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Abstract 

     Statistical fluctuations of nuclear energy spectra for the isobar A = 68 were 

examined by means of the random matrix theory together with the nuclear shell 

model. The isobar A = 68 nuclei are suggested to consist of an inert core of 
56

Ni 

with 12 nucleons in f5p-space (2p3/2, 1f5/2 and 2p1/2 orbitals). The nuclear excitation 

energies, required by this work, were obtained through performing f5p-shell model 

calculations using the isospin formalism f5pvh interaction with realistic single 

particle energies. All calculations of the present study were conducted using the 

OXBASH code. The calculated level densities were found to have a Gaussian shape. 

The distributions of level spacing P(s) and    statistic for the considered classes of 

states, obtained with full Hamiltonian of f5pvh (absence of the off-diagonal 

Hamiltonian) calculations, showed a chaotic (regular) behavior and coincided well 

with the distribution of Gaussian orthogonal ensemble (Poisson). Moreover, these 

distributions were independent of spin ( J ) and isospin ( ).T  

 

Keywords: Random matrix theory, chaotic properties, level density, Spectral 
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 A = 68لأيزوبار في نوى اة ف الطاقياطيلأالتقلبات الأحصائية ل
 

 2*علي عبد العباس حيدر ، 1خلف حمودي عادل

 العراق ، بغداد ، بغداد جامعة ، العمهم كمية ، الفيزياء قدم1
2

وزارة التربيه , المثنى , العراق  

 الخلاصة
بأستخدام نعرية السرفهفات  A = 68لأيزوبار ا ى نه في للأطياف الطاقية ت الأحرائية قمباتم دراسة الت     

 نيهكميهن  12مع  56Niقمب السغمق عمى النهى هذا الأيزوبار  تحتهي . نعام إنسهذج القذرة الشهوي مع العذهائية 
تم الحرهل عمى  . 2p1/2  و 1f5/2  و 2p3/2السعرف بالسدارات  f5pتتحرك ضسن أنسهذج الفزاء الشهوي 

بهاسطة  f5p حدابات إنسهذج القذرة اءأجر  عن طريق ,السطمهبة في هذه الدراسة, طاقات التهيج الشهوية
 طاقات الجديسة السشفردة الهاقعية. مع   f5pvhأستخدام التفاعل السؤثرب و OXBASHالبرنامج الحاسهبي 

 . أن(Gaussian shapeشكل كاوسي )لها ,قيد الدراسة, وجدنا بأن كثافة مدتهيات الطاقة لمحالات الشهوية 
)غياب السرفهقة   f5pvh السؤثرل استخدام التفاعالشاتجة من    الأحراء و  sP)(الأحراء  تهزيعات

طاقم الحالات الستعامدة  وتتهافق تساما مع تهزيع (مشتعمفهضهي )سمهك لهسا ( تفاعل السؤثرالغير قطرية في ال
عمى  اهساظهرا عدم اعتساد    و  sP)( الإحرائيينعمسا ان  لمسرفهفات العذهائية. الكاوسي )بهاسهن(

 .Tو J   الأعداد الكسية
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1. Introduction 

    Quantum chaos was explored vastly in the past 30 years [1]. Bohigas et al. [2] assumed a 

relationship amongst disorder in a classical system and the statistical fluctuations of nuclear spectrum 

of identical quantum system, whereas a systematic evidence of Bohigas assumption is presented in 

another report [3]. At the moment, it is eminent that quantum analogs of utmost classically disordered 

systems depict fluctuations in energies that come to an agreement with Random Matrix Theory (RMT) 

[4, 5], but quantum analogs of classically ordered systems depict fluctuations in energies that come to 

an agreement with a Poisson limit. For invariant systems under time reversal, the proper formula of 

RMT is the Gaussian orthogonal ensemble (GOE). RMT was, at first, operated to illustrate the 

fluctuation features of neutron resonance in compound nucleus [6]. RMT was developed into a typical 

scheme for probing the common statistical fluctuations in disordered system [7 -10]. 

    Mean field approximation may be employed to explore the disordered manners of single particle 

dynamic in nuclei. Nevertheless, the two-body residual interaction mixes various configurations in the 

mean field which in sequence leads to change the fluctuations properties of the nuclear spectrum and 

wave functions. Actually, one can investigate these fluctuations through utilizing different models. 

The nuclear shell model provides an attractive context for such investigations, where effective two-

body residual interactions are obtainable and the basis states are designated by exact quantum numbers 

of J (total angular momentum), T (isospin) and  (parity). In earlier works [11-16], the context of the 

nuclear shell model was utilized to examine eigenvector component distributions. The basis vector 

amplitudes were found [14] to be in accordance with the Gaussian distribution (GOE prediction) in 

regions of large level density and diverged from Gaussian manners in further regions unless the 

computation employs degenerated single-particle energies. Another investigation [16] also 

recommended that computations by means of the degenerate single particle energies are disordered at 

lower excitation energy than that of realistic computations. 

   Electromagnetic probabilities in nuclei are observables which are related to the wave function. The 

examination of their fluctuations would enhance the universal spectral investigation as well as assist as 

an extra sign of disorder in the quantum system. In the previous investigations [17-22] we adopted the 

context of the RMT together with the nuclear shell model to explore the physical characteristics of 

chaos in nuclear spectra, electromagnetic probabilities, and moments for various nuclei located in 

different shell model spaces. As a whole, the results were very good depicted by the GOE limit. 

   There has been no comprehensive analysis for the chaotic (disordered) properties in the mass region 

of f5p shell nuclei. Thus, in the present analysis, we look at the statistical features of excitation 

energies in the isobar A = 68 (such as 
68

Se, 
68

As and 
68

Ge) nuclei. The present shell model 

computations are carried out for 12 valence nucleons in f5p-model space (with 
56

Ni as a core) using 

the f5pvh interaction [23] with the realistic single particle energies (spe’s). The computed results for 

the considered TJ   classes of states exhibit Gaussian shape for the level densities and GOE 

distribution for the spectral fluctuations. 

2. Theory 

     The effective shell-model Hamiltonian of many particle systems can be expressed by [11] 

                                                       HHH  0
                                      (1) 

Here 
0H  and H   are the unperturbed (one body) portion and the residual (two body) interaction of H, 

correspondingly. The one body Hamiltonian 

                                                     




 aaeH 0 ,                                       (2) 

defines the non-interacting nucleons in an average field of suitable core, and   denotes the single 

particle orbitals. The residual interaction H   of active nucleons is given by 

                                             
 .

4

1
;  aaaaVH                                (3) 

    The nuclear wave functions of many-body, with good quantum number of J  and ,T  are built by 

means of the m scheme determinants [11], 

                                                    .;, 3 mTTJM                                      (4) 

The many body Hamiltonian is given by  
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                                           ,;; 

k

JT

kk kJTHkJTH                                (5) 

where k  and k  are the many-body basis states. The energies E  as well as wave functions 

                                                  
k

k kJTCJT ;;                                (6) 

are computed by diagonalizing the matrix elements of Eq. (5).  

    The chaotic properties of nuclear spectra are typically found by the level spacing )(sP  and Dyson-

Mehta (
3 ) statistics [4, 24]. We first built the staircase function )(EN  (which is the number of 

energy levels with energies ),E  where a smooth fit to )(EN  is made utilizing the fit of 

polynomial. We second expressed the unfolded spectrum through using the mapping [25] 

                                                   )(
~~

ii ENE  .                                                (7) 

     The genuine spacing show forceful fluctuations but the unfolded spectrum iE
~

 possesses a fixed 

average spacing. 

    The distribution )(sP  is designated as the probability of two adjacent levels separated by a distance 

.s  The i
th
 spacing 

is  is found via .
~~

1 iii EEs  
 An ordered system is predicted to behave with the 

Poisson limit 

                                                   )exp()( ssP                                               (8) 

while the disordered system is expected to perform with the Wigner limit 

                                 ),4/exp()2/()( 2sssP                                               (9) 

which is in agreement with the statistic of  GOE.  

   The 
3 statistics are utilized to determine the rigidity of the spectrum and expressed by [4] 

         




L

BA EdBEAEN
L

L






~

)
~

()
~

(
1

min),(
2

,3 .                                           (12) 

It determines the divergence of the function )
~

(EN  from a straight line. Here, )
~

(EN  is constructed 

from the unfolded spectrum of Eq. (7). It is well-known that rigid (soft) spectra have small (large) 

values of .3  For the purpose of obtaining a smoother distribution ),(3 L  one can average the 

distribution of )(3 L  over a number of n  intervals ( L , ) 

                                               ).,(
1

)( 33 L
n

L 


                                       (13) 

     The successive intervals are taken to overlap by .2/L  The Poisson distribution of the )(3 L  is 

depicted by 15/)(3 LL   while that of the GOE is described by 3L/15 for small ,L  and 

Lln2

3

   for large .L  

3. Results and discussion 

    The present computations are carried out for A = 68 nuclei with T = 0 (
68

Se), 1 (
68

As)
 
and 2 (

68
Ge). 

The isobar of A=68 consists of the 
56

Ni core and 12 active nucleons that move in the f5p-shell model 

space, defined by 2p3/2, 1f5/2 and 2p1/2 orbitals. The isospin formalism interaction of f5pvh [23] is 

chosen as an effective two-body residual interaction with realistic single particle energies (spe’s). All 

computations of the present work are performed using the shell model code OXBASH [26]. 

    In Table-1, we display the dimensions for the considered 
 7,4,1,0J  and 10

+
 states with 

T = 0 (
68

Se), 1 (
68

As)
 
and 2 (

68
Ge) produced with f5pvh Hamiltonian for 12 valence particles in the 

f5p-model space. 
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Table 1-Dimensions for the considered 
 7,4,1,0  and 10

+
 states with T = 0 (

68
Se), 1 (

68
As)

 
and 

2 (
68

Ge) formed with f5pvh Hamiltonian for 12 valence particles in the f5p-model space. 

J
π 

T = 0 T = 1 T = 2 

0
+ 

839 1372 874 

1
+ 

2135 3985 2319 

4
+ 

3793 6562 3700 

7
+ 

1848 3097 1462 

10
+ 

334 462 160 

      Figure-1 shows the calculated level densities )(E  (histograms) in A = 68 nuclei for classes of 

states 00   (
68

Se), 10   (
68

As) and 20   (
68

Ge). For the purpose of comparison, we also display the 

distribution of the Gaussian fit [27] (red-dashed line). The corresponding fitted parameters of E0 (the 

mean energy) and   (the standard deviation) used in the fitting with the Gaussian shape [Figure-1] 

are presented in Table- 2. The histograms in the upper panel are calculated with the full Hamiltonian 

of f5pvh interaction together with realistic spe’s, while those in the lower panel are calculated without 

the presence of the off-diagonal Hamiltonians of f5pvh. It is evident that the histograms in both panels 

are indistinguishable, with the exception of a shift in energy as a whole. The histograms in the lower 

panel reveal an enormous number of energy levels that accumulate at the mid-portion of )(E , which 

in sequence leads these histograms to spread with a narrow-range of excitation energy. This behavior 

is due to the non-considering of the off-diagonal Hamiltonian in the computations. However, the 

attachment of the off-diagonal mixing interaction in the computations (upper panel) leads commonly 

to push up the entire set of energy levels in the direction of the higher excitation energy. Therefore, the 

histograms (upper panel) reveal an important drop in its mid-portion. Besides, they distribute over a 

wider-range of energy than that of the lower panel. It is clear from both panels that the level density 

abruptly evolves in conjunction with the excitation energies, attains its maximum in the mid of the 

spectrum, and subsequently decreases once more for the greatest energy. This behavior of the great 

energy, and the uneven symmetry with regard to the mid of the spectrum, are non-regular features of 

models with restricted Hilbert space, which is in difference to real many-body systems. It is significant 

to denote that the calculated )(E  (histograms), which has a Gaussian shape, is in accordance with 

the expectation of Brody et al. [7] that is designed for systems of many-body with two body 

interactions. 

    Actually, Figure-1 also provides an opportunity to examine the effect of altering the isospin T  on 

the computed )(E  (histograms). It is evident from Figure-1 that the computed level densities have 

no dependency on the isospin .T  Similar arguments are obtained for other classes of states J  with 

isospin T = 0, 1, 2.  
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Figure 1-The calculated level density )(E  (histograms) and the Gaussian fit (red dashed line) for 

00   (
68

Se), 10   (
68

As) and 20   (
68

Ge) states. Upper panel corresponds to the results obtained with 

full Hamiltonian of f5pvh together with realistic spe’s while the lower panel corresponds to those of 

the absence of the off-diagonal Hamiltonian. 

 

Table 2-Gaussian fit parameters to the level densities of Figure- 1 for J
π
 = 0 with T = 0, 1 and 2. 

Type of calculations J
π T = 0 (

68
Se) T = 1 (

68
As) T = 2 (

68
Ge) 

E0(MeV)   E0(MeV)   E0(MeV)   

Full Hamiltonian 0
+ 

14.669 3.806 11.992 3.403 12.120 3.246 

Absence of the off-

diagonal Hamiltonian 
0

+
 6.774 2.219 6.589 2.002 6.497 1.901 

 

    To examine the influence of varying the spin J  on the computed ),(E  we replicate the 

computations in Figure-2 exactly as those of Figure-1 (upper panel), but this time we consider 

different classes of states  7,4,1J  and 10
+
 with T = 0. The Gaussian fit parameters of E0 and 

  utilized in Figure- 2 are displayed in Table-3. Figure-2 shows that the computed level densities
 

)(E  [for low spin (1
+
), medium spin (4

+
 and 7

+
), and high spin (10

+
)] are in coincident with the 

Gaussian shape, i.e., they demonstrate independency on .J  Similar results are found for T = 1 or 2 

with different J  states.  

 
Figure 2-Same as in Figure-1 (upper panel) but for various classes of states 1

+
0, 4

+
0, 7

+
0 and 10

+
0. 

 

Table 3-Gaussian fit parameters to the level densities of Figure-2 for the considered J
π
 and T = 0 

states. 

Type of calculations 
J
π
 T E0(MeV)   

 

 

Full Hamiltonian 
1

+ 
0 14.854 3.604 

4
+ 

0 14.893 3.581 

7
+ 

0 14.857 3.201 

10
+ 

0 14.765 2.729 
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      Figure-3 reveals the computed nearest-neighbors level spacing distributions )(sP  (histograms) in 

68A  nuclei for the unfolded 00   (
68

Se), 10   (
68

As) and 20   (
68

Ge) states. The histograms in the 

upper panel are computed with the full Hamiltonian of f5pvh interaction together with realistic spe’s, 

whereas those in the lower panel are computed without the off-diagonal Hamiltonians of f5pvh. The 

distribution of GOE (green-solid line) defines systems of disordered dynamic, while that of Poisson 

(blue-dashed line) defines systems of ordered dynamic. The computed histograms in the upper panel 

demonstrate chaotic manners, where they are in an astonishing agreement with GOE limit. Besides, 

the repulsion of levels at small spacing and the Gaussian tail (which are unique properties of 

disordered level statistics), formed due to the mixing by the off-diagonal residual interaction, is 

evidently noticed in the computed histograms. While the computed histograms displayed in the lower 

panel exhibit regular performance (where they are in remarkable agreement with Poisson limit) as a 

result of the nonexistence of repulsion and mixing among levels. 

    Again, Figure-3 offers the chance of investigating the influence of varying the isospin T  on the 

computed distributions of ).(sP  It is apparent that these distributions (histograms) have independency 

on T. Similar points of view are obtained for further classes of states J  with isospin T = 1 or 2.  

 

 
Figure 3-The spacing distributions )(sP  for unfolded 00   (

68
Se), 10   (

68
As) and 20   (

68
Ge) states. 

The calculated results are displayed by histograms. The GOE limit (green-solid line) and Poisson limit 

(blue-dashed line) are also displayed for comparison. Upper and lower panels correspond to the results 

obtained with full Hamiltonian and nonexistence of the off-diagonal Hamiltonian, respectively. 

 

     To investigate the effect of changing the spin J  on the calculated distributions of ),(sP  we 

replicate the computations in Figure- 4 precisely as those of Figure-3 (upper panel), but now we 

choose various classes of states  7,4,1J  and 10
+
 with T = 0. Figure-4 illustrates that the 

calculated nearest-neighbors level spacing distributions )(sP  [for low spin (1
+
), medium spin (4

+
 and 

7
+
), and high spin (10

+
)], are in agreement with the GOE distribution, i.e., they demonstrate no 

dependence on the spin .J  The same outcomes are gained for T = 1 or 2 with various J  states. 
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Figure 4-Same as in Fig. 3 (upper panel) but for various classes of states 1

+
0, 4

+
0, 7

+
0 and 10

+
0. 

 

   Figure-5 displays the Dyson’s 
3  statistics (the spectral rigidity) in A = 68 nuclei. The computed 

average )(3 L  distribution (open circle symbols) is plotted versus L  for the unfolded 00   (
68

Se), 

10   (
68

As) and 20   (
68

Ge) classes. Poisson limit (blue-dashed line) and GOE limit (green- solid line) 

are as well presented. Open circle symbols distributions displayed in the upper panel are obtained with 

the full Hamiltonian of f5pvh interaction together with realistic spe’s, but those in the lower panel are 

obtained without considering the off-diagonal Hamiltonians of f5pvh. The computed )(3 L  statistics 

displayed in the upper panel exhibit chaotic presentation (in very well agreement with the GOE limit), 

whereas those displayed in the lower panel exhibit regular presentation (in very good accordance with 

the Poisson limit). 

   Once more, Figure-5 gives the occasion of examining the influence of changing the isospin T  on the 

calculated distributions of )(3 L  statistics. It is clear that the calculated )(3 L  statistics have no 

dependency on the isospin .T  Similar arguments are found for other classes of states J  with isospin 

T = 0, 1, 2.  

 

 

 
Figure 5- Same as in Fig. 3 but for the Dyson’s )(3 L  statistics. 

 

    To explore the effect of altering the spin J  on the evaluated distributions of )(3 L  statistics, we 

imitate the evaluation in Figure-6 exactly as those of Figure- 5 (upper panel), but this time we select 

different classes of states  7,4,1J  and 10
+
 with T = 0. Figure-6 exhibits that the evaluated 

distributions of )(3 L  statistics [for low spin (1
+
), medium spin (4

+
 and 7

+
), and high spin (10

+
)] are 
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in accordance with the GOE limit, i.e., they are independent on .J  An equivalent point of view is 

obtained for T = 1 or 2 with various J  states. 

 

 
Figure 6-Same as in Figure-5 (upper panel) but for different classes of states 1

+
0, 4

+
0, 7

+
0 and 10

+
0. 

 

4. Conclusions 

     The present results for the spectral fluctuations in the isobar 68A  are computed for various 

TJ   classes with full Hamiltonian (absence of the off-diagonal Hamiltonian). The level density 

distributions )(E  , which have a Gaussian shape, are found to have a spreading over a wider 

(narrower) range of excitation energy due to accumulating a smaller (larger) number of energy levels 

at the middle part of their distributions. The distributions of level spacing )(sP  and    statistic are 

found to have a chaotic (regular) behavior and coincide well with the GOE (Poisson) distribution. 

Besides, the distributions of )(),( sPE  and 3  statistic are found to have no dependency on J  

and .T  
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