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Abstract 
     In this paper, we have examined the influence of heat- transfer on the 

magnetohydrodynamics oscillatory flow of Williamson fluid during porous medium 

for two types of geometries "Poiseuille flow and Couette flow". We use perturbation 

technique in terms of the Weissenberg number to obtain explicit forms for velocity 

profiles. The results that obtained are illustrated by graphs.  
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 تأثير انتقال الحرارة على الهايدروديناميكا الممغنطة لتدفق متذبذب لمائع ويليامسون خلال قناة مسامية
 

 الخفاجي صالح غازي  ضياء ،*وسام صادق خضير
 .قاالعر  ، الديوانية ، القادسية جامعة ، المعلومات وتكنولوجيا الحاسوب علوم كلية الرياضيات، قسم

 
 لخلاصةا

فييييييييب ثييييييييدا ال حييييييييق، قمنييييييييا ادهاسيييييييية تيييييييية ير ان قييييييييا  الحييييييييراه  عليييييييي  ال ايييييييييدهودينامي ا المم ن يييييييية ل ييييييييدف       
 Poiseuille flow and" ثندسييييييي م دايييييدب لمييييياون ويليامسيييييوي  ييييين  قنيييييا  مسيييييامية لنيييييوعي  

Couette flow"  .للحصيييييييو  علييييييي   عيييييييدد و ن ييييييير باع مييييييياد  اسييييييي ردمنا لريقييييييية سلسيييييييلة ا ضييييييي راب
  وضيحية .الرسوم ن اوج المش لة باس ردام الناقشنا حقل السرعة. ل صي ة مع مده

 
1. Introduction 

     The flow of electrically oriented fluid has a lot of applications, and this science deal with many 

branches. In astronomy, it helps to understand what happens in the sun, such as rotating solar spots, 

what happens inside other stars during their life cycle, and geology. The resulting magnetic and 

mechanical properties, and this science is also looking at generating electricity directly from hot gases 

evaporated ionizing generators that rely on this magnetic movement. It is also looking at tracking what 

happens in nuclear fusion by putting high electromagnetic energy on a mixture of deuterium and 

tritium in the laboratory to imitate what is happening inside the sun and in nuclear reactors using 

molten sodium molten metal. To reduce it in an area far from the walls of the container by magnetic 

fields, so that the temperature and pressure can be increased to values close to the corresponding 

values within the stars and so on.  

     Nigam and Singh [1], have studied the effect of heat-transfer on laminar flow among parallel flakes 

under the impact of transverse magnetic field. Attia and Kotb [2], have studied the heat-transfer with 

MHD flow of viscous fluid among two parallel flakes. The hydro-magnetic free convection flow 

during a porous medium among two parallel plates was discussed by Massias et al. [3]. Mustafa [4], 
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have analyzed the thermal radiation effect on unsteady magneto-hydrodynamics free convection flow 

past a vertical plate with temperature relied on viscosity. Hamza et al. [5], have studied the un-steady 

heat-transfer to magneto-hydrodynamics oscillatory flow during porous medium under slip condition. 

Moreover the Newtonian fluids are less appropriate than non-Newtonian fluids in many feasible 

applications. Examples of such fluids include ketchup, shampoo, cosmetic products, lubricants, 

polymers, mud, blood at low shear rate and many others. All the non-Newtonian fluids (in terms of 

their various characteristics), unlike the viscous fluids, cannot be portrayed by a single constitutive 

relationship. Hence, many models of Non-Newtonian fluids are suggested in the literature.  

     The development of Poiseuille flow of the yield - stress fluid was discussed by Al-Khatib and 

Wilson [6]. Frigaard and Ryan [7], have analyzed the flow of a viscous-plastic fluid in a canal of 

slowly varying width. Kavita et al. [8], have studied the effect of heat-transfer on magneto-

hydrodynamics oscillatory flow of Jeffrey fluid in a canal. The effect of heat-transfer on the MHD 

oscillatory flow of a Jeffrey fluid with variable viscosity model during porous medium studied by Al-

Khafajy [9]. 

      We consider a mathematical model to study the influence of heat- transfer on magneto-

hydrodynamics oscillatory inflow of Williamson fluid during porous medium. The numerical solutions 

"perturbation technique" for the two kinds of flow "Poiseuille flow and Couette flow" are addressed. 

We discussed the pertinent parameters that appear in the problem during the graphs. 

2. Mathematical Formulation  

     Let us consider the flow of a Williamson fluid in the canal of breadth l qualify the effects of 

magnetic field and radioactive heat transference as described in Figure-1. We supposed that the fluid 

has very small electromagnetic force produced and the electrical conductivity is small. We are 

considering Cartesian coordniate system such that, (𝑣(𝑦), 0,0) is the velocity vector in which v is the 

x-component of velocity and y is orthogonal to x-axis.  

                                                                         y = l                                 T = 
1T   

                    y                                                                                    l                 V         

                                                                            y=0 

                                    x                                                                                       T = 0T  

                                                                   

                                                                                           0B    

      Figure 1-Graph of the problem. 

  

     The fundamental equation for Williamson fluid is [10] : 

𝑺 = −𝑝̅𝑰 + 𝜏              (1) 

τ̅ = [μ∞ + (μ0 − μ∞)(1 + Γγ̅̇)−1]γ̅̇                       (2) 

Where 𝑝̅ is the pressure, 𝑰 is the unit tensor, 𝜏̅ is the extra stress tensor, Γ is the time constant, 𝜇∞ and 

𝜇0 are the infinite shear rate viscosity and zero shear rate viscosity, then  𝛾̇ is defined as : 

γ̇ = √
1

2
∑ ∑ 𝛾̇𝑖𝑗𝛾̇𝑗𝑖𝑗𝑖 = √

1

2
∏                                                                    (3) 

Here ∏ is the second invariant strain tensor. We consider the fundamental Eq. (2), the case for which 

Γ𝛾̇ < 1, and 𝜇∞ = 0. We can write the component of extra stress tensor according to follows as : 

τ̅ = μ0[(1 + Γγ̅̇)]γ̅̇                                                   (4) 

The equations of momentum and energy governing such a flow, subjugate to the Boussinesq 

approximation, are : 

𝜌
𝜕𝑣̅

𝜕𝑡̅
= −

𝜕𝑝̅

𝜕𝑥̅
+

𝜕𝜏̅𝑥𝑥̅̅ ̅̅

𝜕𝑥̅
+

𝜕𝜏̅𝑥𝑦̅̅ ̅̅

𝜕𝑦̅
+

𝜕𝜏̅𝑥𝑧̅̅̅̅

𝜕𝑧̅
+ 𝜌𝑔𝛽(𝑇 − 𝑇0) − 𝜎𝐵0

2𝑣̅ −
𝜇0

𝑘
𝑣̅              (5) 

𝜌
𝜕𝑇

𝜕𝑡̅
=

𝐾

𝐶𝑝

𝜕2𝑇

𝜕𝑦̅2 −
1

𝐶𝑝

𝜕𝑞

𝜕𝑦
                     (6) 

The temperatures at the walls of the canal are given as: 

𝑇 = 𝑇0  at   𝑦̅ = 0 , and   𝑇 = 𝑇1  at   𝑦̅ = 𝑙.                            (7)    

      In which 𝑣̅ is the axial velocity, 𝑇 is a fluid temperature, 𝐵0 is a magnetic field strength, 𝜌 is a 

fluid density, 𝜎 is a conductivity of the fluid, 𝛽 is a coefficient of volume amplification due to 
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temperature, 𝑔 is an hastening due to gravity, k is a permeability, 𝑐𝑝 is a specific heat at constant 

pressure, 𝐾 is a thermal conductivity and 𝑞 is a radioactive heat flux. 

      Following Vinvent et al. [11], it is supposed that the fluid is visually thin with a relatively low 

density and the radioactive heat flux is given by: 
𝜕𝑞

𝜕𝑦
= 4𝛼2(𝑇0 − 𝑇)              (8) 

Here 𝛼 is the mean radiation absorption coefficient. 

Non-dimensional parameters are : 

𝑣 =
𝑣̅

𝑉
, 𝑥 =

𝑥̅

𝑙
  , 𝑦 =

𝑦̅

𝑙
 , 𝜃 =

𝑇−𝑇0

𝑇1−𝑇0
 , 𝑡 =

𝑡̅𝑉

𝑙
 , 𝑝 =

𝑝̅ℎ

𝜇𝑉
 , 𝑀2 =

𝜎𝐵0
2ℎ2

𝜇
 , 𝐷𝑎 =

𝑘

𝑙2 , 𝐺𝑟 =
𝜌𝑔𝛽𝑙2(𝑇−𝑇0)

𝜇𝑉
 ,

 𝑅𝑒 =
𝜌𝑙𝑉

𝜇
 , 𝑃𝑒 =

𝜌𝑙𝑉𝑐𝑝

𝐾
 , 𝑁2 =

4𝛼2𝑙2

𝐾
 , 𝜏𝑥𝑥 =

𝑙

𝜇0𝑉
𝜏̅𝑥𝑥̅̅̅̅ , 𝜏𝑥𝑦 =

𝑙

𝜇0𝑉
𝜏̅𝑥𝑦̅̅̅̅ , 𝜏𝑥𝑧 =

𝑙

𝜇0𝑉
𝜏̅𝑥𝑧̅̅̅̅ , γ̇ =

𝑙

𝑉
γ̅̇

}      (9) 

     Where V is the mean flow velocity, Darcy number (𝐷𝑎), Reynolds number (𝑅𝑒), Peclet number 

(𝑃𝑒), magnetic parameter (𝑀), Grashof number (𝐺𝑟) and radiation parameter (𝑁) . 

     Substituting (8) and (9) into equations (5) - (7), we obtain   

𝜌
𝑉𝜕𝑣
𝑙

𝑉
𝜕𝑡

= −
𝜇0𝑉

𝑙
𝜕𝑝

𝑙𝜕𝑥
+

𝜇0𝑉

𝑙
𝜕𝜏𝑥𝑥

𝑙𝜕𝑥
+

𝜇0𝑉

𝑙
𝜕𝜏𝑥𝑦

𝑙𝜕𝑦
+

𝜇0𝑉

𝑙
𝜕𝜏𝑥𝑧

𝑙𝜕𝑧
+ 𝜌𝑔𝛽(𝑇1 − 𝑇0)𝜃 − 𝜎𝐵0

2𝑉𝑣 −
𝜇0𝑉

𝑘
𝑣   (10) 

𝜌 
𝜕(𝜃(𝑇1−𝑇0)+𝑇0))

𝑙

𝑉
𝜕𝑡

=
𝑘

𝐶𝑃
[

𝜕2(𝜃(𝑇1−𝑇0)+𝑇0))

𝑙2𝜕𝑦2 −
1

𝑘
4𝛼2(𝑇0 − 𝑇)]       (11) 

where    𝜏𝑥𝑥 = 0 , 𝜏𝑥𝑦 =  μ0 [(1 + Γ
𝜕𝑣

𝜕𝑦
)]

𝜕𝑣

𝜕𝑦
 , 𝜏𝑥𝑧 = 0 .   

     The following are the non-dimensional boundary conditions corresponding to the temperature 

equation : 

𝜃(0) = 0  , 𝜃(1) = 1                                                            (12) 

     Finally, we get the following non-dimensional equations: 

𝑅𝑒
𝜕𝑣

𝜕𝑡
= −

𝜕𝑝

𝜕𝑥
+

𝜕

𝜕𝑦
[

𝜕𝑣

𝜕𝑦
+ 𝑊𝑒(

𝜕𝑣

𝜕𝑦
)2] + 𝐺𝑟𝜃0 − (𝑀2 +

1

𝐷𝑎
) 𝑣                        (13) 

𝜌
𝜕𝜃

𝜕𝑡
=

𝜕2𝜃

𝜕𝑦2 + 𝑁2𝜃            (14) 

To solve the temperature equation (14) with boundary conditions (12), let 

𝜃(𝑦, 𝑡) = 𝜃0(𝑦, 𝑡)𝑒𝑖𝜔𝑡           (15) 

where 𝜔 is the frequency of the oscillation. 

Substituting the equation (15) into the equation (14), we have  
𝜕2𝜃

𝜕𝑦2 + (𝑁2 − 𝑖𝜔𝑃𝑒)𝜃0 = 0           (16) 

     The solution of equation (16) with boundary conditions (12) is 𝜃0(𝑦) = csc(𝜑) sin (𝜑), where 

𝜑 = √𝑁2 − 𝑖𝜔𝑃𝑒. Therefore  

𝜃(𝑦, 𝑡) = csc(𝜑) sin (𝜑)𝑒𝑖𝜔𝑡                         (17) 

      The calculated of equation (13) have been solved in the next parts for two kinds of boundary 

conditions "Poiseuille flow and Couette flow". 

3. Solution of the Problem 

 (i) Poiseuille flow   

      We suppose that the rigid flakes at 𝑦 = 0 and 𝑦 = 𝑙 are at rest. Therefore  

𝑣̅ = 0  at   𝑦̅ = 0 , and  𝑣̅ = 0  at   𝑦̅ = 𝑙 .       

     The non-dimensional boundary conditions are: 

𝑣(0) = 0 , 𝑣(1) = 0 .                     (18)       

To solve the momentum equation (13), let 

−
𝜕𝑝

𝜕𝑥
= 𝜆𝑒𝑖𝜔𝑡           (19) 

𝑣(𝑦, 𝑡) = 𝑣0(𝑦, 𝑡)𝑒𝑖𝜔𝑡           (20) 

Where 𝜆 is a real constant. 

     Substituting the equations (19) and (20) into the equations (13), we have   

𝑅𝑒
𝜕

𝜕𝑡
(𝑣0(𝑦, 𝑡)𝑒𝑖𝜔𝑡) =

𝜆𝑒𝑖𝜔𝑡 +
𝜕

𝜕𝑦
[

𝜕

𝜕𝑦
+ 𝑊𝑒(

𝜕

𝜕𝑦
)2] (𝑣0(𝑦, 𝑡)𝑒𝑖𝜔𝑡) + 𝐺𝑟𝜃0 − (𝑀2 +

1

𝐷𝑎
) (𝑣0(𝑦, 𝑡)𝑒𝑖𝜔𝑡)                             (21) 
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      Equation (21) is non-linear and difficult to get an exact solution. So for waning 𝑊𝑒, the boundary 

value problem is agreeing to an easy analytical solution. In this case the equation can be solved.  

Nevertheless, we suggest a small Γ and used the perturbation technique to solve the problem. 

Accordingly, we write : 

𝑣0 = 𝑣00 + 𝑊𝑒𝑣01 + 𝑊𝑒2𝑣02 + O(𝑊𝑒3)         (22) 

Substituting Eq. (22) in Eq. (21) with boundary conditions (18), then we equality the  powers of 𝑊𝑒, 

we obtain :  

A - Zeros-order system (𝑾𝒆𝟎)  
𝜕𝑣00

𝜕𝑦2 − (𝑀2 + 𝑅𝑒𝑖𝜔 +
1

𝐷𝑎
) 𝑣00 = −(𝜆 + 𝐺𝑟𝜃0)        (23) 

The associated boundary conditions are: 

𝑣00(0) = 𝑣00(1) = 0           (24) 

B - First-order system (𝑾𝒆𝟏) 
𝜕𝑣01

𝜕𝑦2 − (𝑀2 + 𝑅𝑒𝑖𝜔 +
1

𝐷𝑎
) 𝑣01 = −2(

𝜕𝑣00

𝜕𝑦

𝜕2𝑣00

𝜕𝑦2 )𝑒𝑖𝜔𝑡      (25) 

The associated boundary conditions are: 

𝑣01(0) = 𝑣01(1) = 0           (26) 

C - Second-order system (𝑾𝒆𝟐) 
𝜕𝑣02

𝜕𝑦2 − (𝑀2 + 𝑅𝑒𝑖𝜔 +
1

𝐷𝑎
) 𝑣02 = −2(

𝜕𝑣00

𝜕𝑦

𝜕2𝑣01

𝜕𝑦2 +
𝜕𝑣01

𝜕𝑦

𝜕2𝑣00

𝜕𝑦2 )𝑒𝑖𝜔𝑡     (27) 

The associated boundary conditions are: 

𝑣02(0) = 𝑣02(1) = 0           (28) 

D - Zeros-order solution 

The solution of equation (23) subset to the associate boundary conditions (24) is:  

𝑣00 = (
𝐵

𝐴
−

𝐵ⅇ√𝐴𝑦

𝐴
(1 + 𝑒√𝐴)−1 −

𝐵ⅇ√𝐴

𝐴
(1 + 𝑒√𝐴)−1𝑒−√𝐴𝑦)         (29) 

E - First-order solution 

The solution of equation (25) subset to the associate boundary conditions (26) is: 

𝑣01 = −
2𝐵2ⅇ𝑖𝑡𝑤−2√𝐴𝑦(−ⅇ2√𝐴+ⅇ4√𝐴𝑦)

3𝐴3 2⁄ (1+ⅇ√𝐴)2
+

2𝐵2ⅇ𝑖𝑡𝑤

3𝐴3 2⁄ (1+ⅇ√𝐴)
𝑒√𝐴𝑦 −

2𝐵2ⅇ√𝐴+𝑖𝑡𝑤

3𝐴3 2⁄ (1+ⅇ√𝐴)
𝑒−√𝐴𝑦    (30) 

Where 𝐴 = (𝑀2 + Re𝑖𝜔 +
1

Da
) 𝑎𝑛𝑑 𝐵 = (𝜆 + Grθ0) 

     The formula of  𝑣02 is a long. 

     Finally, the perturbation solutions up to second order for 𝑣0 is given by 

𝑣0 = 𝑣00 + 𝑊𝑒𝑣01 + 𝑊𝑒2𝑣02 + O(𝑊𝑒3)   

     Therefore, the fluid velocity is given as: 

𝑣(𝑦, 𝑡) = 𝑣0(𝑦, 𝑡)𝑒𝑖𝜔𝑡          (31) 

(ii) Couette flow 

       The upper flake is locomotion and the lower flake is fixed with the velocity 𝑉ℎ. The boundary 

conditions for the Couette flow problem as defined: 

𝑣(0) = 0  , 𝑣(1) = 𝑉0           (32) 

      We have same defined as the governing equations in Poiseuille flow (Eq. 21). The solution in this 

case has been calculated by the perturbation technique and the results have been discussed during 

graphs. 

4. Results and Discussion 

     We discuss the Influence of heat-transfer on magnetohydrodynamics oscillatory flow of 

Williamson fluid during porous medium for Poiseuille flow and Couette flow in some results during 

the graphical illustrations. Numerical assessments of analytical results and some of the graphically 

significant results are presented in Figures (2-14).We used the MATHEMATICA program to find the 

numerical results and illustrations. The momentum equation is resolved by using '' perturbation 

technique '' and all the results are discussed graphically. 

     The velocity profile of Poiseuille flow is shown during Figures-(2-6). Figure-2 illustrates the 

influence 𝐷𝑎 and 𝑀 on the velocity profiles function 𝑣 vs. 𝑦. It is found by the increasing 𝐷𝑎 the 

velocity profiles function 𝑣 increases, while 𝑣 decreases with increasing 𝑀. Figure-3 show that 

velocity profile 𝑣 rising up by the increasing influence of both the parameters 𝐺𝑟 and 𝜆. Figure-4 we 

observed that 𝑣 increases by the increasing influence of both the parameters 𝑅𝑒 and 𝑃𝑒. Figure-5 show 
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the velocity profile 𝑣 increases by the increasing 𝑁, while 𝑣 decreases by the increasing 𝜔. The fluid 

velocity starts to be constant at the walls and increasing, as fixed by the boundary conditions. Figure-6 

show that velocity profiles increases with the increasing of the parameters 𝑊𝑒 when 0.45 < y < 1, 

while 𝑣 decreases by the increasing of 𝑊𝑒 when 0 < y < 0.45. The velocity profile of Couette flow is 

shown during Figures-(7–11). It is noted that by the increasing Each of parameters 𝑅𝑒, 𝑃𝑒, 𝐺𝑟, 𝐷𝑎, 𝑁 

and  𝜆 the velocity profile 𝑣 increases, while 𝑣 decreases by the increasing 𝑊𝑒, 𝑀 and 𝜔 . Based on 

equation (17), Figure-12 show that influence of 𝑁 on the temperature function 𝜃. The temperature 

increases by the increase in 𝑁. Figure-13 we observed that the influence 𝑃𝑒 in temperature 𝜃 by the 

increasing 𝑃𝑒 then 𝜃 increases. Figure-14 show as that by the increasing of 𝜔 the temperature 𝜃 

decreases .  

 

 

  
 

Figure 2-Velocity profile for 𝐷𝑎 and 𝑀 with 𝜔 = 1, 𝑁 = 1, Gr = 1, Re = 1, 𝑃𝑒 = 1, 𝜆 = 1, We =
0.05, 𝑡 = 0.5 in Poiseuille flow. 

 

 
 

Figure 3-Velocity profile for 𝜆 and 𝐺𝑟 with  𝜔 = 1, 𝑁 = 1, 𝑀 = 1, Re = 1, 𝑃𝑒 = 1, 𝐷𝑎 = 0.8, We =
0.05, 𝑡 = 0.5 in Poiseuille flow. 

 

  
Figure 4-Velocity profile for 𝑅𝑒 and 𝑃𝑒 with  𝜔 = 1, 𝑁 = 1, 𝑀 = 1, λ = 1, 𝐺𝑟 = 1, 𝐷𝑎 = 0.8, We =
0.05, 𝑡 = 0.5 in Poiseuille flow. 
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Figure 5-Velocity profile for 𝜔 and 𝑁 with  𝑅𝑒 = 1, 𝑃𝑒 = 1, 𝑀 = 1, λ = 1, 𝐺𝑟 = 1, 𝐷𝑎 = 0.8, We =
0.05, 𝑡 = 0.5 in Poiseuille flow. 

 

  
  

Figure 6 -Velocity profile for 𝑊𝑒 with 𝜔 = 1, 𝑁 = 1, 𝑅𝑒 = 1, 𝑃𝑒 = 1, 𝑀 = 1, λ = 1, 𝐺𝑟 = 1, 𝐷𝑎 =
0.8, 𝑡 = 0.5 in Poiseuille flow. 

 

  
Figure 7-Velocity profile for 𝑀 and 𝐷𝑎 with 𝜔 = 1, 𝑁 = 1, Gr = 1, Re = 1, 𝑃𝑒 = 1, 𝜆 = 1, We =
0.05, 𝑉0 = 0.3, 𝑡 = 0.5 in Couette flow. 

  
Figure 8-Velocity profile for 𝜆 and 𝐺𝑟 with 𝜔 = 1, 𝑁 = 1, 𝑀 = 1, Re = 1, 𝑃𝑒 = 1, 𝐷𝑎 = 0.8, We =
0.05, 𝑉0 = 0.3, 𝑡 = 0.5 in Couette flow. 
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Figure 9-Velocity profile for 𝑅𝑒 and 𝑃𝑒 with 𝜔 = 1, 𝑁 = 1, 𝑀 = 1, λ = 1, 𝐺𝑟 = 1, 𝐷𝑎 = 0.8, We =
0.05, 𝑉0 = 0.3, 𝑡 = 0.5 in Couette flow. 

  
Figure 10-Velocity profile for 𝜔 and 𝑁 with  𝑅𝑒 = 1, 𝑃𝑒 = 1, 𝑀 = 1, λ = 1, 𝐺𝑟 = 1, 𝐷𝑎 = 0.8, We =
0.05, 𝑉0 = 0.3, 𝑡 = 0.5 in Couette flow. 

  
Figure 11-Velocity profile for 𝑊𝑒 with 

𝜔 = 1, 𝑁 = 1, 𝑅𝑒 = 1, 𝑃𝑒 = 1, 𝑀 = 1, λ = 1, 𝐺𝑟 = 1, 𝐷𝑎 = 0.8, 𝑉0 = 0.3, 𝑡 = 0.5 in Couette flow. 

 

 
Figure 12-Influence of 𝑁 on Temperature 𝜃 for 𝜔 = 1, 𝑃𝑒 = 0.7, 𝑡 = 0.5 
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Figure 13-Influence of 𝑃𝑒 on Temperature 𝜃 for 𝑡 = 0.5, 𝑁 = 1, 𝜔 = 1. 

 

 
Figure 14-Influence of 𝜔 on Temperature 𝜃 for 𝑡 = 0.5, 𝑁 = 1, 𝑃𝑒 = 0.7. 

 

5. Conclusion and Remarks  
     We discussion the influence of heat-transfer on magneto-hydrodynamics oscillatory flow of 

Williamson fluid during porous medium. The "perturbation technique" for the two kinds of flow 

"Poiseuille flow and Couette flow" are addressed. We found the velocity and temperature are 

analytically. We used different values to finding the results of pertinent parameters namely Darcy 

number (Da), Reynolds number (Re), Peclet number (Pe), magnetic parameter (M), Grashof number 

(Gr), Weissenberg number (𝑊𝑒), frequency of the oscillation (𝜔) and radiation parameter (𝑁) for the 

velocity and temperature. The keys point are: 

 The velocity profiles increases by the increasing , 𝑅𝑒 , 𝑁, 𝐷𝑎 ,𝐺𝑟 and 𝜆  for both the Poiseuille and 

Couette flow. 

 The velocity profiles decreases by the increasing 𝜔 and 𝑀 for both the Poiseuille and Couette flow. 

 The velocity profiles increases by the increasing of the parameters 𝑊𝑒 when 0.45 < y < 1, while 𝑣 

decreases with increasing of 𝑊𝑒 when 0 <  𝑦 <  0.45, for Poiseuille flow. The velocity profiles 

decreases with the increasing of the parameters 𝑊𝑒, for Couette flow.  

 The parameter that has the most incremental effect on fluid movement is 𝜆.  

 We show that by the increases 𝑁 and 𝑃𝑒 the temperature increasing 𝜃 and the temperature 𝜃 

decreases by the increasing 𝜔.  
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