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Abstract

Internet of Things (loT) contributes to improve the quality of life as it supports
many applications, especially healthcare systems. Data generated from 10T devices
is sent to the Cloud Computing (CC) for processing and storage, despite the latency
caused by the distance. Because of the revolution in 10T devices, data sent to CC has
been increasing. As a result, another problem added to the latency was increasing
congestion on the cloud network. Fog Computing (FC) was used to solve these
problems because of its proximity to 0T devices, while filtering data is sent to the
CC. FC is a middle layer located between 10T devices and the CC layer. Due to the
massive data generated by 10T devices on FC, Dynamic Weighted Round Robin
(DWRR) algorithm was used, which represents a load balancing (LB) algorithm that
is applied to schedule and distributes data among fog servers by reading CPU and
memory values of these servers in order to improve system performance. The results
proved that DWRR algorithm provides high throughput which reaches 3290 req/sec
at 919 users. A lot of research is concerned with distribution of workload by using
LB techniques without paying much attention to Fault Tolerance (FT), which
implies that the system continues to operate even when fault occurs. Therefore, we
proposed a replication FT technique called primary-backup replication based on
dynamic checkpoint interval on FC. Checkpoint was used to replicate new data from
a primary server to a backup server dynamically by monitoring CPU values of
primary fog server, so that checkpoint occurs only when the CPU value is larger
than 0.2 to reduce overhead. The results showed that the execution time of data
filtering process on the FC with a dynamic checkpoint is less than the time spent in
the case of the static checkpoint that is independent on the CPU status.

Keywords: Fault tolerance, Data replication, Checkpointing, Reliability, Fog
computing, Task scheduling.
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Introduction
loT allows the connection of different things such as sensors and cellular phones via the Internet
[1]. There are numerous transmission protocols used for Machine to Machine (M2M) communication,
such as Message Queuing Telemetry Transport Protocol (MQTT) and Hypertext Transport Protocol
(HTTP) [2]. Cloud Computing (CC) is the easiest way to gather and process data generated from loT
devices by connecting these devices to cloud servers [3]. According to Cisco, the humans will use
more than 50 billion 10T devices/sensors that were planned to be linked to the Internet by 2020, as
shown in Figure-1. Also, researchers estimated the number of these things to reach 1 trillion by 2025
[4, 5]. Massive amount of data will be produced by the exponential growth of 10T (edge) devices
located nearby from users. As a result of that and the remote location of cloud servers from edge
devices, several challenges appear in 10T systems, including network congestion, data loss, and higher

latency [6]. Thus, a computing paradigm called Fog Computing (FC) was proposed to process data
generated from IoT (edge) devices in real-time [5].
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Figure 1- Global change of number of Internet connected devices [7].

A server may run slowly during data processing due to the massive amount of data. Therefore, the
Load Balancing (LB) technique was used, which is a procedure to distribute the workload statically
and dynamically across available servers in the cloud environment. It contributes to increase the
throughput of the system and reduce energy consumption. The load balancer is a server used to
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implement the LB technique by redirecting requests or workload among available servers to enhance
system performance [8]. LB technique in the FC environment is the same operation as in the CC
environment, except that Fog Load Balancing (FLB) is closer to 10T (edge) devices and has a better
response time as compared to the Cloud Load Balancing (CLB). However, a remarkable problem
arises by the possibility of the occurrence of fault. Although LB techniques are used, there is not much
attention and alertness to Fault Tolerance (FT) in recent times [9]. FT means the process of executing
system tasks which continues even when a fault occurs. A fault is an abnormal state of the component
or system that leads to failure [10]. Due to large amount of data that must be processed in the fog
servers before it goes to cloud, it is necessary to provide reliability to fog servers in case of failure
occurrence, as in the failure of fog servers, especially if these data are critical. Therefore, this paper
proposes an FT architecture on fog servers for healthcare data generated from edge devices (sensors).
Related Works

There are many techniques that have been used to achieve FT and LB, some of which are discussed
as follows.

Ryuji et al. [11] presented results for the non-replication fault tolerance which was applied to protect
only data coming from the sensor to the fog server. Thus, the data is directed to the active server but
does not provide protection for the data inside the fog server when a fault occurs during processing.
Berkin and Oznur [12] presented many periodic checkpoint algorithms on primary-backup replication
and compared them for improving checkpoint time. Nevertheless, all the algorithms used were static
without paying attention to the state of the server during the execution of tasks, which resulted in
overhead and increased the execution time.

Al-Joboury and Al-Hemiary [13] provided a mechanism to monitor healthcare data in real-time and
reduce the congestion on the cloud network. This was achieved by sending the pulse (heartbeat) sensor
messages by MQTT protocol to the fog server. These data were then filtered on fog server every 30
minutes by selecting max., min., and avg. values. Then, the data were sent directly to the cloud.
However, this paper did not apply a dynamic LB technique to distribute data to more than one fog
server, taking into account the current state of servers.

The remainder of the present paper is arranged as an illustration of the system architecture of FC
that consists of three layers: 10T (edge) devices, fog, and cloud layer. Then, we present an overview
of the importance of using the LB technique and clarify the differences among its types. After that, the
importance of the technique used in this paper to achieve fault tolerance is illustrated. Then, we
discuss the proposed system. Finally, we present the results and conclude the paper.

The system architecture consists of three layers: 10T (edge) devices, fog, and cloud layer, as shown in
Figure-2.

Cloud layer

Fog layer

IoT layer

Figure 2- Integrated IoT, fog, and cloud layered architecture.

1. 10T (edge) Devices Layer for Healthcare System

loT is a trendy technology used in the field of wireless telecommunications that was invented by
Kevin Ashton in 1999 to create a bridge connection between physical world and digital world through
the Internet. loT technology is dealing with physical objects that refer to 'things' linked to the Internet
such as wireless sensors, actuators, and microcontrollers (MCUSs), which enables these things to gather
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and exchange data via Internet connection [14]. 10T is a commonly used technology that supports
many applications that contribute to improve various areas of life, especially the medical field
through healthcare applications. loT-medical devices, such as medical sensors, are wearable and
attached to patient's body. With the usage of loT-medical devices, specialists can monitor medical
parameters such as heartbeat, body temperature, etc. Thus, the number of patient’s visits to the
hospital will be reduced [15]. In this paper, a heartbeat sensor was used.
2. Fog Layer

FC represents an intermediate layer which functions as a bridge located between IoT (edge) devices
and cloud servers. FC was proposed by Cisco in 2012. It presents computing, processing, and
temporary storage, where FC is slightly similar to an CC so that it works to bring the cloud services
close to 10T (edge) devices [16]. In this paper, FC was proposed to reduce the latency because the fog
server is closer to 10T (edge) devices and, thus, it provides monitoring for heartbeat messages on the
fog server using data monitoring applications. In addition, FC minimizes congestion on cloud network
by sending only the necessary messages from fog-to-cloud (F2C).
3. Cloud Layer

CC is a technology used to store and process data. The access to it is via the Internet rather than the
computer’s hard drive. CC is a shared pool of computing and permanent storage resources that can be
obtained on-demand and is dynamically present to the users. A cloud server is also called a virtual
server because one of the advantages of the cloud is virtualization. CC increases data reliability, unlike
desktop computing. When using CC, if the personal computer crashes, all data are still present in the
cloud, but when using desktop computing, if a hard disk crashes, all valuable data are destroyed [17].
Load Balancing Techniques

Load balancing is a technique used to enhance performance by distributing the workload across
various nodes [18]. It is applied to improve throughput and response time, realize efficient resource
utilization, avert bottlenecks, and reduce energy consumption [18, 19].

LB techniques are classified, according to system state, into two categories:
1. Static load balancing [19]: Static LB technique does not depend on the current system state;
therefore, it works well only when the load fluctuation in the servers is low. The main drawback of the
static LB technique is that the current system state is not taken into account during decision making
and, thus, the workload is distributed equally between servers.
2. Dynamic load balancing [19, 20]: In a dynamic LB technique, decision making is taken based
on the current system state. As a result, the workload is not always equally distributed between
servers. In this technique, the state information is exchanged between servers and consequently the
workload is distributed between servers. Therefore, a dynamic LB technique always provides a better
load balancing solution. Hence, in this paper, the dynamic LB technique is used.
Fault Tolerance

FT is the ability of the system to remain operating even when the fault occurs. It is primarily used
to improve system uptime and ameliorate its reliability and availability. FT is a very important and
desirable property that should be available in all applications, especially in critical applications [21].
When the reliability of service is low, it implies that its efficiency will also decrease and the customers
will be waiting for a long time for service [22]. Because FC represents an intermediate layer between
loT (edge) devices and cloud servers, it is very important to provide FT and reliability on the fog
servers [23]. Therefore, in this paper, the FT technique, based on replication, is used on fog servers.
Data replication has many benefits, including FT, and improves data availability at the same time,
which increases system strength [24]. FT technique based on replication implies that data are
replicated to numerous servers and, if one of the host servers fails, the data are processed successfully
as long as there are other copies of the data on other servers [25]. Active replication indicates that the
same data are sent to more than one server at the same time. Nevertheless, this method has many
disadvantages that are affecting the network performance by increasing traffic in-network and may
obstruct the connection in real-time within the network. In addition, active replication leads to
overwork of all servers [26]. Therefore, the replication technique used to achieve fault tolerance in this
paper is called primary-backup replication or active/passive (A/P) replication. This implies that all
data will be transferred first to one server, called the primary server. Then, a checkpoint receives data
coming to the primary server every period of time and sends them to another server, called the backup
server. By using this technique, the traffic during sending data to the fog server (primary server) will
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be reduced and, thus, data (heartbeat messages) can be monitored in real-time on fog server. An
additional importance of using checkpoint for each period of time is to avoid the repetition of sending
all data of primary server to the backup server. As a result, the amount of data sent is reduced and,
thus, the speed of sending data to the backup server will increase.

The main contribution of this paper is to implement a checkpoint to send only new data to a backup
server, based on a dynamic interval by monitoring CPU values of the primary fog server. This method
contributes to the reduction of the impact of the checkpoint process on increasing the time of the
process of filtering the sensor data. Figure-7 illustrates the results. In addition, the Dynamic Weighted
Round Robin (DWRR) algorithm will be employed on fog servers in this paper and, consequently, it
will increase throughput and reduce the amount of data to be checked and filtered on fog servers.

The Proposed System

The proposed system consists of three layers: the 10T (edge) device layer represented by heartbeat
sensor, the fog layer to process data, and the cloud layer to permanently store data sent from the fog
server.

From Sensors to Fog Server

A real pulse sensor is placed on the patient's thumb to sense the heartbeat. The pulse sensor will
measure the patient's pulses through a given time period. In this paper, patient's pulse is measured
every 30 s (time is set during programming) and all values generated will be transferred by the MQTT
protocol to the fog server. Only necessary messages will be immediately sent to the cloud.

Fog Environment

The proposed system is represented by the presence of FC within a particular building, like
Baghdad University, Department of Computer Engineering.

The fog server temporarily stores data of the heartbeat sensor. These data live within the fog server
for 30 minutes. Hence, every 30 minutes, the messages sent to the fog server are filtered by extracting
the maximum, minimum, and average values. These values are sent to the cloud in real-time, while the
remaining data are deleted from it, as shown in the Figure-3. Thus, the congestion on cloud network
was reduced because instead of sending all messages generated from the sensor to cloud, only three
messages will be sent to the cloud for the purpose of permanent storage.

Heartbeat sensors Fog server Cloud server
2 Send 1 message within 30 s
B ges >
per >
Finished minute >
are sent -
3o from »
minutes each
sensor
Select only max, min, and avg Only three
within 30 min. messages
> (max, min,
I avg) sent
Delete all messages within 30 to the
min cloud per
J 30 min

Figure 3- Sequence diagram of data filtering in fog server

Because of the usage of a very large number of sensors that send data to the fog server, a burden on
the server is caused. Therefore, it is necessary to take into account the improvement of system
performance by distributing the load through more than one server. In addition, the approach used to
provide protection for data when it arrives at servers is very important. Therefore, in this section, the
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structure of the proposed healthcare system to distribute and protect the data on the fog servers will be
illustrated, as shown in Figure-4.

In this paper, VirtualBox is used to create Virtual Machines (VMs) that represent virtual fog
servers so as to create the desired number of servers in the fog environment.

Two types of NoSQL databases are used; Redis database on the proxy load balancer, because it is
lightweight and very fast for messages broker, and CouchDB on the fog servers because it has an FT
storage engine for the safety of data.
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mmmp Data transfer from
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Figure 4- The proposed healthcare system for distribution and protection of the data on the fog
servers.

Two fog servers are used in this proposed system to distribute the load transmitted from the
sensors. To distribute these data, a proxy load balancer is used.
Proxy Load Balancer: The data generated by a real pulse sensor are transmitted through the MQTT
protocol, which is a lightweight protocol. MQTT protocol is based on the publish/subscribe (Pub/Sub)
paradigm where publishers represent data generated from sensors or any loT device, while subscribers
represent data of consumers, so that the Pub/Sub paradigm is met by a central node called broker [27].
The topology of the MQTT protocol consists of three parts: Publisher(s), Broker, and Subscriber(s).
First, the Publisher(s) sends data to the MQTT Broker for publishing to an address that is called
“topic”. Then, the Subscriber(s) subscribes to the MQTT broker for this topic [28]. The broker
intercedes the exchange of messages between the publishers and subscribers, as performed by
Mosquitto which is an open-source MQTT broker. Mosquitto provides a lightweight manner to
execute messages using the Pub/Sub paradigm. It is appropriate for 10T messaging uses, such as
sensors that have low power, microcontrollers, mobile devices, and embedded devices [29, 30].
Mosquitto broker is installed on the proxy load balancer server. In this proxy server, after subscribing
messages by Mosquitto broker, the load is scheduled among Fog Serverl (FS1) and Fog Server2 (FS2)
by using the DWRR algorithm. DWRR algorithm depends on the CPU and memory values of fog
servers (FS1 and FS2). Fog servers connect to Redis DB that is located on the proxy load balancer
server. Proxy uses the Redis database to receive the values of resources (CPU and memory) which are
sent from FS1 and FS2. The sorting stage begins with the retrieval of CPU and memory values of FS1
and FS2 from the Redis DB and the comparison of these values. Based on these values, the proxy load
balancer server distributes the load on FS1 and FS2, as shown in Figure-4. Thus, if FS1 has CPU and
memory values larger than those of FS2, then the weight of messages sent from the proxy load
balancer to FS1 is larger than the weight of those of the FS2. DWRR algorithm is illustrated as a
flowchart in Figure-5.
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After data are distributed based on the DWRR algorithm, data in the fog servers will be preserved
by using the primary-backup replication, also called the active/passive (A/P) replication technique.

Start

|

Fog servers connect to Redis DB that
located on Proxy load balancer

}

Save CPU & memory values for
fog servers in Redis DB

}

Sorting fog servers on Proxy load balancer

}

Distribute messages among fog servers by WRR
algorithm depending on the sorting stage

Figure 5- DWRR algorithm flowchart

Fault Tolerance on Fog Servers: Active or primary servers are FS1 and FS2, whereas passive or
backup servers are Backup Serverl (BS1) and Backup Server2 (BS2), as shown in Figure-4. BS1 is a
backup server for FS1, whereas BS2 is a backup server for FS2. If FS1 and FS2 servers are fault, then
BS1 and BS2 servers are activated to do the work of the active servers. The primary server sends data
to the backup server continuously, but to avoid repeating sending all the data previously sent to the
backup server, the checkpoint is used to distinguish the new data sent to the primary server and that
only new data is sent to the backup server. This is caused by periodically comparing data access time
to the primary server. If the time of incoming data is greater than the time of the last previous
checkpoint occurred, it implies that the data are new and will be sent to the backup server without re-
sending all the data previously sent to this server. In the FS1 and FS2, the data checkpoint continues
with a periodic interval (static checkpoint interval) even during the time of the data filtering process,
which may affect the execution time of the filtering process of data to be sent to the cloud in real-time
if the fog server is weak. It was observed by experiments that when the data filtering (every 30 min)
occurs with a continuation of the checkpoint of data coming to the server, the data filtering time is
greatly affected when the remaining CPU value is 0.2 or less. Therefore, dynamic checkpoint is used
by reading the CPU amount of fog servers (FS1 and FS2). If the value of the remaining CPU value is
0.2 or less, the checkpoint is stopped dynamically and returns as soon as the remaining CPU value is
greater than 0.2, as shown in the dynamic checkpoint algorithm of the primary server. The dynamic
checkpoint interval will contribute for reducing the execution time of the data filtering process in the
fog servers.
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Dynamic Checkpoint Algorithm of the primary Server

Input: Data; Checkpomt
1 Static mitial ime
2 Read CPU values
3 For incoming data do
4 If CPU > 0.2 then
5 Start checkpoint every interval time
6 If (tume of current data > time of previous data) then

Checkpoint «— current data

8 Send Checkpount to backup server
9 End
10 End

11 Else if CPU < 0.2 then

12 Stopped checkpoint process
13 End

14 Data filtering every 30 min.

15 Emnd

Each backup server sends a request to its primary server every interval time in order to detect the
failure when it occurs. Hence, when the primary server does not send a reply to the backup server, it
implies a primary server failure. At that time, the backup server is activated to filter data that were sent
from the primary server and store the IP address of the backup server in Redis DB, in the place of the
server's IP address that stopped working for a purpose to receive data coming from the MQTT proxy.
Results

In the suggested system, two objectives are achieved. First, increasing the throughput by balancing
a workload on fog servers. The workload generated by 10T sensors and transmitted based on MQTT
protocol was distributed on fog servers. The locust tool was used to generate additional load on the fog
environment to measure the throughput. Throughput is the number of requests a server responds to per
second. Figure-6 illustrates throughput comparison between DWRR algorithm and a static algorithm,
which is called Round Robin (RR) algorithm that sequentially distributes workload by haproxy on fog
servers. The throughput results for both algorithms were obtained in Figure-6 by using the locust tool.
In the DWRR algorithm, the workload generated from the locust tool is sent to the proxy load
balancer, where this proxy distributes the workload among fog servers dynamically based on CPU and
memory values of these servers. Whereas in the RR algorithm, the workload is sent to the haproxy to
distribute it statically among fog servers without taking into account fog servers’ state during
distribution. It is noticeable that the throughput of DWRR from the beginning is higher than that of the
RR. This increase is more prominent at 567 users where the throughput of DWRR reaches 220
requests per second, while the throughput of RR reaches only 70 reg/sec. DWRR throughput continues
to increase so that the throughput at 594 users reaches to 780 reg/sec, while in RR it is up to 400
reg/sec. After that, throughput for RR is increased slightly, reaching 1680 req/sec, while in DWRR it
reaches 1410 reg/sec at 651 users. Then, DWRR again outperforms RR; at 794 users the DWRR
reaches 2755 reg/sec while RR reaches 2390 reg/sec. RR reaches 2382.4 reg/sec at 807 users and stops
because of the limitation of haproxy which cannot handle more users. DWRR throughput at the same
number of users (807) reaches to 2700 reg/sec and continues to increase to a maximum of 3290
reg/sec at 919 users.
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Figure 6- Throughput of the MQTT proxy on fog computing

The second goal is to ensure that data is filtered and sent to the cloud in real time by reducing an
overhead that may result from synchronization of the filter and checkpoint, so that increased workload
will increment the implementation time of an application.

As shown in Figure-7, time of execution of data filtering is checked in the case of the static and
dynamic checkpoints. It is observed that when a checkpoint is made during fixed intervals (static), a
very large overhead will be generated, especially when the CPU value is less than or equal to 0.2, then
checkpoint with dynamic intervals is used. The results of the static checkpoint were measured by
checkpointing the data located on CouchDB every fixed interval, even when the data filtering time
occurs, which in turn often causes fatigue to the fog server. Whereas the results of the dynamic
checkpoint are measured by check pointing the data only when the CPU value is larger than 0.2. When
the number of data in the database is equal to 200, the time taken to filter data and extract max., min.,
and avg. values only in the dynamic checkpoint is equal to 1515 ms, while the time taken in the static
checkpoint is 2145 ms. When the number of data is 350, the time taken to filter data at a dynamic
checkpoint is 1781 ms, while the time taken at a static checkpoint is 2222 ms. In case that the number
of data is 500, the time at the dynamic checkpoint is 1816 ms, while the that at the static checkpoint is
2229 ms. When the data number reaches 650, the time at the dynamic checkpoint is equal to 1876 ms,
while that at the static checkpoint is 2319 ms.

It is noted that there is a clear difference in the time spent for data filtering process in the fog servers
between dynamic and static checkpoints.

1000

Execution time in mill second

200 2=0 =00 &850
Tasks

Figure 7- Execution time of data filtering
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Conclusions

Major challenges arise when vary large amount of data is generated, resulting from the frequent use
of 10T devices, increased latency due to the distance of the cloud, in addition to the increment
congestion on the cloud network. Therefore, the proposed system in the present study suggests a new
edge-fog-cloud technique with features of low time execution and high throughput. Then data
protection in the fog environment was ensured, which is the most important advantage in order to
protect the data in case of a fault in the server, especially for the healthcare data. It is concluded that
the throughput of the DWRR algorithm is greater than that of the RR algorithm. However, despite the
increased throughput in the fog environment, this feature does not work for data protection in the
event of a failure in the fog server. Thus, the technique called primary-backup or active/passive (A/P)
replication is used based on dynamic checkpoint interval. The dynamic checkpoint interval contributes
to reducing the time spent for the data filtering process in the fog servers by stopping the checkpoint
when the CPU value is equal or less than 0.2. In the future, the proposed system can be developed by
increasing the number of backup servers so that the data will be replicated in more than one server,
which leads to increased reliability.
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