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Abstract

In this research, an unknown space-dependent force function in the wave
equation is studied. This is a natural continuation of [1] and chapter 2 of [2] and [3],
where the finite difference method (FDM)/boundary element method (BEM), with
the separation of variables method, were considered. Additional data are given by
the one end displacement measurement u,(L,t)/u(L,t) . Moreover, it is a
continuation of [3], with exchanging the boundary conditionu, (L, t)/u(L, t), where
x € [0, L] are extra data, by the initial conditionu, (0, t)/u(0, t). This is an ill-posed
inverse force problem for linear hyperbolic equation. Therefore, in order to stabilize
the solution, a zeroth-order Tikhonov regularization method is provided. To assess
the accuracy, the minimum error between exact and numerical solutions for the
force is computed for various regularization parameters. Numerical results are
presented and a good agreement was obtained for the exact and noisy data.

Keywords: Measure one end boundary condition; Finite difference method;
Separation of variables method; Regularization; Inverse force problem.
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1 Introduction

An unknown force function in the wave equation can be experienced in many engineering
applications dealing with wave, wind, seismic, explosion, or noise excitations [2, 4]. It can be found in
physical problems as well; for instance, the vibrations of a spring or membrane, acoustic scattering,
etc. The objective of this research is to provide the numerical solution for an inverse force problem for
the nonhomogeneous hyperbolic equation, by considering the initial condition with boundary
condition. Furthermore, in case of using Dirichlet boundary condition, the Neumann boundary
conditions were taken as extra data. It is observed that we could also control the mixed data instead of
the Dirichlet data. In a previous study [3], we used the finite difference method (FDM) to numerically
discretize the wave equation with the method of separating the variables. Therefore, in order to extend
the range of applicability, a different boundary condition has been applied in this study.

Similarly, as in [1-3], the resulting system of linear equations is ill-conditioned. Nearly, we
obtained the same results (see Table 1, Table 2 and Figure 3 in [1]) and, for that reason, these tables
and figures are omitted here. Consequently, we seek the Tikhonov regularization to regularize the
solution.

This paper is organized as follows; Section 2 presents the mathematical formulation. Section 3
describes the numerical results and discussion. Section 4 includes the conclusions reached by this
work.

2 Mathematical Formulations
The required equation for a vibrating bounded structure[0, L], acted upon by a force f (x), is given by
the wave equation [1-3, 5], as follows:

w6, 6) = Voulr, O + fG0, (o) €©L)x0,T), T >0, )
u(x, 0) = uO(x)l ut(xr 0) = vO(x)l X € [01 L]r (2)
u(0,t) =po(t), ulL,t)=p, (), te[0,T], €)

where u(x,t), ug and v, represent the displacement, the initial displacement and velocity,
respectively. The above equation is a direct well-posed problem if f(x) has been given, otherwise the
problem becomes an inverse linear problem. Furthermore, in order to determine the pair solution
(u(x, t), f (x)), we need to have extra conditions. For instance, (3) is a Dirichlet boundary condition,
then an additional condition canbe u, (L, t), namely:
uy(L,t) = qr @), t €(7), (4)
Also, we tried different conditions instead of the Dirichlet boundary condition (3) by using mixed
boundary conditions.

u(0,t) =po(t), ux(L,)=¢q, (), te(0,T), (5)
and in this case the additional condition has also changed to
u(l, ) =p,(0), te (7). (6)

By splitting equation (1) into u = v + w [1-3,6], where v satisfies the well-posed direct problem,
we obtain

vee(x, 1) = vy, B), (x,t) € (0,L) x (0,T), @)
v(x,0) = uglx), ve(x,0) = vo(x), x €[0,L], (8)
v(0,t) =pot), v(Lt)=py(t), t€(OT). 9

Numerically, FDM has been used for solving (7)-(9) and to get v, (L, t) [2,3,5]. In order to get v(L, t),
we will consider a different condition, i.e. using (5), namely the boundary condition (9) is changed to

v(0,0) =po(0), wv(Lt) =q.@), te©T). (10)
The formula for the solution v using FDM [2,7,5-8] is as follows:

Vije1 =720+ 200 r2)v + 120 j— vijq, 1 =1,(M=-1),j=1,(N -1), (11)
=v(x;), i=1,M—-1), (12)

Vi1 — Vi,—1

Vio = Ug(x;), i=0,M, AL
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voj =Po(t;), vmj=P(t) j=0N, (13)
By putting j = 0 in equation (11) and using (12), we obtain [2, 3, 5-7]:
1 1 S
Vi1 = Erzuo(le) + (1 - rPuglx) + ETZUO(Xi_l) + (Ave(x;), i =1,M—-1). (14)

ov 4vyj —vyj— 3vg v 3vm,j —4VM-1j + Vn-2,) —
- )= — 2 2 2 (L t:) = : - . i =1,N. (1
ox (0.4)) 2Ax 'Gx( ') 2Ax » J=LN.(15)

where v; ; := v(x;t;), x; = iAx, and t; = jAt, for i =0,M, j =0,N, (x;t;) = (iAx,jAt),
Ax==t =—andr = cAt/Ax [235-7]
Also, let (w, f) are the new variables satisfying the inverse problem [1-7], as follows:

Wit (X, ) = wy (x, t) + (), (x,t) € (0,L) x(0,T), (16)
w(x, 0) = we(x,0) = 0, x €[0,L], (17)
w(0,t) =0, w(L,t) =0, te(,T). (18)
wy(0,8) = qo(t) —v,(0,), t€(0,T), (19)

But, for solving (16)-(19) numerically, we used the separation of variables in order to get (w, f) [1-7].
In the case of changing the boundary condition (3) to condition (5), equations (18) and (19) are
converted to

w(0,t) =0, wy(L,t) =0, t€(0,7), (20)
Based on the separation of variables [1-7] and by solving equations (16)-(19), we obtain
K
2 b
wi(x, t;b) = \/—;Z A—}zc (1 = cos(cAgt)) sin(Agx), (x,t) €[0,L] x [0, T]. (22)
CK k=1"k
fio) = ﬁz besin(ex),  x €(0,L), 23)
k=1

where K is a truncation number and AkkT" for k =1,K. The coefficient b = (by)x=1x is to be
calculated by imposing the additional boundary condition (19). These results in
K
d 2 b
aL(®) — v (L) = g(t) = % (Lt;b) = ‘C/—:z (1= cos(cgt)) cos(Ae L)t € [0,T). (24)
k
k=1

Such thaté/‘l — (Q trQ)_thr'g Where an — \/i(l—COS(zj-/’]:t))COS(lkL).
— k

For (16) and (17) with (20) and (21), we obtained the same wy (x,t; b) in (22) and fi (x) in (23),
but with different A5, where 1;, = (k —%) n/L fork = 1,K. Also, b was determined by setting the
additional condition (21), as follows

K
pL(®) —v(L,t) = h(t) = gz ;t—’zc(l — cos(cAt)) sin(A),t € [0, T]. (25)
k=1 k

In the same way, b, = (Q*"Q) Q™ hwhere Qp = ﬁ(l‘c"s;i’;t))sm(’l").
k

For testing the stability, we add noisy data to g, (t) and p,,(t), respectively, as follows
a; EDIpf ) = . put) +e n=1N, (26)
From a Gaussian normal distribution, € can be determined where the mean zero and standard
deviation o are given by [1-7]
o = p% X maxtE[O,T]|qL(t)|0rpL(t)| ’ (27)

where p% represents the percentage of noise. The noisy data (26) also cause noise in g|,.h [1-3],
as follows

ge(tn)lhe(tn) = qg(tn)lpf(tn) — v (L tp)|v(L, t,) = g(t,)|h(ty) + €, n=1,N. (28)
Finally, we apply the condition (24)|(25) with g|,.h replaced by g€|,.h€ in a least-squares penalised
sense by minimizing the Tikhonov functional, which is in general a zeroth-order Tikhonov
regularization solution (for more details, see [1-3]) to deal with stability,

by = (QQ+ AD)TQYgé|Rs, (29)
Note that, from equations (26)-(29), "|" means "or".
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3 Numerical Results and Discussion
In order to see how far the changing of boundary condition affects the accuracy of solution and to
see the difference between boundary element method (BEM) and finite difference method (FDM),

using the same example in [1-3], we have
2

u(x,t) = sin(mx) + t +%, f(x) =1+ n?sin(nx), x €[0,1], (30)
u(x,0) = uglx) = sin(mx), ur(x,0) = volx) = 1, x € [0,1], (3D
t? t?
u(0,t) =po®) =t +7, u(l,t)=p, ) =t+ > t € (0,1], (32)
with the additional condition
uy(L,t) = qit) = —m, t € [0,1]. (33)

If the boundary condition is changed to
2

4(0,0) = po(®) = t+%, L) = q® =—n ¢t elodl, (34)

Then, in this case, the over-determination can be as follows:
2

(L, ) = pp(O =t+%, t e [01]. (35)

Figure 1 shows the numerical results for v,.(L,t) obtained from (7)-(9) and v(L,t) from (7), (8)
and (10), both of which are obtained using the FDM (11)-(15) with M = N € {20, 40,80} .
However, the exact solution for (v,(L, t), v(L, t)) does not exist, but from Figure 1, it can be seen
that a convergent numerical solution is rapidly achieved. The value of v,(L,t) and v(L,t) are then
plugged into equations (24) and (25) to determine the values for g(t,) and h(t;;), respectively. Also
its noisy counterpart g€ (t,;)|h€(t;,) is given by (28) forn = 1,N, [1-3].

(a) (b)

57

v(L,t)
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Figure 1-The numerical result for (a) vk (L, t) (using Dirichlet boundary condition (9)) and (b) v(L,t)
(using mixed boundary condition (10)) are obtained using the FDM (11)-(15), withM = N €
{20,40,80}.

In Figure-2(a), we note that the numerical solution of b from (24) was received for fixed K =
20, N = M = 80, when considering the exact data without noise (i.e. ¢ = 0) and then comparing with
analytical values for the sine Fourier series coefficients by = v/2 fol f(x) sin(knx) dx (see [1-3]). Also,
when f(x) is given by equation (30), one can see that a good approach was obtained between the
numerical and exact values for b. However, the method in [1] was changed to FDM and an additional

condition uy (0, t) to condition uy (L, t). Still, no different shape of the obtained figure can be seen; the
reason is that the same exact values of b and the same boundary conditions u(0,t) and u(L,t) were
used.
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Furthermore, Figure 2(b) shows the b = (by)k=1x Obtained from (25), in comparison with the
exact sine Fourier series coefficientsb, = /2 fol f(x) sin ((k —%)ﬂx) dx, when for f(x) given by

(30), there is a good agreement between the exact and numerical one, see Figure 3. Therefore, the
method was changed to FDM instead of BEM, and there were different shapes of the plots obtained.
We can still compare Figure-2 with Figures-(4 and 13) in [1]. In Figure-4, A;, = kmx, but in here

A = (k — %)ﬂx. Also, in Figure-13, cosine Fourier series is used instead of sine Fourier.

(@) (b)

8-

4 I I I I I I I I I ) ] I I I I I I I I I )
0 2 4 6 8 12 14 16 18 2 0 2 4 6 8 0 12 W 16 18 2

K X
Figure 2-The numerical solution (...) for (by)x=1x forK = 20, N = 80 obtained (a) from equation
(24) in comparison with the exact solution by, = v/2 f01 £ (x) sin(kmx) dx (— ), (b) from equation (25)

in comparison with the exact solution by, = v/2 fol £ () sin ((k — é)nx) dx (—).

Figure-3 shows a comparison between numerical (23) and exact values (30) of f(x), where
k € {5,10,20} andN = M = 80. Numerical solution of f(x) is earned after substituting numerical
values b in equations (24) and (25). Moreover, Figure 3(a) represents the numerical and exact
solutions for f(x), where Dirichlet boundary condition (9) is applied, while Figure 3(b) represents
these solutions when the mixed boundary condition (10) is used. These figures are obtained before
adding noise to the exact data (i.e. e =0). It can be seen that accurate numerical solutions are
achieved.

(@) (b)

S (=)

J(x)

Figure 3-The exact solution (30) for f(x) in comparison with the numerical solution (23), (a)
Dirichlet boundary condition (9) is applied; (b) mixed boundary condition (10) is used for various
K € {5,10, 20}, respectively.

After adding noise to the data (26), Figure 4 shows the unstable numerical solution for f(x) with
various p%. In Figure 4(a), oscillations become highly unbounded, as p% increases for f(x) when
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fixing K = 20. In this case we selected p% = 5%. In addition, p% = 1% and the various K are
shown in Figure 4(b). For performing regularization, using zeroth order Tikhonov regularization
which yields the equation (29), various values of 4  such as
A€{5x 107410745 x 1073,1073, ..., 10°} were tested. In order to choose the best A, the error

was calculated as ||fnumerical - fexactll = \/Zg=1(fnumerical(tn) - fexact (tn))z [416:7]- From
Figure-5, it can be seen that the minimum error occurs around 2 = 10~*andA = 5 x 10~%, when it

reaches the best approach for f(x), as illustrated in Figure 6. Figure 5(a) and Figure 5(b) shows the
minimum error around A = 10~! and A =5 x 10~*, respectively. Meantime, a good approached
value for numerical solution f(x) canbe seenin Figure-6(a) and Figure-6(b).

b

@

w L L L L L L L L L | r L L L L L L L L L |
0 01 02 03 04 05 06 07 08 09 1 "0 01 02 03 04 05 06 07 08 09 1
T T

Figure 4-The exact solution (30) for f(x) in comparison with the numerical solution (23), (a) for
various p% € {1,3,5}%, and K = 20 when Dirichlet boundary condition (9) is applied, (b) for
various K € {5,10,20} and p% = 1% when mixed boundary condition (10) is used, with noisy

data.
(@) (b)

mins5x10™

|| frumerical — fexact]|

|| frumerical — fexact||

3 2 5 -
10 10 10 10 10 10° 10° 1’ 1

A A
Figure 5-The accuracy error || frumericai — fexact||, @s a function of A, for K = 20 and (a) p% =
5% noise, Dirichlet boundary condition (9), (b) p% = 1% noise, mixed boundary condition (10).
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(@) (b)

(@)
)

Figure 6-The exact solution (30) for f(x) in comparison with the numerical (23), for K = 20, (a)
p% = 5% noise and regularization parameters A € {5x 1072 107",5x 10™}, Dirichlet boundary

condition (9) are applied , (b) p% = 1% noise, and regularization parameters A € {707% 5 x
107*,107°}, mixed boundary condition (10).

4 Conclusions
In this paper, we apply the one end data of Dirichlet or mixed boundary condition as additional

data. Splitting the wave equation in two parts, first part was direct problem part when we solved it by
(FDM), and second part was inverse problem part, in this part using separation of variables [3]. The
problem is ill-posed, since adding a small noise in extra data causes an unstable force. In order to deal
with this unsuitability, we employed the Tikhonov regularization method with minimum errors for
selecting a good parameter for regularization. For future work, we plan to use u(x, T) as additional
information.
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