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Abstract

In this paper, we have derived Bayesian estimation for the parameters and
reliability function of Perks distribution based on two different loss functions,
Lindley’s approximation has been used to obtain those values. It is assumed that the
parameter behaves as a random variable have a Gumbell Type IT prior with non-
informative is used. And after the derivation of mathematical formulas of those
estimations, the simulation method was used for comparison depending on mean
square error (MSE) values and integrated mean absolute percentage error (IMAPE)
values respectively. Among of conclusion that have been reached, it is observed
that, the LE-NR estimate introduced the best perform for estimating the parameter A.
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1. Introduction

Perks distribution (PD) has been introduced by perks [1]. The PD plays an important role in
actuarial Science include: models for pensioner mortality data [2], parametric mortality projection
models [3].

The moments for this distribution do not appear to be available in closed form [4]. The PD has its
probability density function as

_ Cax A +B)
f(x: ﬂll) - ﬁ/‘lel (1 +ﬁ€/1x)2

where S is the shap parameter and 4 is the scale parameter.
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The corresponding cumulative  distribution  function of the PD is given by

FOBA) =1— (1(+1;fjx);/3 S N T R EIRY ¢-)
The reliability function at time t is
R(t; B,A) = &ﬁ D R | A TSRS € ) |
T (1 + pett)’ ’ T
and the hazard rate function at time t is
‘BAelt

Ilustration by drawing, see [5]

2. Maximum Likelihood Estimators

Let x = (x4, X5, ..., X,,) be a random sample of size n from PD. The complete —data likelihood function
is:

l(ﬁ Alx) =TTies f Ceis B2
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Therefore, to obtain the maximum likelihood estimates of g and A, we find
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mmmmmWe propose here to use Multivariate Newton Raphson (MNR) algorithm to determine the
maximum Likelihood estimates of the parameters.
Multivariate Newton- Raphson (MNR) Algorithm
In this algorithm, the solution of the likelihood equation is obtained through an iterative procedure as
follows: [6] let (B, 1) denote the starting values of 8, 1 at the (k+1)" step
,é(k+1) 'é(k) AA BB1! cc
[A(k+1) - [A(k)] B [BB 00| p=p® FF] p= B(k) SRR (°)
A A

A=2%) A=2k
where CC and FF denote the first order derlvatlves of the natural log- likelihood with respect to the
parameter 3 and A respectively and AA, BBand QQ denote the second —order derivatives of the natural
log-likelihood with respect to the parameters are obtained as follows.
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The iteration process then continues until |+ — )| < 0.0001 and

|A0+D — 39| < 0.0001.

Now ,depending on the invariant property of MLE, the MLEs of R(t)of PD at time t via MNR
algorithm can be obtained as,

B =B 0 (13)

(1+Be’t)’
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3. Bayes Estimations
Consider the prior distributions of 3 and A of PD are taken to be in dependent Gumbel type Il
(1,a) and Gumbel type 11(1, b) With pdfs.

HI(B):a(%j e*”:;p>0a>0 (14)
and . )
H?_(x)zb(xj e ;A>0b>0 (15)

TI(B,2.) =ab(%j (%)2 e_(%%J ..................... (16)

The joint posterior density function of  and A is,
(B, A
x)dpdA

f I,

Where
_(a,b n a+p)"
(g, Alx) = abp™=2272 (fm) ALiza Xi
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The squared error loss function (SEIF) was proposed by Legendre (1805) and Gauss (1810) in

order to develop least square theory. The formula of this loss function for 0 is , [7]

LO,,0)=(0,—0)> . (18)

where és is an estimate of 0 based on SEIF.

Now, according to equation (18) Bayes estimator of & based on SEIF is obtained as,

bps = En(01x) e . (19)
Therefore, Bayes estimator based on SEIF represents the mean of the posterlor probablllty densny
function.

Entropy loss function was first introduced by James and stein for the estimation of dispersion matrix
of the multivariate normal distribution. The formula of Entropy loss function (ELF) for 6 is, [8]

.(17)

. 0 0
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~

Where O is an estimate of & based an ELF. now, according to equation (20), Bayes estimator of 6
based on EIF is obtained as,

05, = [Eh (5 |£)]_1 e et et et et et e e (21)

1 o 1
where £, (3 [x) = f; 5 h(61x)d6
h(8|x) is the posterior distribution.
According to equation (18) and (20), §,s(B,A) and §,,(B,A) denote Bayes estimation of any
function of the parameters, say g(f, 4), based on SELF and the ELF respectively. where

) ) L x)dBda
8ps(B. ) = En(g(B, Dlx) = %)dpdi

(22)
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we can approximate these Bayes estimators by using the Lindley’s approximation form to obtain
Bayes estimators of the parameters and the reliability function of PD.
Lindley's Approximation

52 2 g (p e P BD g4

Now, Ex(g(8 Dlx) == [ 2 B B g gy .. (24)
Where
g (B, A) is afunction of 3 and A only,
q (B, A) is natural Log- joint prior density function
Where g (B A4) = InTI(B, 1) (25)
Now, A(x) = E(g(f5 A)|x) letequation (24) can be written as, (see [9])

A(x)

1
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+25paPpp)] et e e ( 26)
Where 3 and A are the MLE's of fand A respectively.
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Differentiating the natural Log- joint prior density function q (5, 1), given by equation (25),partially
with respect to fand 1
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3.1Approximate Bayes Estimate of 5 A and R(t) based on SELF
Assume that g (8, 4) = f in equation (26) and then,
9p=1,  gpp= gii= gr= gpi=giB=0.
Bos = En(Blx)
where Bg, denote the Bayes estimate of S based on SELF according to Lindley’s approximation.
Now, assume that g (5, 4) = Ainequation (26) and then,
gA=1,  gpp= gii=gB= grp= gpi=0.
Ags = Eh(/’l|x)
Where Ags denote the Bayes estimate of A based on SELF according to Lindley’s approximation

and, assume that g(8,4) = R(t) = (Hﬁﬁu)m equation (26) and then,
1 (14 B)er
96 = T¥ pelt ~ (1 + peln)?
—2eM 2(1+ B)e?M
9pp = (1+ fet)z " (1 + feit)3
—2pBtert telt 2Bt(1 + B)e?t
9pr = (1+ Belt)2 (1 + Belt)? + (1 + Belt)s

Bt(1+ B)ert
ga =~ )2

(14 Be*t)

B +pttet 2(Bt)*(1+p)e*H

9= 7T A + perty? (1 + pelt)
Rps(®) = Ex(R(D)Ix)
where Rps(t) denote the Bayes estimate of R(t) based on SELF according to Lindley’s
approximation.
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_3.2Approximation Bayes Estimate of B, A and R(t) based on ELF
Assume that g(B, 1) = |n equation (26) and then,

gp = Bzagﬁﬁ = B3'g/1 =0 =9pr =913 = 0.

o = [ea (5ie)|

where [, denote the Bayes estimate of A based on ELF according to Lindley’s approximation.
Now, assume that g(8,1) = % in equation (26) and then,

-1 2
92 = 2988 = 3398 = 9pp = 9pr = gap = 0.
. 1 \1°
Te8. ) = | (F12)]

where A5, denote the Bayes estimate of A based on ELF according to Lindley’s approximation.
At
and, assume that g(B8,1) = ﬁ (Pﬁ‘; )in equation (26)and then,
e (14 Bet)
98=1%8 (1+p)2
_—2eM 2(1 4 Bett)
T A+
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gr = +ﬁ

pt?et
g = 1+8

-1
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where Rp.(t)denote the Bayes estimate of R(t) based on ELF according to Lindley’s
approximation.
4. Simulation Study and Results
A Monte Carlo simulation study has been considered to assess the behavior of the obtained

estimators for the unknown parameters along with the reliability function of PD. The simulation
program has been written by using MATLAB (R2010 b) program.
The general description of the basic four stage of simulation study as follow:
Stage (1): *Choose the sample size (n): n= 15, 60 and 100
*set the true values for the parameters g and A of PD

(B):p=0.5and 1

(r) =0.5and 1.
* Choose the value of hyper- parameters associated with Gumbel typell prior distributions to be
a=b=c=d=0.0001 in order to deal with anon-information.
*Choose four time(t) to assess the estimating reliability function:
t=1, 2,3, 4.
*choose the number of sample replicated (L): L= 1000.
Stage (2): Generate a random sample, say x of size n distributed as PD through the adoption of
inverse transformation method by

(o <u<
X = 7 n s\1—u ; u
Where u has the U(0,1) distribution
Stage (3): The initial values required for iterative proceeding algorithm, 2° = e, 3% = 73,
Stage (4): Repeat the above steps 1000 times and then compare the different estimators for the
parameters according to mean squared error and compare different estimators of reliability function
with different times according to integrated mean absolute percentage error (IMAPE) as,
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Y B, -y
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t

Where,
B, A is the estimate of Band A respectively at the | run.

L: is the number of sample replicated.
n;: is the number of times chosen to be (4).

ﬁj(ti) - is the estimates of R (t) of the | run and i time.

The computational results have been summarized in Tables-(1, 3).
5. Conclusions and Recommendations

From Table-1, approximate Bayes estimate of A based on ELF via Multivariate Newton- Raphson
Algorithm (LE-MNR ) introduced the best perform compared with approximate Bayes estimate of A
based on SELF via Multivariate Newton- Raphson Algorithm (LS-NR) for all sample sizes and for all
cases.

From Table-2, LS-MNR estimate introduced the best perform compared with LE-MNR according to
Lindley spproximation to estimate 8 of PD for for all cases and for all sample sizes except for large
sample size withA =8 = 0.5 .

From Table-3, LE-MNR estimate introduced the best perform compared with LS-MNR according
to Lindley’s approximation to estimate R(t) of PD for all cases and for all sample sizes except
with A = = 0.5 for moderate and large sample sizes.

Based on above conclusions, we recommend

1-choosing LE-MNR to compute Bayes estimates of A of PD for all sample sizes.

2-choosing LS-MNR to compute Bayes estimates of § of PD especially for small and moderate
sample sizes.

3- choosing LE-MNR to compute Bayes estimates of R(t) of PD especially for small sample size.
Table 1-MSE values for Bayes Estimates of A of PD

N LS-NR LE-NR Best Bayes Estimate
A=0.5=0.5
15 8.7403284 3.5242685 LE-NR
60 3.3423432 2.3470552 LE-NR
100 2.5465965 2.0684431 LE-NR
A=0.5p=1
15 5.7705938 3.2152459 LE-NR
60 5.6961760 2.5993199 LE-NR
100 5.3056150 2.4448109 LE-NR
A=1,=0.5
15 6.4042988 2.9285690 LE-NR
60 5.4974443 2.8097650 LE-NR
100 5.0957422 2.3290137 LE-NR
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Table 2-MSE values for Bayes Estimates of § of PD

n_ | LS-NR | LE-NR | Best Bayes Estimate
A=0.5,=0.5

15 0.4336745 138.9139602 LS-NR

60 0.4223907 1.5252986 LS-NR

100 0.4221468 0.3835587 LE-NR
A=05p=1

15 1.7960259 412.8577770 LS-NR

60 1.7534983 55.0697165 LS-NR

100 1.6756107 11.4447716 LS-NR
A=1,4=0.5

15 0.4665281 299.6428458 LS-NR

60 0.3995523 1.9794051 LS-NR

100 0.3981496 0.6421438 LS-NR

Table 3-IMAPE values for Bayes Estimates of R(t) of PD

n | LS-NR | LE-NR | Best Bayes Estimate
A=0.5,=0.5

15 0.6271342 0.5056127 LE-NR

60 0.4492340 0.4715720 LS-NR

100 0.3985375 0.4563974 LS-NR
A=05p=1

15 0.6025052 0.5642312 LE-NR

60 0.5532955 0.4745899 LE-NR

100 0.5068743 0.4718160 LE-NR
A=1,8=0.5

15 0.7339687 0.5539619 LE-NR

60 0.6778311 0.4868786 LE-NR

100 0.6776365 0.4745774 LE-NR
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