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Abstract

In this work, we consider a modification of the Lotka-Volterra food chain model
of three species, each of them is growing logistically. We found that the model has
eight equilibrium points, four of them always exist, while the rest exist under certain
conditions. In terms of stability, we found that the system has five unstable
equilibrium points, while the rest points are locally asymptotically stable under
certain satisfying conditions. Finally, we provide an example to support the
theoretical results.
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1. INTRODUCTION

In 1920, Vito Volterra introduced his famous mathematical model of the equation that described
the relationship between two reactive species. Volterra was interested in studying and analyzing the
phenomenon of the increase of fish as a predator, and thus the decrease of fish as prey, in the Adriatic
Sea, during the First World War. The Lotka-Volterra equation is a pair of first-order nonlinear
differential equations that can be written as stated below [1, 2, 3]:
X =ax —bxy, y =cxy—dy.

In the first article [1], an exogenous control in a model of population dynamics of two species was
considered on the level of predators only, as follows:
X =ax—bxy, y =cxy—dy—u.

The equation of Lotka-Volerra has been modified and studied by many researchers. Modifications
are presented as a system of a pair of nonlinear differential equations of the first order, describing the
prey and predator. It also involves aspects of logistic growth and carrying capacity of prey, carrying
predator capability, and predator factor, as follows [3]:

Xx=ax—bx?—bxy, y = —dy+exy—[fy?
or where the two species are grown logistically and compete with each other , as follows [4,5] :
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x = ax(1 — cx — bxy), y = dy(1 —ex — fy).

which involves logistic growth and carrying capacity of prey, carrying predator capability, and
predator factor. Other modifications were presented as a system of three nonlinear differential
equations of the first-order. It describes the relationship between one prey and two predators, in which
the prey grows logistically, as in below [3, 6]:

X =ax—xy—xz, ¥y =—-by+xy,z =—cz+xz.

According to this model, in the absence of the prey, the predators will be dying. In [7], a
modification is presented as the following system of three nonlinear differential equations of the first-
order, that describes the relationship between two prey and one predator, in which the prey grow
logistically:

X = ax —xz, y = by —yz, z =—cz+xz+Yyz.

In [8], a prey-predator model was studied when there was a disease in the both species, and in [9] a
mathematical model for two prey and two predators was studied, whereby all the species grow
logistically.

In this paper, we propose a modified model of the Lotka-Volterra equation, which is a system of three
dimensional first-order nonlinear differential equations. It describes the population dynamics of a food
chain in which all species grow logistically, which means that there is no death of any species in the
absence of other species.

2. THE MATHEMATICAL MODEL
Consider the mathematical model:
x =x(a—yx—by—cz),
y =y(d—-By—ez+fx), (2.1)
z =z(9g — 8z + hy + mx),
of three species x,y and z. All Species grow logistically, as shown by the terms x(a — yx),y(d —
By) and z(g — 6z), where a , d, and g are the natural growth rates of x, y and z respectively;y,
B and ¢ are the natural deaths of x, y and z, respectively; b and c are the rates of change of x due to
the presence of y and z, respectively; e and f are the rates of change of y due to the presence of x and
z; respectively ; h and m are the rates of change of z due to the presence of y and x, respectively.
3. BOUNDEDNESS OF THE POSITIVE SOLUTIONS

In this section, some sufficient conditions are provided, in order for the positive solutions of the
system (2.1) to be bounded.

THEOREM 1 Suppose  that f<bm<c h<e. Then all the positive
solutions of the system (2.1) are bounded, if the initial point belongs to B, where:

B ={(x,y,2):x < H,,y < H,,z < Hs, H;are real posive numbers, i = 1,2,3}
Proof:
Consider the function:
u(t) = x(t) + y(t) + z(t).
u=x(a—yx—by—cz)+y(d—-By—ez+ fx)+2z(g —6z+ hy + mx)

<x(a—yx)+y(d—pLy)+2z(g —6z).

Now
u+pu<x(a—yx+p)+y(d—-By+p)+z(g—6z+p)<x(a+p)+y(d+p)+z(g+p) <
(a+p)*+(d+p)?+(g+p)>
So we have
u<-pu+(a+p)H, +(d+p)H,+ (g + p)Hs.

Sothat0 < u(t) < (a+p)H1+(d+§)H2+(g+p)H3 + u(0)e~Pt, and for t—oo,

(a+p)?+(d+p)+(g+p)>

0<u(t) <

p
Thus, we have completed the proof of the theorem.
4. EXISTENCE AND LOCAL STABILITY OF THE EQUILIBRIA POINTS
In this section, we will give the necessary and sufficient conditions for the existence of 8
equilibrium points for the system (2.1) and study their local stability. The system has in origin an
equilibrium point, three axial equilibrium points, three boundary equilibrium points, and one interior
equilibrium point.
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1) The equilibrium point P, = (0,0,0 ) always exists.
Easy calculations show that the characteristic equation of the matrix of Jacobi at the equilibrium
pointP, = (0,0,0) takes the following form:
a—2>1 0 0
0 d—2 0 [=0, 4.1)
0 0 g—A
It is clear that the solutions of the equation (4.1) are:
A=a>0,1,=d>0andi; =g > 0.
SinceA, is positive and 1,, A5 are negative, soP, = (0,0,0)is an unstable node point (source).
2) The equilibrium pointP; =(VE, 0, 0) always exists.
The characteristic equation of the matrix of Jacobi of the system (2.1) at the equilibrium points
P; =(§,0,0) can be written as follows:

i ba calj
A Ty Ty
= 4.2
0 d—A2 0 0. (42)
0 0 g—A1

The solutions of the equation (4.2) are:
11:_a<0,ﬂ.2:d>0andl3:g>0.
SinceA, is negative andA,, 15 are positive, soP; =(§,0,0) is a saddle point (unstable).
d
3) The equilibrium pointP, = (O,E ,0) always exists.
The characteristic equation of the matrix of Jacobi of the system (2.1) at the equilibrium point
(02 0)ic
P, = (o,ﬁ 0) is:

a—A 0 0
I g5 % 43
0 0 g—A

Thus the solutions of the equation (4.3) are:

Aq4=a>01,=—-d<0,andi; =g > 0.

Since A, is negative and A4, 45 are positive, soP, = (0,% ,0) is a saddle point (unstable).

4) The equilibrium point P; = (0,0, %) always exists.

The characteristic equation of the matrix of Jacobi of the system (2.1) at the equilibrium points
Py = (0,0,%) is written as follows:

a—21 0 0
0 d—27 0
mg 9" . =0, (4.4)
s & 9
Thus the solutions of the last equation are as follows:

Al =a>0,ﬂ.2 =d >O,and/13 =—-g < 0.
Since 1 is negative and 1,, A1, are positive, so P =(0,0,%) is a saddle point (unstable).
5) The equilibrium point
o aff —bd yd+af
P4=(nyl0)=( )

vB+bf" yB+Dbf’
exists if and only if:

aB > bd. (4.5)
The characteristic equation of the matrix of Jacobi of the system (2.1) at the equilibrium point
P, = (%,7,0) is written as follows:

58



Farhan Iragi Journal of Science, 2020, Special Issue, pp: 56-63

—yxX—A —bX —cX
fy  —By-4 —ey =0, (4.6)
0 0 g+hy+mx—2

and the solutions of the equation (4.6) are written as follows:
L o OB TVGE A+~ 4GB +Df) . _
1 T
2
A3=g+hj+mx > 0.

Now, if (yx + B5)? = 4xy(yB + bf), then A; and A, are negatives, different or repeated roots.
Otherwise 1,and A, are complex conjugate with real part negatives, while A; = g + hj + mx > 0,
so that P, = (X, ¥,0) is a saddle point (unstable).

6) The equilibrium point
da—cg _(yg+am)
P = _, 0, 7) = Y,
5= (%0.2) <5y+cm 8y +cm
exists if and only if:

1,2.

da > cg. (4.7)
The characteristic equation of the matrix of Jacobi of the system (2.1) at the equilibrium point
Ps = (X, 0, Z) can be written as follows:

—yx—A —bx —cX
0 d—ez+fx—21 0 =0, (4.8)
mz hz -6z—1

and the solutions of the equation (4.8) are written as follows:
Ay =d—ez+fx,

—(yx 4+ 62) ¥ /(yx + 82)2 — 4x2(yS + mc) |
Ai = 2 ,1 = 1,3
Now, if (yx + 62)% > 4xz(yS + me), then 1, and A5 are negatives, different or repeated roots.
Otherwise 4;and A5 are complex conjugates with negative real parts. While 1, < 0 if and only if
d<ez—fx.
So that P; = (x,0,2) is locally asymptotically stable if and only if d > ez — fix. So we have the
following result:
Theorem2: Suppose that a > cg.lfd* = ez — fx is a positive number, then the equilibrium point

P; = (x,0,2) is:

1) locally asymptotically stable if d < d¥,
2) unstable if d > d*.

Proof:

It is easy to show that% =0, % =0 and % =0,i=1,3.
So that X, ¥,z and 4;,i = 1,3 are constants with respect to the parameter d
and the real parts of the eigenvalues A, and A5 are always negative, while the eigenvalueA, is negative
ifd >ez— fx =d”and positive if d < ez — fx = d*. So the theorem is proved.
7) The equilibrium point
(6d—eg) gpB+hd

Py = (0,9, =0, , )

s= 032 5B +he ' 8B + he
exists if and only if:

éd > eg. (4.9)
The characteristic equation of the matrix of Jacobi of the system (2.1) at the equilibrium point
P = (0,9, 2) can be written as follows:

a—by—cz—2 0 0
fy —py—A1 —ey [=0, (4.10)
mZ hz —82—-1

and the solutions of the equation (4.10) are:
A =a—by—cz
—(B9 +82) F y/(BY + 62)* — 492(BS + he)
L=
2 )

Ai=

2,3.
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Now, if (B9 + 82)? = 492(B5 + he), then A, and A5 are negatives, different or repeated roots.
Otherwise A,and 15 are complex conjugates with negative real parts. While A; < 0 if and only if
a<by+cz.
So that P; = (&, 0, 2) is locally asymptotically stable if and only if: a < by + cZ.
Similarly, as the proof of theorem 2, we get the following results:
Theorem 3: Suppose that §d > eg. Ifa* = by + cZ'is a positive number, then the equilibrium point
P =1(0,9,2) is:
1) locally asymptotically stable if d < d¥,
2) unstableif d > d”".
Proof: See the proof of Theorem 2.
8) The equilibrium point P, = (X, y, Z)
A1l o _ |4z 5 _ l4s|

whereX = —,y = ,Z =,
Al Al Al
y b ¢ a b ¢ y a ¢ y b a
A: e ﬁ _f ) A1: d ﬁ _f ) A2: e d _f], A3: e ﬁ d ]
m h -6 -g h -6 m —g —6 m h —g
exists if and only if:
|A[l4;] > 0,i =1,2,3. (4.11)

The characteristic equation of the matrix of Jacobi of the system (2.1) at the equilibrium point
P, = (X, ¥y, Z)can be written as follows:

—yXx—A1 —bx —cX
fy —By—1 —ey |=0. (4.12)
) _ mzZ hz —6Z2— 24
The equation (4.12) can be written as:
A3+ BjA* + B,A+ B3 =0, (4.13)

where:
B, =yX+pBy+6z
B, = (yB+bf)xy + (y§ + cm)Xz + (BS + he)yZ,
B; = [(6B + he)y + (f6 —em)b + (mpB + fh)c]XyZ.
The necessary and sufficient conditions to guarantee that the equilibrium point P, = (X, ¥y, Z2)is
locally asymptotically stable are:

B; >0,
{Ble > B,. (4.14)
5. NUMERICAL SIMULATIONS
Consider the following set of values of the parameters included in the model (2.1):

S={a=3b=1c=15d=02e=2,f=2,9g=01h=01m=02y=0508=0.1,8

=12}

The system of differential equation, that we obtain from the compensation of the parameters of the
set S in the model (2.1), has the following 8 equilibrium points:
P, = (0,0,0), P, =(6,0,0), P,=1(0,2,0), P;=(0,0,0.0833),
P, = (0.04878,2.97561,0), P; = (3.83333,0,0.72222) and Pz = (0,0.125,0.0.09375) which, are
unstable, while equilibrium points P, = (0.16995,2.71362,0.13427) are locally asymptotically
stable Figures-(1-4). Note that a* = 0.265625, so the point is unstable if a = 3 > a*and is locally
asymptotically stable if a = 0.2 < a*, Figures-(3 and 5).
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Figure 1-The trajectory of the system (2.1) with the parameters of the set S and the initial points
(0.04, 2.9,0.001 ) is located close to P4 and it is moving away from P, and approaching P-.
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Figure 2-The trajectory of the system (2.1) with the parameters of the set S and the initial points
(3.8, 0.001,0.7 ) is located close toPsand it is moving away from P5 and approaching P-.
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Figure 3-The trajectory of the system (2.1) with the parameters of the set S and the initial points
(0.00001,0.12,0.09) is located close toPgand it is moving away from P and approaching P-.
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Figure 4-The trajectory of the system (2.1) with the parameters of the set S and the initial points
(0.2,2.7,0.1) is located close to P and it is approaching P-.
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Figure 5-The trajectory of the system (2.1) with the parameters of the set §, 0.2 =a<a"' =
0.265625 , where the initial point (0.0001, 0.12,0.09) is located close to P¢ and it is approaching (..

0

7. CONCLOSIONS

In this work, we consider a modification of the chain food of Lotka-Volterra model for three
species, each of them grows logistically, which means that there is no death of any species in the
absence of the others. The model is a system of differential equations that has eight equilibrium points,
four of which always exist while the existence of the rest points depends on the fulfillment of the
conditions mentioned in section 4 of this work. The stability analysis of the equilibrium points shows
that five of the eight equilibrium points are unstable while the rest are locally asymptotically stable
under specific conditions mentioned in section 4 of this paper. Finally, an example is given in this
work, where the number of the equilibrium points was eight, with only one being locally
asymptotically stable.
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