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Abstract

In this paper, we have examined the influence of heat- transfer on the
magnetohydrodynamics oscillatory flow of Williamson fluid during porous medium
for two types of geometries "Poiseuille flow and Couette flow". We use perturbation
technique in terms of the Weissenberg number to obtain explicit forms for velocity
profiles. The results that obtained are illustrated by graphs.
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1. Introduction

The flow of electrically oriented fluid has a lot of applications, and this science deal with many
branches. In astronomy, it helps to understand what happens in the sun, such as rotating solar spots,
what happens inside other stars during their life cycle, and geology. The resulting magnetic and
mechanical properties, and this science is also looking at generating electricity directly from hot gases
evaporated ionizing generators that rely on this magnetic movement. It is also looking at tracking what
happens in nuclear fusion by putting high electromagnetic energy on a mixture of deuterium and
tritium in the laboratory to imitate what is happening inside the sun and in nuclear reactors using
molten sodium molten metal. To reduce it in an area far from the walls of the container by magnetic
fields, so that the temperature and pressure can be increased to values close to the corresponding
values within the stars and so on.

Nigam and Singh [1], have studied the effect of heat-transfer on laminar flow among parallel flakes
under the impact of transverse magnetic field. Attia and Kotb [2], have studied the heat-transfer with
MHD flow of viscous fluid among two parallel flakes. The hydro-magnetic free convection flow
during a porous medium among two parallel plates was discussed by Massias et al. [3]. Mustafa [4],
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have analyzed the thermal radiation effect on unsteady magneto-hydrodynamics free convection flow
past a vertical plate with temperature relied on viscosity. Hamza et al. [5], have studied the un-steady
heat-transfer to magneto-hydrodynamics oscillatory flow during porous medium under slip condition.
Moreover the Newtonian fluids are less appropriate than non-Newtonian fluids in many feasible
applications. Examples of such fluids include ketchup, shampoo, cosmetic products, lubricants,
polymers, mud, blood at low shear rate and many others. All the non-Newtonian fluids (in terms of
their various characteristics), unlike the viscous fluids, cannot be portrayed by a single constitutive
relationship. Hence, many models of Non-Newtonian fluids are suggested in the literature.

The development of Poiseuille flow of the yield - stress fluid was discussed by Al-Khatib and
Wilson [6]. Frigaard and Ryan [7], have analyzed the flow of a viscous-plastic fluid in a canal of
slowly varying width. Kavita et al. [8], have studied the effect of heat-transfer on magneto-
hydrodynamics oscillatory flow of Jeffrey fluid in a canal. The effect of heat-transfer on the MHD
oscillatory flow of a Jeffrey fluid with variable viscosity model during porous medium studied by Al-
Khafajy [9].

We consider a mathematical model to study the influence of heat- transfer on magneto-
hydrodynamics oscillatory inflow of Williamson fluid during porous medium. The numerical solutions
"perturbation technique™ for the two kinds of flow "Poiseuille flow and Couette flow" are addressed.
We discussed the pertinent parameters that appear in the problem during the graphs.

2. Mathematical Formulation

Let us consider the flow of a Williamson fluid in the canal of breadth | qualify the effects of
magnetic field and radioactive heat transference as described in Figure-1. We supposed that the fluid
has very small electromagnetic force produced and the electrical conductivity is small. We are
considering Cartesian coordniate system such that, (v(y), 0,0) is the velocity vector in which v is the
x-component of velocity and y is orthogonal to x-axis.

y=I T=T,

y=0

BO
Figure 1-Graph of the problem.

The fundamental equation for Williamson fluid is [10] :
S=—-pl+r7 (1)
T = [Hoo + (Mo = Hoo) (1 +TY) ']y )
Where p is the pressure, I is the unit tensor, T is the extra stress tensor, I is the time constant, u., and
Uo are the infinite shear rate viscosity and zero shear rate viscosity, then y is defined as :

Y= ’%ZiZj]}ijyji = \/%T_[ (3)

Here [] is the second invariant strain tensor. We consider the fundamental Eq. (2), the case for which
I'y < 1, and u, = 0. We can write the component of extra stress tensor according to follows as :
T=po[(1+TV)]y (4)
The equations of momentum and energy governing such a flow, subjugate to the Boussinesq
approximation, are :
v 0p  OTxz , OTxy , 0Tz 2- Mo -
P3i= "2z ax T 55 Tz T PIB(T —To) — 0By -0 (®)
OT K 9°T 1 dq
PaE=c a7 oy (6)
The temperatures at the walls of the canal are given as:
T=Tyat y=0,and T=T, at y=1L @)
In which 7 is the axial velocity, T is a fluid temperature, B is a magnetic field strength, p is a
fluid density, ¢ is a conductivity of the fluid, g is a coefficient of volume amplification due to
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temperature, g is an hastening due to gravity, k is a permeability, c, is a specific heat at constant
pressure, K is a thermal conductivity and q is a radioactive heat flux.

Following Vinvent et al. [11], it is supposed that the fluid is visually thin with a relatively low
density and the radioactive heat flux is given by:

Z—z = 4a?(Ty — T) (8)
Here « is the mean radiation absorption coefficient.

Non- dlmensmnal parameters are:

T-T, tv ph oBZh? k 12(T-T,
v=lx=2 y=2 g=T0 = 2B y2 2 THL pg ok Gr = 2000
Ti—To l uv u 12 uv (9)
Re=2Y Pe=prCp N2 =t ot =T, = —— Ten ¥ = =7
P Kk’ KXY T v RNy Ty TRy txz Ty X v

Where V is the mean flow velocity, Darcy number (Da), Reynolds number (Re), Peclet number
(Pe), magnetic parameter (M), Grashof number (Gr) and radiation parameter (N) .
Substituting (8) and (9) into equations (5) - (7), we obtain

koV uoV Ko HoV
vov _ 0P 0%k | 70Ty | 70Tk _ _ _p2y,, _ MoV
la = 0% + o + 10y + 107 +pgﬂ(T1 T0)9 O'B()V'U K v (10)
6(9(T1 T)+To)) _ k 0%(8(T1—Tp)+To)) _ l 2 _
P = & (OGS el Ty~ ) 1)

where Ty, =0, Ty = uo[(1+F )]a;' Ty, =0.
The following are the non-dimensional boundary conditions corresponding to the temperature

equation :
0(0)=0,0(1)=1 (12)
Finally, we get the following non-dimensional equations:
v _ _0op v (24 L
ReZl = ax+ay ay+W( )]+Gr90 (M2 +)v (13)
p =2 o 9+N29 (14)
To solve the temperature equation (14) with boundary conditions (12), let
0(y,t) = 0,(y,t)e'" (15)

where w is the frequency of the oscillation.
Substituting the equation (15) into the equation (14), we have

226 2 . _
3 + (N° —iwPe)f, =0 (16)

The solution of equation (16) with boundary conditions (12) is 6,(y) = csc(¢) sin(¢), where

@ = VN? — iwPe. Therefore
0(y,t) = csc(p) sin(p)e™* (17)
The calculated of equation (13) have been solved in the next parts for two kinds of boundary
conditions "Poiseuille flow and Couette flow".
3. Solution of the Problem
(i) Poiseuille flow
We suppose that the rigid flakes at y = 0 and y = [ are at rest. Therefore
v=0at y=0,and v=0at y=1.
The non-dimensional boundary conditions are:

v(0)=0, v(1)=0. (18)
To solve the momentum equation (13), let
_0p _ jpint

ik (19)
v(y, t) = vo(y, t)e'! (20)

Where A is a real constant.
Substituting the equations (19) and (20) into the equations (13), we have

i iwty —
at (vo (y’ t)e )

Aeiwt 4 & 3y [ay + We(—) ] (o (7, )ei®t) + Gré, — ( i) (o (y, t)ei®t) 21)

391



Khudair and Al-Khafajy Iraqi Journal of Science, 2018, Vol. 59, No.1B, pp: 389-397

Equation (21) is non-linear and difficult to get an exact solution. So for waning We, the boundary
value problem is agreeing to an easy analytical solution. In this case the equation can be solved.
Nevertheless, we suggest a small T and used the perturbation technique to solve the problem.
Accordingly, we write :

Vo = Voo + Wevy; + We?vy, + 0(We?) (22)
Substituting Eq. (22) in Eq. (21) with boundary conditions (18), then we equality the powers of We,
we obtain :

A - Zeros-order system (We?)

d ) 1
% — (MZ + Reiw + E) Voo = — (A + Grhy) (23)
The associated boundary conditions are:

90(0) = vgo(1) =0 (24)
B - First-order system (We?)

ov . 1 Avgg 0%, i

ayozl - (M2 + Reiw + E) Vo, = —Z(a—ff—aygo)e“"t (25)
The associated boundary conditions are:

101(0) = v9,(1) =0 (26)
C - Second-order system (We?)

%02 _ (pp2 o+ L — (900301 | V01 8%V00y it

3y? (M + Reiw + Da) Voy = —2( 3y 02 T oy oy e (27)
The associated boundary conditions are:

V92(0) = v92(1) =0 (28)

D - Zeros-order solution

The solution of equation (23) subset to the associate boundary conditions (24) is:
B BeVAY _, Be'A 1
Voo = G — (14 eVA) 1 = Z— (1 + eVh)~le~') (29)
E - First-order solution
The solution of equation (25) subset to the associate boundary conditions (26) is:
ZBZeltw—Z\/Zy(_eZ\/Z_’_e‘h/Zy) 2B2gitw e\/ATy _ 2B2gVA+itw e_\/;y
343/2(1+eVA)2 343/2(1+eV4) 343/2(1+eV4)

Where 4 = (M? + Reiw + ——) and B = (1 + Gré,)

The formula of v, is a long.

Finally, the perturbation solutions up to second order for v, is given by
Vo = Voo + Wevy, + We?vy, + 0(We?)

Therefore, the fluid velocity is given as:

v(y,t) = vo(y, t)e'* (31)
(ii) Couette flow

The upper flake is locomotion and the lower flake is fixed with the velocity V;. The boundary
conditions for the Couette flow problem as defined:
v(0)=0, v(1) =V, (32)

We have same defined as the governing equations in Poiseuille flow (Eq. 21). The solution in this
case has been calculated by the perturbation technique and the results have been discussed during
graphs.

4. Results and Discussion

We discuss the Influence of heat-transfer on magnetohydrodynamics oscillatory flow of
Williamson fluid during porous medium for Poiseuille flow and Couette flow in some results during
the graphical illustrations. Numerical assessments of analytical results and some of the graphically
significant results are presented in Figures (2-14).We used the MATHEMATICA program to find the
numerical results and illustrations. The momentum equation is resolved by using " perturbation
technique " and all the results are discussed graphically.

The velocity profile of Poiseuille flow is shown during Figures-(2-6). Figure-2 illustrates the
influence Da and M on the velocity profiles function v vs. y. It is found by the increasing Da the
velocity profiles function v increases, while v decreases with increasing M. Figure-3 show that
velocity profile v rising up by the increasing influence of both the parameters Gr and A. Figure-4 we
observed that v increases by the increasing influence of both the parameters Re and Pe. Figure-5 show

(30)

Vo1 = —
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the velocity profile v increases by the increasing N, while v decreases by the increasing w. The fluid
velocity starts to be constant at the walls and increasing, as fixed by the boundary conditions. Figure-6
show that velocity profiles increases with the increasing of the parameters We when 0.45 <y < 1,
while v decreases by the increasing of We when 0 <y < 0.45. The velocity profile of Couette flow is
shown during Figures-(7—11). It is noted that by the increasing Each of parameters Re, Pe, Gr,Da, N
and A the velocity profile v increases, while v decreases by the increasing We, M and w . Based on
equation (17), Figure-12 show that influence of N on the temperature function 6. The temperature
increases by the increase in N. Figure-13 we observed that the influence Pe in temperature 6 by the
increasing Pe then @ increases. Figure-14 show as that by the increasing of w the temperature 6
decreases .
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Figure 2-Velocity profile for Da and M withw =1,N =1,Gr=1,Re=1,Pe=1,1=1,We =
0.05,t = 0.5 in Poiseuille flow.

Figure 3-Velocity profile for A and Gr with w =1,N =1,M =1,Re =1,Pe = 1,Da = 0.8, We =
0.05,t = 0.5 in Poiseuille flow.
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Figure 4-Velocity profile for Re and Pe with w =1,N=1,M =1,A=1,Gr = 1,Da = 0.8, We =
0.05,t = 0.5 in Poiseuille flow.
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Figure 5-Velocity profile for w and N with Re = 1,Pe =1,M = 1,A=1,Gr = 1,Da = 0.8, We =
0.05,t = 0.5 in Poiseuille flow.

040

00 02 04 06 08 10
y 0.0

0.5

Figure 6 -Velocity profile for Wewithw =1,N =1,Re =1,Pe=1,M =1,A=1,Gr = 1,Da =
0.8,t = 0.5 in Poiseuille flow.
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Figure 7-Velocity profile for M and Da withw = 1,N =1,Gr=1,Re=1,Pe = 1,1 =1,We =

0.05,V, = 0.3,t = 0.5 in Couette flow.
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Figure 8-Velocity profile for A and Gr withw = 1,N =1,M = 1,Re = 1,Pe = 1,Da = 0.8,We =

0.05,V, = 0.3,t = 0.5 in Couette flow.
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Figure 9-Velocity profile for Re and Pe withw = 1, N =1,M = 1,A=1,Gr = 1,Da = 0.8, We =
0.05,V, = 0.3,t = 0.5 in Couette flow.
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Figure 10-Velocity profile for w and N with Re = 1,Pe = 1,M =1,A=1,Gr = 1,Da = 0.8, We =

0.05,V, = 0.3,t = 0.5 in Couette flow.
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Figure 11-Velocity profile for We with
w=1N=1Re=1,Pe=1,M=1,A=1,6Gr =1,Da = 0.8,V, = 0.3,t = 0.5 in Couette flow.
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Figure 12-Influence of N on Temperature 6 for w = 1, Pe = 0.7,t = 0.5
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Figure 13-Influence of Pe on Temperature 8 fort = 0.5,N =1, w = 1.
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Figure 14-Influence of w on Temperature 6 fort = 0.5,N = 1, Pe = 0.7.

5. Conclusion and Remarks

We discussion the influence of heat-transfer on magneto-hydrodynamics oscillatory flow of
Williamson fluid during porous medium. The "perturbation technique" for the two kinds of flow
"Poiseuille flow and Couette flow" are addressed. We found the velocity and temperature are
analytically. We used different values to finding the results of pertinent parameters namely Darcy
number (Da), Reynolds number (Re), Peclet number (Pe), magnetic parameter (M), Grashof number
(Gr), Weissenberg number (We), frequency of the oscillation (w) and radiation parameter (N) for the
velocity and temperature. The keys point are:
e The velocity profiles increases by the increasing , Re , N, Da ,Gr and A for both the Poiseuille and
Couette flow.
e The velocity profiles decreases by the increasing w and M for both the Poiseuille and Couette flow.
e The velocity profiles increases by the increasing of the parameters We when 0.45 <y < 1, while v
decreases with increasing of We when 0 < y < 0.45, for Poiseuille flow. The velocity profiles
decreases with the increasing of the parameters We, for Couette flow.
e The parameter that has the most incremental effect on fluid movement is A.
e We show that by the increases N and Pe the temperature increasing 8 and the temperature 6
decreases by the increasing w.
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