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Abstract: 
      The aim of this article is to study the solution of  Elliptic Euler-Poisson-Darboux 

equation, by using the symmetry of Lie Algebra of orders two and three, as a 

contribution in partial differential equations and their solutions. 
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 زينب جون 
العراق، بغداد، الجامعة المدتنصرية، كلية العلهم الرياضيات،قدم   

 

 الخلاصة
  Elliptic Euler-Poisson-Darboux equation  الهدف من هذا البحث هه دراسة حل معادلة     

  في حل  المعادلات التفاضلية الجزئية. طريقة تماثلات لي الجبرا للرتبة الثانية والثالثة  كمداهمة باستخدام

 

1.Introduction 

     The Euler-Poisson-Darboux equation is very important in physics and mathematics. It is one of the 

most extensively studied singular linear hyperbolic equations. The general formula of Euler- Poisson-

Darboux Equation ([1, 2, 3] is: 
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where 𝛂 is a real parameter. The classical Euler-Poisson-Darboux equation is defined as [4] 
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For equation (1), if n=1, then this equation can be defined as 
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     where 𝛂 is a real parameter. Equation (3) is an Elliptic Euler-Poisson-Darboux equation. It is also 

referred to as a generalized axisymmetric Laplace equation [5, 6]. For 𝛂=1, it is the axismmetric 

Laplace equation, which was studied in [7]. Equation (4) is a hyperbolic Elliptic Euler-Poisson-

Darboux equation. The Euler-Poisson-Darboux equations was considered for the first time by Euler 

[8] and later by Poissn [9], Riemann [10], and Darboux [11]. In the recent time, it was studied by a 

number of authors [1, 4, 12] because of its importance in mathematics  and mathematical physics.  
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In this article. we use the method of Lie group theory. Symmetry group methods are amongst powerful 

universal tools for the study of differential equations. There has been a rapid progress on these 

methods over the last few decades. Methods and algorithms were introduced for classifying 

subalgebras of Lie algebra. New results on the structure and classification of abstract finite and infinite 

dimensional Lie algebra were published [13]. Also, methods for solving group classification problems 

for differential equations greatly facilitated to systematically obtain exact analytical solutions [13, 14, 

15]. During the solution, we used some methods of solving partial differential equations and ordinary 

differential equations [16, 17, 18]. 

Symmetry of Elliptic Euler-Poisson-Darboux Equation 

       Similarity is an extremely powerful method of solving the linear and nonlinear differential 

equations [13, 14]. For solving the Elliptic Euler-Poisson-Darboux equation (3), we need to introduce 

the following Lie algebra approach as a transformation method. 

We apply Lie group method to solve (3), as follows 
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The generator   is defined by 
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The invariance condition for equation (3) is   
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By substituting Eqs. (8-11) and write equation (3) as 

 
   

   
  

 

 

  

  
 
   

   
 

into (12), we get 
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        From this equation, we obtain a polynomial equation in            
    
           

From the coefficient of             we have got 
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From the coefficient of   , we have got 

 
 

  
   

 

 
    (         )                                                                                   (18) 

From the free Coefficient we have got 

    
 

 
         .                                                                                                                (19) 

       We have noticed that, due to the complexity of finding Lie group of transformation from Eq. (13) 

through Eqs. (14-19), so  we derive eq(3)  repect to r to obtain the equation of the form: 
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The third extension of generator is: 
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       Now, we find the extended infinitesimal coefficient from the formula:  
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       Then, from (21-23), we found the extended infinitesimal coefficient.        
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The invariance condition for equation (20) is                                      
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By the substitution of (8-11 and 24-25) into (27), we get 
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          From this equation, we obtain a polynomial equation in 
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The coefficient of      is 
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From 12, 13, 14 , 27, and 29, we have 
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This yields that   =  = constants 
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of the coefficient of     is 
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From (33 and 35), we get 
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Then by solving this equation, we have 
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Using lagrange method, we have 
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This yields two independent solutions, as follows: 
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To find  ( )  we substitute (49) in (3), as follows:  
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Substituting (50-52) in (3) yields the ordinary differential equation 
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We have got 
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By substituting (54) in (49), we get 
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