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Abstract 

     In this work, we consider a modification of the Lotka-Volterra food chain model 

of three species, each of them is growing logistically. We found that the model has 

eight equilibrium points, four of them always exist, while the rest exist under certain 

conditions. In terms of stability, we found that the system has five unstable 

equilibrium points, while the rest points are locally asymptotically stable under 

certain satisfying conditions. Finally, we provide an example to support the 

theoretical results.     
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 مفترس-مع السلسلة الغذائية  فريسة Lotka-Volterraنموذج 
 

 عبدالخضر غالي فرحان
جامعة المستنصخية، بغجاد، العخاقالقسم الخياضيات، كلية التخبيه الاساسيه،   

 الخلاصه
 ها ينمهنلسلسلة الغحاء لثلاثة أنهاع ، كل نهع م Lotka-Volterra في هحا العمل ، نعتبخ تعجيلا لنمهذج      

لهجستياً. وججنا أن للنمهذج ثمان نقاط تهازن ، أربعة منها مهجهدة دائمًا ، بينما الباقي مهجهدة تحت شخوط 
قاط نمعينة. من حيث الاستقخار ، وججنا أن النظام لجيه خمس نقاط تهازن غيخ مستقخة ، في حين أن بقية 

 نا مثالًا لجعم النتائج النظخية.التهازن  مستقخة محليًا بأضطخاد تحت شخوط محجدة. أخيخًا ، قجم

 

1. INTRODUCTION 

     In 1920, Vito Volterra introduced his famous mathematical model of the equation that described 

the relationship between two reactive species. Volterra was interested in studying and analyzing the 

phenomenon of the increase of fish as a predator, and thus the decrease of fish as prey, in the Adriatic 

Sea, during the First World War. The Lotka-Volterra equation is a pair of first-order nonlinear 

differential equations that can be written as stated below [1, 2, 3]: 

 ̇          ̇            
     In the first article [1], an exogenous control in a model of population dynamics of two species was 

considered  on the level of predators only,  as follows: 

 ̇          ̇             
    The equation of Lotka-Volerra has been modified and studied by many researchers. Modifications 

are presented as a system of a pair of nonlinear differential equations of the first order, describing the 

prey and predator. It also involves aspects of logistic growth and carrying capacity of prey, carrying 

predator capability, and predator factor, as follows [3]: 

 ̇              ̇                 
or where the two species are grown logistically and compete with each other , as follows [4,5] :  

       ISSN: 0067-2904  



Farhan                                                               Iraqi Journal of Science, 2020, Special Issue, pp: 56-63 

 

75 

 ̇      (        )  ̇      (       )  
     which involves logistic growth and carrying capacity of prey, carrying predator capability, and 

predator factor. Other modifications were presented as a system of three nonlinear differential 

equations of the first-order. It describes the relationship between one prey and two predators,  in which 

the prey grows logistically, as in below [3, 6]: 

 ̇               ̇            ̇           
     According to this model, in the absence of the prey, the predators will be dying. In [7], a 

modification is presented as the following system of three  nonlinear differential equations of the first-

order, that describes the relationship between two prey and one predator, in which the prey grow 

logistically: 

 ̇            ̇           ̇              
     In [8], a prey-predator model was studied when there was a disease in the both species, and in [9] a 

mathematical model for two prey and two predators was studied, whereby all the species grow 

logistically. 

 In this paper, we propose a modified model of the Lotka-Volterra equation, which is a system of three 

dimensional first-order nonlinear differential equations. It describes the population dynamics of a food 

chain in which all species grow logistically, which means that there is no death of any species in the 

absence of other species. 

2. THE MATHEMATICAL MODEL 

Consider the mathematical model: 
 ̇    (           ) 

 ̇    (          ) 

 ̇    (          ) 

                                                                     (   ) 

of three species           . All Species grow logistically, as shown by the terms  (     ), (  
  ) and  (    ), where a , d, and g are the natural growth rates of x, y and z respectively;  
        are the natural deaths of            respectively; b and c are the rates of change of   due to 

the presence of          respectively;   and  f are the rates of change of y due to the presence of x and 

z; respectively ; h and m are the rates of change of z due to the presence of y and x, respectively. 

3. BOUNDEDNESS OF THE POSITIVE SOLUTIONS 

In this section, some sufficient conditions are provided, in order for  the positive solutions of the 

system (2.1) to be bounded. 

THEOREM 1: Suppose that               Then all the positive                                                     

solutions of the system (2.1) are bounded, if the initial point belongs to  , where: 

  *(     )                                                 + 
Proof: 

Consider the function: 

 ( )   ( )   ( )   ( ). 
 ̇   (           )   (          )   (          ) 

  (     )   (    )   (    )  
Now 

 ̇      (       )   (      )   (      )   (    )   (   )   (   )  
(    )  (   )  (   ) . 

So we have 

 ̇      (    )   (   )   (   )    

So that    ( )  
(    )   (   )   (   )  

 
  ( )    , and for t→∞, 

   ( )  
(    )  (   )  (   ) 

 
  

Thus, we have completed the proof of the theorem. 

4. EXISTENCE AND LOCAL STABILITY OF  THE  EQUILIBRIA POINTS 

     In this section, we will give the necessary and sufficient conditions for the existence of 8 

equilibrium points for the system (2.1) and  study  their local stability. The system has in origin an 

equilibrium point, three axial equilibrium points, three boundary equilibrium points, and one interior 

equilibrium point.                                
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 )                           (      ) always exists. 

Easy calculations show that the characteristic equation of the matrix of Jacobi at the equilibrium 

point   (     ) takes the following form: 

|
     
     
     

|                                                               (   ) 

It is clear that the solutions of the equation (   ) are: 

              and        
Since   is positive and       are negative, so   (     )is an unstable node point (source). 

 )                         (
 

  
, 0, 0)                

The characteristic equation of the matrix of Jacobi of the system (2.1) at the equilibrium points 

   (
 

  
,0,0) can be written as follows: 

||
     

  

 
 
  

 
     
     

||                                                           (   ) 

The solutions of the equation (   ) are: 

               and         

Since  is negative and      are positive, so   (
 

  
,0,0) is a saddle point (unstable). 

 )                         (  
 

 
   )                

The characteristic equation of the matrix of Jacobi of the system (2.1) at the equilibrium point  

   .  
 

 
   / is: 

|

     
  

 
     

  

 
     

|                                                      (   ) 

Thus the solutions of the equation (   ) are: 

               and        

Since    is negative and       are positive, so   (  
 

 
   ) is a saddle point (unstable). 

 )                          .    
 

 
/                 

The characteristic equation of the matrix of Jacobi of the system (2.1) at the equilibrium points 

   (    
 

 
 ) is written as follows: 

|

     
     
  

 

 

 
    

|                                                  (   ) 

Thus the solutions of the last equation  are as follows: 

              and         

Since    is negative and       are positive, so    (0,0,
 

 
) is a saddle point (unstable). 

 )                       

   ( ̃  ̃  )  (
     

     
 
     

     
  ) 

                       
                                                                                          (   ) 

     The characteristic equation of the matrix of Jacobi of the system (2.1) at the equilibrium point  

   ( ̃  ̃  ) is written as follows: 
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|

   ̃      ̃    ̃
  ̃    ̃      ̃
      ̃    ̃   

|                                              (   ) 

and the solutions of the equation (   ) are written as follows: 

   
 (  ̃    ̃)  √(  ̃    ̃)    ̃ ̃(     )

 
        

       ̃    ̃   . 

      Now, if (  ̃    ̃)    ̃ ̃(     )  then           are negatives, different or repeated roots. 

Otherwise          are complex conjugate with real part negatives, while         ̃    ̃   , 

so that    ( ̃  ̃  ) is a saddle point (unstable). 

 )                       

    ( ̅    ̅)  (
     

     
   
(     )

     
) 

                       
                                                                                (   ) 

     The characteristic equation of the matrix of Jacobi of the system (2.1) at the equilibrium point  

   ( ̅    ̅) can be written as follows: 

|
   ̅      ̅    ̅

     ̅    ̅    
  ̅   ̅    ̅   

|                                            (   ) 

and the solutions of the equation (   ) are written as follows: 

       ̅    ̅  

   
 (  ̅    ̅)  √(  ̅    ̅)    ̅ ̅(     )

 
        

     Now, if (  ̅    ̅)    ̅ ̅(     )  then           are negatives, different or repeated roots. 

Otherwise          are complex conjugates with negative real parts. While      if and only if 

    ̅    ̅  
So that    ( ̅    ̅) is locally asymptotically  stable if and only if     ̅    ̅  So we have the 

following result: 

Theorem2: Suppose that       If     ̅    ̅ is a positive number, then the equilibrium point 

   ( ̅    ̅) is: 

1) locally asymptotically  stable if        
2) unstable if       
Proof: 

It is easy to show that 
  ̅

  
   

  ̅

  
        

   

  
           

So that   ̅  ̅  ̅ and          are constants with respect to the parameter   

and the real parts of the eigenvalues    and    are always negative, while the eigenvalue   is negative 

if     ̅    ̅     and positive if     ̅    ̅      So the theorem is proved. 

 )                       

   (   ̂  ̂)  (  
(     )

     
 
     

     
) 

                       
                                                                     (   ) 

     The characteristic equation of the matrix of Jacobi of the system (2.1) at the equilibrium point 

   (   ̂  ̂) can be written as follows: 

|
    ̂    ̂     

  ̂    ̂      ̂
  ̂   ̂    ̂   

|                                  (    ) 

and the solutions of the equation (    ) are: 

       ̂    ̂  

   
 (  ̂    ̂)  √(  ̂    ̂)    ̂ ̂(     )
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Now, if (  ̂    ̂)    ̂ ̂(     )  then            are negatives, different or repeated roots. 

Otherwise          are complex conjugates with negative real parts. While      if and only if 

    ̂    ̂  
So that    ( ̅    ̅) is locally asymptotically  stable if and only if:       ̂    ̂  
Similarly, as the proof of theorem 2, we get the following results:  

Theorem 3: Suppose that        If     ̂     ̂is a positive number, then the equilibrium point  

   (   ̂  ̂) is: 

1) locally asymptotically  stable if        
2) unstable if        
Proof: See the proof of Theorem 2. 

 )                          (  ̌   ̌  ̌) 

       ̌  
|  |

| |
,  ̌  

|  |

| |
  ̌  

|  |

| |
  

  [
   
    
    

]     [

   
    
     

]     [

   
    
     

]     [

   
   
    

] 

                       
| ||  |                                                                             (    ) 

     The characteristic equation of the matrix of Jacobi of the system (2.1) at the equilibrium point 

   (  ̌   ̌  ̌) can be written as follows:                 

|
   ̌      ̌    ̌
  ̌    ̌      ̌
  ̌   ̌    ̌   

|                                        (    )  

The equation (4.12) can be written as: 

      
                                                                   (    ) 

where: 

     ̌    ̌    ̌  
   (     ) ̌ ̌  (     ) ̌ ̌  (     ) ̌  ̌ 
   ,(     )  (     )  (     ) - ̌ ̌ ̌  
The necessary and sufficient conditions to guarantee that the equilibrium point    (  ̌   ̌  ̌) is 

locally asymptotically stable are: 

 {
           
        

                          (    ) 

5. NUMERICAL SIMULATIONS 

Consider the following set of values of the parameters included in the model (2.1): 

  *                                                           
    +  

     The system of differential equation, that we obtain from the compensation of the parameters of the 

set   in the model (2.1), has the following 8 equilibrium points: 

   (     )    (     )    (     )    (          )  
    (                 ) ,    (                 )  and    (                 )which, are 

unstable, while equilibrium points    (                       )   are locally asymptotically 

stable  Figures-(1-4). Note that             , so the point is unstable if       and is locally 

asymptotically stable if         ,  Figures-(3 and 5). 
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Figure 1-The trajectory of the  system (2.1) with the parameters of the set   and the initial points 

(               ) is located close to    and it is moving away from    and approaching     

 
Figure 2-The trajectory of the system (2.1) with the parameters of the set   and the initial points 
(              ) is located close to  and it is moving away from    and approaching     

 
Figure 3-The trajectory of the system (2.1) with the parameters of the set   and the initial points 
(                 ) is located close to  and it is moving away from    and approaching     
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Figure 4-The trajectory of the system (2.1) with the parameters of the set   and the initial points 

(           ) is located close to    and it is approaching     

 
Figure 5-The trajectory of the system (2.1) with the parameters of the set  ,          
         , where the initial point (                ) is located close to    and it is approaching     
 

7. CONCLOSIONS 

     In this work, we consider a modification of the chain food of Lotka-Volterra model for three 

species, each of them grows logistically, which means that there is no death of any species in the 

absence of the others. The model is a system of differential equations that has eight equilibrium points, 

four of which always exist while the existence of the rest points depends on the fulfillment of the 

conditions mentioned in section 4 of this work. The stability analysis of the equilibrium points shows 

that five of the eight equilibrium points are unstable while the rest are locally asymptotically stable 

under specific conditions mentioned in section 4 of this paper. Finally, an example is given in this 

work, where the number of the equilibrium points was eight, with only one being locally 

asymptotically stable.  
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