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Abstract

The aims of this paper is investigating the spread of AIDS both within-host,
through the contact between healthy cells with free virus inside the body, and
between-host, through sexual contact among individuals and external sources of
infectious. The outbreak of AIDS is described by a mathematical model consisting
of two stages. The first stage describes the within-host spread of AIDS and is
represented by the first three equations. While the second stage describes the
between-host spread of AIDS and represented by the last four equations. The
existence, uniqueness and boundedness of the solution of the model are discussed
and all possible equilibrium points are determined. The local asymptotic stability
(LAS) of the model is studied, while suitable Lyapunov functions are used to
investigate the global asymptotic stability (GAS) of the model. Optimal control
strategy is used to control the outbreak of AIDS. Finally, a numerical simulation is
carried out to confirm the analytical results and understand the effects of varying the
parameters on the spread of disease.

Keywords: HIVMAIDS, AIDS within-host body; AIDS between-host individuals,
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1. Introduction

The Human Immunodeficiency Virus (HIV) causes a disease that attacks the human immune system
and destroys white blood cells. This disease is still a major threat to human life for the last three and
half decades. Since its discovery in the early 1980, tremendous research works on how to contain or
eradicate the disease were carried out [1]. It is an acute intestinal infectious disease caused by an
Acquired Immunodeficiency Syndrome (AIDS) as a result of HIV infection. Statistics for the last few
years show an outbreak that affected 38.8 million and caused a mortality rate of 1.2 million in 2015,
with the infection rate being relatively constant at 2.6 million per year from 2006 to 2015 [2].
Mathematical modeling of viral infections has led to enhance the understanding of virus dynamics and
helped in predicting and controlling the spread of viral diseases such as HIV and hepatitis A, B, and C.
The first epidemiological model on HIV was studied in 1985, followed by many studies [3-9]. Knox
[3] studied the transmission of AIDS, while Anderson et al. [4] described some preliminary attempts
to formulate mathematical models of the transmission dynamics of HIV infection in homosexual
communities. Anderson [5] reviewed the role of mathematical models in the study of HIV
transmission, the epidemiology and demographic impact of AIDS, and the course of infection within
an individual. Mohsen [6] proposed and studied the dynamics of a mathematical model of HIVAAIDS
involving the effects of external sources. In another study [7], Pourbashash et al. described a new
within-host model of HIV infection that incorporates two mechanisms, namely the infection by free
virions and the direct cell-to-cell transmission, and then investigated their global stability. Agosto et al.
[8] discussed recent data which suggest that contact-mediated transmission largely manifests itself in
vivo as CD4+ T-cell depletion. A deterministic model that incorporates prophylaxis was developed by
Tireito et al [9] to assess the impact of the use prophylaxis on the transmission of HIV/AIDS.

Anderson [10] summarized the major themes that had emerged from mathematical and statistical
research on the epidemiology of HIV over the past years. Kirschner and Webb [11] investigated the
strategies of monotherapy treatment of HIV infection in the presence of drug-resistant (mutant) strains.
DeBoer and Perelson [12] developed various mathematical models of the clinical latency stage of
HIV-1 infection, assuming that this infection is limited either by the availability of cells that HIV can
infect or by a specific anti-HIV cellular immune response. Culshaw and Ruan [13] simplified an ODE
model of cell-free viral spread of HIV into one consisting of only three components, namely the
healthy CD4" T-cells, infected CD4" T-cells, and free virus. They discussed the existence and stability
of the infected steady state and then introduced a discrete time delay to the model to describe the time
between the infection of a CD4" T-cell and the emission of viral particles on a cellular level. Culshaw
et al [14] presented an optimal control model of drug treatment of HIV. Naji and Ahmed [15]
considered a model of epidemic disease, assuming that infection is spread directly from infected to
susceptible individuals, and described the effects of immigrants. Roxana [16] studied the effects of age
and social structures on S/ epidemic models with specific applications to HIV epidemics in Peru and
USA. Joshi et al. [17] formulated a model to investigate the effects of information and education
campaigns on HIV epidemic in Uganda. Naji and Ahmed [18] proposed and analyzed a mathematical
model for infectious diseases with effects of external sources of disease. Feng et al [19] presented a
new model that allows the two dynamic processes, i.e. within-host and between-host, to explicitly
depend on each other. They showed that new properties can emerge and more complex dynamics may
be expected from the coupled system. Ali et al [20] proposed and investigated a mathematical model
for HIV-1 infection with multiple delays. Mastahun and Abdurrahman [21] formulated a deterministic
model of HIV/AIDS with infective immigration, while this model was then extended to include
several control efforts aimed at reducing infection and changing behavior. Recently, Tarfulea [22]
proposed an HIV infection and age model that considers virus-to-cell and cell-to-cell infections and
immune responses.
Keeping the above in view, this paper proposed and analyzed a mathematical model that describes

the spread of AIDS according to two strategies, namely within-host and between-hosts.
2. Modeling Formulation

It is well known that HIVAAIDS type of disease can be transmitted in two stages. The first stage
being inside of the body of human by means of direct contact between the healthy cells and virus.
While, the second stage is the spread of the disease between the individuals by direct contact , i.e.
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sexual transmission, as well as through external sources of infection such as blood and dental and
tattoo tools. Hence, the mathematical model of this type of disease can be represented by the seven
nonlinear ordinary differential equations described in the following sections along with their related
systems.

x=A-[xV —mx

=pxV —(m+d)y
V=ed+ py-nV—pxV
S=y -09SA—0,SC - 0,8 — uS (1)

C=0ySA+0,SC+0,S—(u+¢)C
I=eC—(u+y)l
A=V +0l+pC—(u+a)A
System (1) can be divided into two subsystems; the first subsystem consists of the first three

equations, which represent by system (2). It is called the within-hosts system and can be describe as
shown in Figure 1.
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Figure 1: Block diagram of the within host system
Consequently, the following equations can be written to describe the within-host system:

X=A-pxV —mx

y=pxV—(m+d)y )

V =ed+py—nV —pxV

where the variables x, y and V represent the number of healthy cells, infected cells and virus level,

respectively. Note that all the parameters of system (2) are positive constants and they stand for the
following: A is the birth rate of the healthy cells, S is the infection rate by direct contact between
healthy cells and virus level so that both the number of healthy cells and the virus level are
decreasing[23-25], m is the natural demolition rate for x and y dis the disease related death rate
from y, n is disappearance rate of the virus, p >0 represents the increase of virus level due to
spreading from infected cells, e >0 is the production rate of AIDS class A that is assumed to be
constant in system (2). On the other hand, the second subsystem of system (1) consists of the last four

equations, which represent by system (3). It is called the between host-system and can be represented
as shown in the Figure 2.
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Figure 2: Within-host and between hosts, only considering direct contact between susceptible and
carrier individuals

S =y —6ySA—01SC —5,S — uS
C=0¢SA+0,SC+0,S —(u+¢)C
I=sC—(u+y)I

A=V+0I+pC—(u+a)d
where the variables S, C, I and 4 denote the number of susceptible individuals, carrier individuals,
infected individuals and the AIDS class at time ¢, respectively. Here, >0 is the birth rate for

®)

susceptible individuals, o©; >0, i=0,1represent the infection rate due to contact between the
susceptible individuals with AIDS individuals and carrier individuals, o, > 0 is the external source of
infection, u >0 is the natural death rate, £ >0 is the transform rate of disease from carrier to
infected individuals y >0 is the death rate due to the disease, V' >0 is the virus level, which is
assumed to be constant in system (3), € and p represent the increase of AIDS class due to the

infected and carrier individuals, respectively. Finally, & >0 represents the death rate of AIDS class
due to the disease. Now, for any point of time #, let the total population be denoted by &, such that
N=S+C+I+4, then due to the biological meaning of the variables S, C, I and A4, system (3) is defined
on the region Q= {(S,C,I,A):S >0,C>0,1>0,4> 0}, which is a positive invariant for the
system (3).

From now on, for fixed value of AIDS class (A4), system (2) is called the fast system and denoted
by FS. However, for fixed value of virus level (V), system (3) is called the slow system and denoted
by SS.

3. Existence and number of equilibrium points

In this section, the existence and boundedness of the solutions of systems (2) and (3) in addition to
the existence of equilibrium points are discussed.
3.1 The FS analysis

It is well known that, due to the biological meaning of the variables in the FS, the solution is
positive and bounded. Moreover, the FS has the following equilibrium points.

1. If V' =0, then the FS has an equilibrium point called the virus free equilibrium point and denoted

by Ey = A, 0, 0 ), which is trivial and hence the analysis around it is omitted.
m

2. If V' #0, then the FS has a positive equilibrium point (PEP) that is denoted by E; = (x;,,/])
where
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A
- 4
X1 BV +m (4a)
AV,
y = AV (4b)
(m+d)(BV)+m)
Vo= _h_2_—Vh22_4hlh3 (4c)
Y 2,

where

hy=-np(m+d)<0
hy = B pA+(m+d)(eAB —nm — BA)
hy =emA(m+d) >0
Clearly, as the AIDS class A is assumed to be constant in FS, the positive equilibrium point E

always exists whenever V' #0.
3.2 The SS analysis
In this subsection, the existence, uniqueness and boundedness of the solution of SS are
investigated. Further, the possible equilibrium points are determined. Now, since the right hand side of
the equations of system (3) are continuous and have a continuous partial derivative, the solution of SS
exists and unique. Further, the following theorem investigates the boundedness of the solution of SS.
Theorem 1. All solutions of SS with nonnegative initial conditions are bounded if the following
sufficient condition holds.
u>min.{p,86 —y} (5)
Proof: Let (S(¢),C(¢),1(¢t), A(t)) be any solutions of SS and let N =S+C+ 17+ A, then for any
constant value of virus level IV we obtain:
N=S+C+I1+4
N=y—-uS—u-p)C—u+y—0I+V-(u+a)A
N+m*N<yp+V

To solve the above inequality and by applying the Gronwall lemma we have:
P+v

N =S

where m* = min. {u — p,u +y — 6}
Hence the proof is complete

Now, the existence conditions of all possible equilibrium points of SS are determined. Obviously,
SS has two equilibrium points. The 1% point always exists, when C = 0 and A = 0, that implies that
the virus level, which is assumed to be constant in SS, is equal to zero (i.e. V = 0). This is called the
disease free equilibrium point (DFEP) and denoted by E, = (S,,0,0,0) = (%, 0, 0,0). However, in
case A#0 and C# 0, then for any constant value of V, the 2™ point, which is known as an endemic
equilibrium point (EEP) and denoted by E; =(S3,C;5,13,43), is obtained such that S3,C3, /3 and

Az are given by:
kq1—kyS:
C; = _1k352 3 (6a)
_ &(k1—k;S3)
Is = (u+y)k3S3 (65)
A = V(u+y)k3S3+[0e+p(p+y)](k1—k,S3) (6¢)

(ut+a)(u+y)ksSs
where k4, k, and k3 are given by:

ki =9u+a)n+y)

ky =@ +py)[u+a)u+oz) —ooV]

ks =ool0e+pu+V]+am+a)u+y)
While, S5 is a positive root for the second order equation
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DyS3 + D83+ D3 =0 (6¢)
where
Dy = ooV + o2(u + &)l + Yk — [0 + p(u + ) + (u + ) (1 + y)]o1ks
Dy =[8e+pu+y)+(+a)(u+yloks + (+a)(u+y)(u+ ek,
Dy=—(u+a)u+y)u+ek, <0
Consequently, the endemic equilibrium point E5 exists uniquely in the interior of RY under the
following conditions
k1 > szg (73)
[ooV + o2 (u+ )l + V)ks > [0 + p(u+v) + (1 + ) (1 +V)]oik, (7b)
4. Local stability analysis of FS and SS
In this section, the local stability analysis of the possible equilibrium points in FS and SS is carried
out using the linearization method, as shown the following theorems. Recall that, the method of

linearization depends on the calculation of the Jacobian matrix at each point E;, i =1,2,3 along with
their eigenvalues.

Theorem 2. The positive equilibrium point E; of FS is locally asymptotically stable (LAS) if the
following condition holds.

p<m+d (8a)
Proof: The Jacobian matrix of FS at E; can be written as:
—(BVy +m) 0 —Bx1
J(ED) = BV1 —(m +d) Bxy (8b)
—BV1 p —(n + Bx1)
Clearly, the characteristic equation of J (£} ) is:
23+ B2* + ByA+ By =0 (8¢)

where

Bi=BV;+x)+2m+d+n>0

By, = (Vi +m)(m+ d) + (BVy + 2m + d)(n + Bxy) — Bx1(BV1 + p)

Bs =n(BV; + m)(m + d) + mBx;(m +d — p)
Furthermore, A= B; B, — B3 can be written as:

A= (BVy + m)(m + d)[BV; + 2m + d]

+[(BVL +m) + (n + Bx)I[(BVL + m)n + mPBxy]
+[(m+d) + (0 + px)I[(m + d)n + Bxy(m + d — p)]
+2(BVy + m)(m + d)(n + Bx;) — pBZx1Vy
Straightforward computation shows that B; and A are positive under the condition (8a) and hence

by using Routh-Huriwtz criterion, all the eigenvalues of J(E;) have negative real parts. Thus the

positive equilibrium point E; of FS is LAS. |
Theorem 3. The DFEP of SS that given by E, = (53, 0,0,0) is LAS if the following conditions hold:
0'152 < )2 + ¢ (93)
pooS: + (w+a)(u+e) <015+ a) (9b)
&l < po, (9¢)
ebag(oy + p) < oy (u+y)(u+ @) (9d)
poo + o1(u + €) < o1(02 + 1+ 0152) (%e)
H, < H, (99
Proof: The Jacobian matrix of SS at DFEP can be written as:
J(E) = (Cij)4x4 (10a)
here ¢13 = —(02 + 1), €12 = —0152, C14 = —00S2, C21 = 02, C22 =015, — (L +€), C24 = 0pS2,

€32 =¢&,¢33=—(U+Yy),ca2=p,ca3=0and cyy = —( + ).
Then, we can write the characteristic equation of above matrix in the following format:

G +GA? +GA+ Gy =0 (10b)

Where
G1 = —(c11 + €22 + €33+ Caa)
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Gy = c11(C22 + €33 + C44) + C33(C22 + Caa) — C12C21 + C22Caa — C24Ca2

Gz = —C11C33(Co2 + Caa) + C12C21(C33 + C44) — (€11 + €33)(C22Caa — C24Ca2)
—C€21C42C14 — C32€43C24

Gy = €11C33(C22C44 — C24C42) + €21€14(C33Caz — C32C43) + €11C32C24C43 — C33C44C12C21

Then

G1G, — G3 = —(c11 + €2 + €33 + C4a) (€22 + Caa)(cq1 + C33)

— ¢11€33(C11 + €33) — (a2 + €4a) ((C22Caa — C24C42)
+C32€43C24 + €21 (Caz€14 + €12€11 + €12C22)

Furthermore

A= G5(G,G, — G3) — G12G4

= Hy(H, — Hy) + Hs

here

Hy = —c11¢33(C22 + Caa) + €12€21 (€33 + Caa) — (€11 + C33)

(€22€aa = C24Ca2) — C21C42C1a — C32Ca3Ca4
Hy = —(c11 + €22 + €33 + Caa)lc11(can + €33 + C4a) +

C33(Ca2 + Ca4) — C12C21 + C22Cas — C24Ca2]
Hs = (c1 + Ca2 + €33 + Ca4)?[C11633(C22Caa — C24Ca2)
+¢21€14(€33Ca2 — €32Ca3) + €11€32€43C24
—C33C44C12C21
Clearly, it easy to see that, G;,i=12,3,4; G|G,—G3, and A are positive under the given
conditions. Thus by using Routh-Huriwtz criterion for above characteristic equation, all the
eigenvalues of the Jacobian matrix of SS at £, will be either negative or having negative real parts if

and only if the conditions (9a)-(9f) hold. Now we get from above result that, the DFEP point of SS is
LAS. ]
Theorem 4. The EEP of SS that is given by E3 = (S3, C3, I3, A3) is LAS when the following condition
is satisfied:

(H+e)>018; (11a)
u> max.{20'1S3 +p0,0—-v,20(53 — a} (11b)
Proof: The Jacobian matrix of SS at EEP can be written in the following form:
e e 0 ey
e epn 0 ey
J(E3)=
0 €3y €33 0
0 eqn eq3 ey
here
e =—(0gA3 +01C3+0,+ 1) 5 €y =—0183 5 €4 =—0(53 3
ey = 0043 +01C3+0, 5 ey =013 (U +8) 5 €4 =053 ;
ep=¢ie3=—(U+y)iep=prepn=0;ey=—(u+a)
Now, according the Gershgorin theorem [26], if the following condition holds:

4
leii| > Z
i=1
i#j

=P, (11¢)

€jj

then, all the eigenvalues of J(Ej3)exist in the disc centered at e;; with radius P;. Thus, if the

diagonal elements are negative and the condition (11b) holds, all the eigenvalues will exist in the left
half plane and the EEP of SS is LAS. Clearly, conditions (11a)-(11b) guarantee the existence of all
eigenvalues in the left half plane, and the proof follows.
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5. Global stability analysis of FS and SS

In this section, the global asymptotic stability (GAS) of all equilibrium points £;,i=12,3 in the
FS and SS is investigated. The conditions that satisfy the global stability are determined in the
following theorems by utilizing Lypunov function (Lyp. fun.).
Theorem 5. Let PEP that is denoted by E; of FS be LAS, then it is GAS if the following sufficient
conditions hold.

(BV P < (BV; +m)(m +d) (12a)
(Bx+pf <(m+d)(Bx+n) (12b)
[B(x — V)]? < (BVy + m)(Bx +1) (12¢)

Proof: Consider the following positive definite function:
PR St ) N Ve 1) N Ul Y
2 2 2
Clearly, K| :Ri — R is a continuously differentiable function such that Fj(xj,y;,/7)=0 and
F(x,»,V)>0, for all (x, y,V) # (x1, ¥1,V7) . Then we have
A =(x=x)i+y=y)y+¥ -1V

= _%(ﬁVl +m)(x—x1)2 +ﬁV1(x—x1)(y—yl)—%(m +d)(y—y1)2

—%(ﬁVl +m)x—x)’ —ﬁ(x—Vl)(x—xl)W—Vl)—é(ﬁxm)(V—Vl)z

A= + (B =0 =)= (B 1)

2
A < {,/ﬂ”%w—xl)—,/m%d(y—yl)}

2
{ B ¢+ ﬁX;”W—VI)}

2
{ mT“’w—yl)—,/ﬁx;”(V—Vl)}

Therefore, Fl <0, and then F] is (Lyp. fun.) with respect to E; of FS. Hence, this point is a GAS,
provided that the conditions (12a-12c) hold.
Theorem 6. Let the DFEP that is denoted by E; of SS is LAS, then it is a GAS, if the below sufficient
conditions are satisfied.
u > max{o,S, — a,p + 0,5,,0 —y} (13a)
%(S - 52)2 > O'zSz +V (13b)
Proof: Consider the following positive definite function:

F, =[S—S2 —S21n£j+C+I+A
Sy
Now, F» :Rﬁ — R,is a continuously differentiable function such that F5(S,,0,0,0)=0 with
F(S,C1,4) >0, for all (S,C,1,A4)+#(S,,0,0,0). Then by the derivation of F, with respect to
time, we have
F < —4S—=5)*— (u+ a—0pS)A— (u—p —0,5,)C
—(u+y—-0)I+0,5,+V
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here V represents any constant value of virus level in SS, which is bounded due to boundedness of
FS. Therefore, F, < 0 under the given conditions and hence F, is (Lyp. fun.) with respect to DFEP of

SS under the sufficient conditions (13a)-(13b). Hence, the DFEP is a GAS, and the proof is complete.
Theorem 7. Let the EEP that is denoted by E3 of SS is LAS, then it is a GAS if the following
sufficient conditions hold.

oS<u+e (14a)

(O'0A3 +O'1C3 + 0y —0'15)2 < %(0'0143 +O'1C3 +0,+ /l)(/l +& —O'lS) (14b)
2 2

€ <§(u+8—615)(u+7) (14c)

(005 + PP <5 (45 = S)u+ ) (14d)
, 2

0 <§(u+}/)(u+a) (14e)

(0057 < 2(G0ds +01Cs + 0+ )1+ @) (14

Proof: Consider the following positive definite function:

Fu - (S -85 N (C-G) N (1-13) N (4- 43)

2 2 2 2
Clearly, F3 :R_i1 — R, is a continuously differentiable function such that F3(S3,C3,13,43)=0

and F3(S,C,1,A4) >0, for all (S,C,1,A4)+#(S;,C5,13,43). Clearly, the derivation of F3 with
respect to time shows that:

B =(S-83)S+(C-C3)C+(I-13)i +(A4- 43)4
Therefore, using SS equations gives that:

. 1 1
F = _Ekll(s — 83 +kip(S —53)(C—C3)—§k22(C—C3)2

1 1
—gkzz(C—Q)z +ho3(C— C3 N1 —13)—51‘733(1—13)2
1 1
—gkzz(C—C3)2 +k24(C—C3)(A—A3)—§k44(A—A3)2
1 1
—5k33(1—13)2 +k34(1—13)(14—143)—5/(44(14—143)2

1 1
—Eku(S -S3F —k14(5—53)(A—As)—§k44(A—A3)2

where kn:O_OA3+0_1C3 +O_2+IU, k12=O_OA3+O_1C3+O_2_O_1S, k22=ﬂ+g_O'IS,
kyy=¢,kyy=0,S+p, kss=pu+y, k3a=0, kjy =0,S and kyy = 1+ a . Hence

B < —%{\/H(S —&)—@(C—Q)}z —%{ %%(C—Q)—\/E(I—@)T

_%{\/H(s —Sy)+ @(A —A3)_2
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Therefore, F3 <0, and hence F5 is (Lyp. fun.) with respect to E3 of SS. Hence, this point is a GAS,

provided that the conditions (14a-14f) hold.
6. Optimal control strategy of the SS

Based on the above outcomes, AIDS epidemic will become a serious problem that threatens the
lives of human beings population in the absence of any controlling measures. Clearly, the idea here
from the controlling strategies is trying to reduce the outbreak of the epidemic, which will be achieved
through the proposal of some solutions by adding special variables for the proposed system (i.e. SS).
In this section, the handy tool of optimal control, described in a previous work [27], is used for
controlling the spread of an epidemic through adding two control variables to the SS. The first
variable represents the government potential that plans to prevent the spread of the disease, denoted by
u,(t) € [0,1], which is a Lebesque integrable control function. Moreover, the media will be a second
Lebesque integrable control function, denoted by u,(t) € [0,1], and its role is mainly increasing the
awareness of the population. Taking into account the extensions made above, (1 — uy), (1 — uy) will
be still out of control for government potential and awareness of population, respectively. System (3)
is modified to an optimal control system as described in the following system:

S=y —oo(l-u))SA—o|(1-u))SC-0o,(1-uy)S — uS
C= oo(l-—u))SA+o1(1-u))SC+0o,(1—uy)S—(u+¢)C
I=eC—(u+y)I
A=V +01+pC—(u+a)d
Our goal is minimizing the number of people who become infected by sexual contact or any

external source, along with minimizing the effort provided by the government potential and awareness
of population as well. For this end, we try to minimize the objective (cost) function which is given as:

tr
r 7.
Cr(uy,uy)= j {rOC(t) +RI(t)+ R A(t) + %uf(t) + 34u§ (t)}dt (15b)
0
where tf is the maximum of time interval for computing the objective function. The constants 7y, 7

(15a)

and r, are positive weight constants to establish a balance in size of carriers, infected individuals, and
AIDS class, respectively. However, the constants 73 and 74 are the cost weights associated with the

controls u; and uy, respectively. According to system (15a), a linear function for the costs arising

from the carriers, infected individuals, and AIDS classes is selected. However the relationship between
these interventions (government potential and media awareness of population) and their corresponding
costs is assumed to be nonlinear and hence a quadratic cost on the controls is chosen. Consequently,

we need to find the optimal control variables uik and u; such that:

Cr(uy ,u5) = min{Cr (uy, 1, )} (15¢)
with the admissible control set
Q= {(ul,uz)e (LOO(O,Z‘f))|O < Ml(t) < ulmaX,O < uz(t) < uzmax,t S [O,tf]} (15d)

Then to derive the optimality conditions for the SS, the following Hamiltonian function with respect to
control variables is used:

H=L+Y,4g (15¢)
where L is the Lagrangian given by

L =1,C(t) +rI(t) + n,A(t) + % [rsu? + ru?]
and

91=59.=Cg3=19,=4
Now, we rewrite Eq. (15¢) in the following format:

H =1, C(t) + RI(1) + A() + %uf (t) + %‘u%(t) + 1S + AoC + Mgl + A4 A (159)
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Therefore, to derive the necessary conditions for the optimal problem, the Portraying Maximum
Principle to the Hamiltonian that is given in Eq. (15f) is used, so that if (Z*,u;*) for i = 1,2 is an
optimal solution of an optimal control problem (15a), then there exists a non-trivial vector function

Alt) = (2,1 (), 4 (1), 4(1), A4 (t))T satisfying the following conditions:

. QH(tZuA)
Z= aa
_ OH(tZuA)
0= — (15g)
= AH(t,Z,u,7)

9z
where Z = (S,C,1,A)T and u = (uy,u,)". Now, by applying the Pontryagin’s Maximum Principle,
the optimization problem described above is converted to the problem of finding the point-wise
minimum relative to u; and u, of the Hamiltonian given in Eq. (15f), as shown in the following
theorem.
Theorem 8. Given the optimal control variables (u;*,u,*) and the corresponding solution of system
(15a), that are denoted by (S*,C* I*,A*), that minimize the objective function (15b) over the

admissible control set (), then there exist adjoint functions A; for [ =1,2,3,4 satisfying:

o =M+ (g = 2)oo(l=u) A+ (A = 2p)o1(1—u)C + (A = ) (1—uy)

Ay =1+ Ay (u+8)+ Loy (1—up)S" = Iae = Ayp (15h)

A3=—n+2a(u+y)— 140
Ay =1+ X(u+a)+ (4 = X)og(l-u)S
with transversality conditions A;(¢ f) =0 for i=1,2,3,4. Moreover, the optimal control pair is
given by the continuous functions

u,*(t) = min {ulmax, max{

0 (12—Al)aos*A*+(12—11)015*C*}}
’ T3

(A3=21)0,S™

)

Proof: The existence of an optimal control was confirmed by Fleming and Rishel [28]. Moreover, to

obtain the adjoint equations (15h) as well as their transversality conditions, we differentiate the

Hamiltonian that is given by Eq. (15f), with respect to S(z),C(¢),1(¢) and A(t), respectively, then

substitute that S(t) =S*, C(t) =C*, I(t) =1" and A(t) = A*. While, by solving ;TH =0 and
1

OH

P 0 on the interior of the admissible control set and using the property of the control space, we
2

get:

(15i)
u, " (t) = min {uZmax, max {0,

(A3=241)0gS*A* +(A—A1)a.S*C*
T3

u"(t) =

. 15j
(1) = Bt "
Thus the proof is complete.
8. Numerical simulation

In this section, numerical simulations are carried out in order to confirm our obtained results and
understand the effects of varying parameter values on the dynamics of the systems. The following set
of hypothetical parameter values is used, and then the systems are solved numerically starting from

different sets of initial data. The obtained trajectories are drawn using Matlab version 8.

A=750,3=0.001,m=0.01, p=01,d=0.1,n=0.1

(16a)
e=0.13, 4=900
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Figure 3: Phase plot of the trajectory of FS for the data given by Equation (16a). The
trajectory approaches asymptotically to PEP in the FS starting from two different initial points.

Obviously, the phase plot illustrated in Figure 3 shows that the PEP of the FS that is given by
E; = (1466,6684,501) is globally asymptotically stable, which confirms our obtained analytical
results.

Now, for the following set of data, it is observed that the SS has a globally asymptotically stable
DFEP given by E, = (10000, 0, 0,0).

v =1000, o, = 0.00001, 0y =0.0001,0, =0, u=0.1,e=1

y=0.1,0=0.0001, p=0.0001,x=0.1,V=0
a b
@ 2000 ®)
1500
8000
2
£ 2
S 6000 £ 1000
9 =
2 9]
(72}
4000
500
— 3500
2000 1000
0
0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000
Time (in Days) Time (in Days)
(3 d
3000 © 3000 @
==
2500 2500 So0
2000 2000
-
2 @
2 1500 2 1500
] <
1000 1000
500 500 \¥
0 0
0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000
Time (in Days) Time (in Days)

Figure 4: The time series for the trajectories of SS for the data given by Eq. (16b) starting
from different initial points: (3500, 2000, 1000, 3000) and (1000, 500, 3000, 500) (a)
Trajectories of S(t). (b) Trajectories of C(t), (c) Trajectories of I(t), (d) Trajectories of A(t).

However, for the following data set, it is observed that the trajectory of SS approaches asymptotically

to the EEP given by E; = (378,2405,3608,1386), starting from different initial points: (3500, 2000,
1000, 3000) and (1000, 500, 3000, 500).
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w =1000, 5, = 0.0001 , 5, =0.001, &, = 0.0001

(16¢)
u=0.1,6=03,y=0.1,0=0.01,p=001,2=0.1,V=06
a b
3500 ® 5000 (b)
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3000 1000
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2500
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— 1000
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Figure 5: The time series for the trajectories of SS for the data given by Eq. (16c) starting
from different initial points: (3500, 2000, 1000, 3000) and (1000, 500, 3000, 500) (a)
Trajectories of S(t). (b) Trajectories of C(t), (c) Trajectories of I(t), (d) Trajectories of A(t).

Now, the effect of the control variables is discussed, using three types of strategies: the first is
given by the control of the government only, which is called strategy (a) (i.e. uo =0), the second is
the control by the media only and called strategy (b) (i.e. ¥} =0), and the third strategy is the control
by both government and media, which is termed strategy (c).

a b
5000 @ 4000 (b)
= Without Control

4300 === With Control by Strategy (a) 3500

4000 3000
e -
3 2
£ 3500 2 2500
= —
o =

3000 2000

2500 1500 === Without Control

= With Control by Strategy (a)
2000 1000
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Time (in Days) Time (in Days)
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Figure 6: The time series for the trajectories of SS with control strategy of type (a) using data
given by Eq. (16¢) with u; = 0.5 (a) Trajectories of C(t), (b) Trajectories of I(t), (c)
Trajectories of A(t).
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Figure 7: The time series for the trajectories of SS with control strategy of type (b) using data
given by Eq. (16c) with u, = 0.9 (a) Trajectories of C(t), (b) Trajectories of I(t), (c)
Trajectories of A(t).
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Figure 8: The time series for the trajectories of SS with control strategy of type (c) using data
given by Eq. (16c) with u; = 0.6 and u, = 1 (a) Trajectories of C(t), (b) Trajectories of I(t),
(c) Trajectories of A(t).

According to the above three Figures (6-8), the control given by strategy (a) reduces the outbreak
of the epidemic, as shown in Fig. (6). However the control given by strategy (b) has a small effect on
the outbreak of the epidemic, as shown in Figure-7. Finally, the control given by strategy (c) reduces
the outbreak of the epidemic more than that happened in strategy (a), as shown in Figure-8.

Furthermore, in order to discuss the effect of varying the infection rate due to contact with AIDS on
the dynamical behavior of system SS. we solved it for different values of infection rates g, =
0.000001, 0.003 respectively, keeping other parameters fixed as given in Eq. (16¢). Then the solution
of SS was drawn in Figures (9a)-(9b), without applying control measures respectively. However, Fig.
(9¢) shows the effect of the control parameter u, with the same value of g, .

(b)
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S50 (a) 6000
S S
c 5000 w—C
4000 1 y
pe— A
A 4000
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= 3000 /N

1000 N Ill[)ll[
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0
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S
<
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=3
S
S

0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Time Time
6000 ©
s
5000 C
1
A
= 4000
=
= 3000 \
s
& 2000
1000
0
0 1000 2000 3000 4000 5000 6000

Time
Figure 9: The time series for the trajectories of SS using data given by Eq. (16c). (a)The
trajectories with o, = 0.000001, (b) The trajectories with o, = 0.003, (c) The trajectories
with 6, = 0.003 and u; = 0.9.

Similarly, the effect of infection rate due to contact between susceptible individuals and carrier
individuals on the dynamical behavior of system SS is investigated. The SS is solved numerically
for different values of infection rates oy = 0.00001,0.002 respectively, and the obtained
trajectory is drawn in Figs. (10a)-(10b), without applying control. However, Figure (10c) shows
the effect of the control parameter u;with the value of 4 = 0.002 .
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Figure 10: The time series for the trajectories of SS using data given by Eq. (16¢). (a) The
trajectories with o; = 0.00001, (b) The trajectories with o, = 0.002, (c) The trajectories
with 04 = 0.002 and p; = 0.8.

9. Discussion and Conclusions

In this article, a mathematical model that describes the spread of the human immunodeficiency
virus (HIV) or the AIDS epidemic is proposed and studied. It is assumed that the disease is spreading
through two stages. The first stage takes place inside the body due to contact of the healthy cells with
free virus, and it is called the within-host stage. While, in the second stage, the disease spreads among
the individuals by direct contact and external sources of infection. For the simplifying the study of the
proposed model, the system is divided into two systems. The first system, which is called the within-
host body system or Fast system (FS) is obtained when we assume that the AIDS class is constant.
While the second system which is called the between-host or slow system (SS) is obtained when the
virus level is assumed to be constant. The existence, uniqueness and boundedness of the solutions of
these models are discussed. The possible equilibrium points in both systems are determined. The local
stability analysis of these systems is studied. The sufficient conditions for the global stability of these
systems are obtained. In order to control the outbreak of such disease, two different optimal control
variables (the effort of government potential and awareness of population) are determined analytically
with the help of Pontryagin’s Maximum Principle. Finally, numerical simulations were used to
illustrate the effects of varying the parameters set on the dynamical behavior of the FS and SS in two
cases when there is no control and in the case of the existence of constant control values. It is observed
that the existence of constant control value causes reduction in the AIDs class.
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