0.4718160 LE-NR 

          

15 0.7339687 0.5539619 LE-NR 

60 0.6778311 0.4868786 LE-NR 

100 0.6776365 0.4745774 LE-NR 
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