
 Sulaiman and Hassan Iraqi Journal of Science, 2017, Vol. 58, No.4C, pp: 2427-2437

 DOI: 10.24996/ ijs.2017.58.4C.18

*Email: mariamtaha201420@yahoo.com

2427

Generate Random Arabic Characters and Numbers for CAPTCHA

Mariam Taha Sulaiman
*
, Nidaa Flaih Hassan

Department of Computer Science, Technology University, Baghdad, Iraq.

Abstract

 Completely Automated Public Turing test to tell Computers and Humans Apart

(CAPTCHA) is a program where its goal is to check the user identity if it is a human

or web program by creating tests that is easy to human but difficult to computer

programs. In this paper, a mixed Arabic CAPTCHA schema is proposed to generate

Arabic characters and numbers using generators that combines more than one Linear

Feedback Shift Registers(LFSRs) via a non-linear function to produce the binary

sequence. This random binary sequence is translated to be Arabic characters and

numbers to be used for Arabic CAPTCHA, to ensure the randomness, each

generator output is analyzed via randomness analysis using National Institute of

Standards and Technology (NIST) statistical test suite.

 توليد حروف عربية وارقام عشوائية لمكابتشا

، نداء فميح حسن*مريم طه سميمان
 لوجيو، بغداد، العراق.و قسم عموم الحاسبات، الجامعة التكن

 الخلاصة

حقق يستخدم لمت برنامجىو م الآلي تماما لمتمييز بين برامج الحاسوب والبشر" "اختبار تورينج العا الكابتشا
 تبارات تكون سيمة عمى الانسانوذلك من خلال توليد اخ او برنامج حاسوبيفيما اذا كان المستخدم انسان

وارقام لتوليد رموز عربيةلمكابتشا العربية جديدة مخططتم اقتراح في ىذا البحث .عمى برامج الحاسوبوصعبة
لتوليد متسمسمة معادلة غير خطيةتطبيق طريق عن((LFSRsمولدات التي تدمج اكثر من باستخدام ال

 لنظام الكابتشا ليتم استخداميا رموز عربية وارقام يتم تحويميا الى عشوائيةذه المتسمسمة الثنائية الى ،عشوائية
 عن طريق تحميل العشوائيةمولد كل نتيجةيتم اختبار ، العشوائية المتسمسمة ىذه أداء ولقياس كفاءة العربية،

 .(NISTعيد الوطني لممقاييس والتكنولوجيا)ممحزمة الاختبار الاحصائية ل باستخدام

Introduction

 Completely Automated public Turing test to tell Computers and Humans Apart schema is

abbreviation of the word CAPTCHA, which is utilized to differentiate between users of human and

computer programs. CAPTCHA should be easily solved by human but not by a bot, CAPTCHA has

the following characteristics [1]:

1 . A machine is a judge not a human.

2 . The aim is that substantially all the human users will be identified and pass the test and no

computer will pass.

ISSN: 0067-2904

Sulaiman and Hassan Iraqi Journal of Science, 2017, Vol. 58, No.4C, pp: 2427-2437

2428

 The increase of accessible services that can be reached publicly on the Web is useful for the society

in general, however, unluckily new and unusual abuses have been called by creating programs to rob

services and to make fake dealings [2]. Therefore, the CAPTCHA has some applications that prevent

these abuses [3]:

1. Alleviating Comment Spam.

2. Online Polling.

3. Web Registration.

 The CAPTCHA system prohibits different websites to avert various bots from attacking network

resources. A CAPTCHA system with good quality should have the following features [4]:

1 . The content must be understandable by the human.

2 . Quicker and few time consumption.

3 . Appropriate for all form of bots hurt.

 The motivation for generating Arabic CAPTCHA schema is that there are a few of Arabic

CAPTCHA schema; so it could be helpful for Arabian talking users. Also, many of the current

English CAPTCHAs schemas have few attendant problems so, they can‟t guarantee the websites

safety.

In this paper, a new CAPTCHA schema is proposed to generate Arabic letters and numbers using

combination of generators, these generators combined more than one LFSRs via a non-linear function

to produce one binary sequence, then this sequence is translated to letters to generate them in random

form for CAPTCHA schema. In the rest of paper, Types of CAPTCHA are described in section 2 ,

pseudo-random linear feedback shift register (LFSR) generator is given in section 3. In section 4,

testing of randomness statistical tests (NIST) are discussed. The proposed schema is described in

section 5, and the conclusion is presented in section 6.

The Related Work

 In 1997, Moni Naor [5] made the first reference to the automated turing tests which appeared in

unpublished handwriting, this handwriting involves some crucial concepts and obviousness; however,

it didn‟t give suggestion and a proper definition for the robotic turing test. In 1998, The first practical

Automated Turing Test sample was established by Altavista[6] to prohibit web bots from signing up in

websites automatically, the complication of the system was depend on reading a somewhat distorted

characters printed on an image and it operated very well during the practice, but this system was

attacked by OCR(optical character recognition).

 In 2007, Elson et al. [7], suggested a way where the user must choose the cat images among set of

cat and dog images, for the set of images, the database was used contained more than 3 million

images.

 The commonly CAPTCHA employs a Latin text which has several attendant fragility in it.

CAPTCHA execution that utilizes other languages has been neglected by the research society except

the CAPTCHA that employs the Persian language.

 In 2009, Gupta et al.[8], suggested the way of putting a numbers to text CAPTCHAs, which are

embedded within the text poses the OCR. In 2013, Bilal Khan et al. [9] proposed CAPTCHA based on

the Arabic language, it is considered as a big advancement in a web security area, Arabic based

CAPTCHA is produced as an image which is distorted with various techniques in order to become

harder to break it by OCR.

Types of CAPTCHAs

 CAPTCHA is generally characterized into four types

1. Text based CAPTCHAs: Text-based CAPTCHA is appearing in deformed form which involves

letters that are case- insensitive and numbers. This type of CAPTCHA can be found in known

websites like Yahoo, Hotmail, Gmail, and YouTube. Gimpy, Ez-Gimpy, Baffle-Text and MSN-

CAPTCHA are types of Text-based CAPTCHA [4], [10]. Figure-1 shows examples of text

CAPTCHA.

Sulaiman and Hassan Iraqi Journal of Science, 2017, Vol. 58, No.4C, pp: 2427-2437

2429

a- typical text based CAPTCHA b- Example of Gimpy CAPTCHA

c- Example of Ez-Gimpy CAPTCHA d- Example of Baffle-Text CAPTCHA

Figure 1- A typical Text based CAPTCHAs [1], [10].

2. Image based CAPTCHAs: Image based CAPTCHAs were made as alternatives to the text based

CAPTCHA [3], so the image recognition is a task performed by the users. Examples on this type are:

Pix and Bongo CAPTCHA. Figure-2 shows example of image based CAPTCHAs [4].

a- Example of Pix CAPTCHA

b- Example of Bongo CAPTCHA

Figure2- Image based CAPTCHAs [4]

3. Video based CAPTCHAs: In video based CAPTCHAs a moving object is given to the user and is

requested to accomplish a particular task [3]. Figure-3 shows a frame from video based CAPTCHA.

Figure 3-An Example of Video-based CAPTCHA [4]

Sulaiman and Hassan Iraqi Journal of Science, 2017, Vol. 58, No.4C, pp: 2427-2437

2430

Audio-Based CAPTCHAs: These systems depend on speech recognition by the user; this type of

CAPTCHA is designed as an alternative for people who are visually impaired. It consists of

downloadable voice clips. The user should listen to the clip and then writes the word [4], [3].

Pseudo-Random Linear Feedback Shift Register Generator (PRLFSRG)

 Linear feedback shift registers are commonly used in bit generators since, they are appropriate for

hardware implementation, creating sequences with large periods and are easily analyzed using

algebraic techniques. However, the disadvantage is that the output sequences of LFSRs are readily

predictable [11].

 In feedback shift register as shown in Figure-4, the flip-flops F0, . . . , Fn−1 are numbered. At each

step Fi takes the value of Fi−1 for i >0 and the update to the F0 is depending on the feedback

function f.

Figure 4- A feedback shift register [12].

 Mathematically, the sequence () i ϵ n produced from shift register is only the sequence that meet

the n-expression recursion. Equation (1) shows the feedback function of the shift register to produce a

new bit that will be put in the beginning of the sequence[12]:

 () ()
Where:

a : the resulted bit from the feedback function.

f : the feedback function that is applied on the initial seed of shift register recursively.

n : seed length.

A shift register is called linear if the feedback function is linear [12]. Figure-5 shows two examples of

LFSR.

(a): Internal EOR type.

(b): External EOR Type.

Figure 5-LFSRs Example [13].

 Both wo Figures deal with D-type flip flops and linear logic ingredients (Exclusive-or (xor)) that

recognize LFSRs. Figure-6 describes LFSR that simulates 9 shifts of Figure-4 [13].

f

F4 F3 F2 F1 F0

 
D3 D2 D

1

D0

  

D3 D2 D1 D

0

Sulaiman and Hassan Iraqi Journal of Science, 2017, Vol. 58, No.4C, pp: 2427-2437

2431

Figure 6- LFSR that simulates 9 shifts of Figure-10 with the initial seed “0110”[13] .

Nonlinear combination generators

 One common way to break the inherit of linearity in LFSRs is to utilize many LFSRs. the output

binary sequences of LFSRs are collected via a nonlinear function (f) and produce one output binary

sequence. Such generators are called nonlinear combination generators and the function(f) is called a

combining function[11]. Figure-7 illustrates nonlinear combination generator.

Figure 7. A nonlinear combination generator where f is a nonlinear combining function [11]

Hadmard generator
 consists of combining two linear feedback shift register of (L1*L2) bit length with the following

nonlinear function as shown the Figure-8 [12]:

 () ()
Where:

X1 : the resulted binary sequence from the first LFSR.

X2 : the resulted binary sequence from the second LFSR.

 S : the resulted binary sequence.

L1 : the length of the first LFSR.

L2 : the length of the second LFSR.

and the maximum length of bits for this generator is estimated by the following equation:

Max_Length = ()() ………………………………………………………………..…(3)

 

 D3 D2 D1 D0

D3 D2 D1 D0

0
1
0

0

0

1
1
1
1
0

1
1
0

0
1
0
0

0
1
1

1
0
0
1
0
0

0
1

1
1

0
0

1
0

0
0

1

1
1
1

 The output bit sequence

f

LFSR 1

LFSR 2

LFSR n

•
•

Sulaiman and Hassan Iraqi Journal of Science, 2017, Vol. 58, No.4C, pp: 2427-2437

2432

Figure 8- Hadmard Generator [12]

Geff generator
 Non-Linear Geff generator which consists of combining three Linear Feedback Shift Registers

(LFSR‟s) of (L1*L2*L3) bit length, with the following non-linear function as shown the Figure-9

[12]:

 () (()) ()
Where:

X1: the resulted binary sequence from the first LFSR.

X2: the resulted binary sequence from the second LFSR.

X3: the resulted binary sequence from the third LFSR.

 S : the resulted binary sequence.

L1 : the length of the first LFSR.

L2 : the length of the second LFSR.

L3 : the length of the third LFSR.

and the maximum length of bits for this generator is estimated by the following equation :

Max_Length = ()()() …………………………………………………………(5)

Figure 9. Geff Generator [12]

Testing of Randomness by NIST Statistical Tests

 The NIST (National Institute of Standards and Technology) Test Suite is a statistical bundle

involving 15 tests where the function of each test is to test the randomness of a particular binary

sequence of any length resulted by random or pseudorandom number generators.

A parameter „n‟ parameterized all tests which refer to the length (in bits) of the processed binary

sequence. Another parameter is also used to parameterize these tests and is referred to by m or M. m

parameter is established for detecting the existence of many m-bit patterns in a bit stream while the M

parameter Study the distribution of a particular characteristic across n/M portions of a specified

sequence[12] . These 15 tests are[14]:

1. The Frequency (Monobit) Test.

2. Frequency Test within a Block.

3. The Runs Test.

4. Tests for the Longest-Run-of-Ones in a Block.

 The output bit sequence

LFSR1

LFSR2

 •  The output bit sequence

LFSR1

LFSR2

LFSR3

Sulaiman and Hassan Iraqi Journal of Science, 2017, Vol. 58, No.4C, pp: 2427-2437

2433

5. The Binary Matrix Rank Test.

6. The Discrete Fourier Transform (Spectral) Test.

7. The Non-overlapping Template Matching Test.

8. The Overlapping Template Matching Test.

9. Maurer's "Universal Statistical" Test.

10. The Linear Complexity Test.

11. The Serial Test.

12. The Approximate Entropy Test.

13. The Cumulative Sums Test.

14. The Random Excursions Test.

15. The Random Excursions Variant Test.

The Proposed Schema

 In this paper an Arabic letters and numbers is generated for CAPTCHA using combination

generators that collects more than one LFSRs where each LFSR has its maximum length. The binary

sequence generated from LFSRs is converted in the Arabic letters and numbers.

The algorithm for generating random Arabic letters and numbers for Hadmard generator are illustrated

in algorithm 1:

 The above algorithm can be also applied to the Geff generator, where the input is three initial seed

instead of two and the non-linear function of the Geff generator is applied according to equation (4).

Results and Discussion

 The randomness of both generators were analyzed and the results showed that Hadmard generator

has less randomness compared with Geff generator since Hadmard generator consists of two LFSRs

while Geff Generator consists of three LFSRs. Also the non-linear function of the Hadmard Generator

is less complex than of the Geff Generator.

Table-1 shows the results of 15 tests of NIST statistical test suite for Hadmard generator, and Table-2

shows the results of 15 tests of NIST statistical test suite for Geff generator.

Algorithm (1): Generate Random Arabic Letters and Numbers (Hadmard Generator)

Input : S1: the first initial seed //consist of mixing of letters and numbers.

 S2: the second initial seed // consist of mixing of letters and numbers.

 No_Sym: number of the required characters.

Output: Pseudorandom mixing of Arabic letters and digits.

 Step1: For each LFSR seed with its feedback function do the following:

 Convert the seed to the binary form.

 For N= 1 to No_Sym 11 do

 Shift the binary sequence of seed twice as the following:

 For M= 1 to 2 do

 𝑥𝑛 5=𝑥𝑛𝑥𝑛 𝑥𝑛 where n= {0,1,2,3,………..} // apply a feedback

 function.

 Shift one bit right

 Set the resulted bit to the beginning of sequence.

 End For

 End For

 Step2: Apply a non-linear function of the Hadmard generator according to equation (2).

 Step3: Convert the resulted binary sequence to the character form .

 Step4: end.

Sulaiman and Hassan Iraqi Journal of Science, 2017, Vol. 58, No.4C, pp: 2427-2437

2434

Table 1- results of 15 randomness tests for Hadmard Generator

Test Name Parameters P-value Result

Frequency Test n=2048 0.0 Not pass

Frequency within Block Test
n=1024

2.0639872719298109E-45 Not pass
M=24

Run Test n=120 0.0 Not pass

Longest Run of Ones in a

Block Test

n=128

0.01464845328832301 Pass M=8

K=3

Binary Matrix Rank Test

n= 41984
0.000000308455037214158

Not pass M=32

Q=32

Discrete Fourier Transform

Test
n=1000 0.56165763407334479 Pass

Non-overlapping Template

Matching Test

n=100

0.00000009014051694138

Not pass

M=10

m=9

B=000000001

Overlapping Template

Matching Test

n=1000000

0.999458898920335 Pass
M = 100000

m=9

B =111111111

Maurer’s “Universal

Statistical” Test

n=387840

0.0 Not pass L=6

Q=640

Linear Complexity Test
n=1000000,

4.0841509412911519E-63 Not pass
M=500

Serial Test
n=100 8.4342830469510429E-33

0.00000000000925838390787

Not pass

Not pass m=4

Approximate Entropy Test
n=100

0.00000000000420805142888 Not pass
m=3

Cumulative Sums Test n= 1000 0.011412078030893613 Pass

Random Excursions Test n=1000000

0.000011117896706996297

0.005356538842106036

0.98837260158096363

0.962581903015739

0.70001667194455353

0.98837260158096363

0.99532694853562764

0.99789963674605608

Not pass

Not pass

Pass

Pass

Pass

Pass

Pass

Pass

Random Excursions Variant

Test
n=1000000

0.9034788300777421

0.89727889046929865

0.88970688113444185

0.88016842176554122

0.867632329699021

0.8501067716269014

0.82306335579544831

0.7728301262532622

0.61707507455201238

0.999999999

0.7728301262532622

0.6547208997400692

0.70545710121524141

0.73888281604994976

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Sulaiman and Hassan Iraqi Journal of Science, 2017, Vol. 58, No.4C, pp: 2427-2437

2435

0.76302473736783194

0.78151142383247718

0.79625353148395284

0.80836525895619271

Pass

Pass

Pass

Pass

Table 2-results of 15 randomness tests for Geff Generator

Test Name Parameters P-value Result

Frequency Test n=2048 0.59588305587547974 Pass

Frequency within Block Test
n=1024

0.042574280677609183 Pass
M=24

Run Test n=120 0.0000000003873930065623199 Not pass

Longest Run of Ones in a

Block Test

n=128

0.34517346833190854 Pass M=8

K=3

Binary Matrix Rank Test

n= 41984

0.00011392992039678925 Not pass M=32

Q=32

Discrete Fourier Transform

Test
n=1000 0.081658435957491671 Pass

Non-overlapping Template

Matching Test

n=100

0.999999999999991 Pass
M=10

m=9

B=000000001

Overlapping Template

Matching Test

n=1000000

0.99231221261874236 Pass
M = 100000

m=9

B =111111111

Maurer’s “Universal

Statistical” Test

n=387840

0.0 Not pass L=6

Q=640

Linear Complexity Test
n=1000000,

0.0000037261828738985427 Not pass
M=500

Serial Test
n=100 0.00000000000227336749476

0.0000085838116867496387

Not pass

Not pass m=4

Approximate Entropy Test
n=100

0.00000001336585778701937 Not pass
m=3

Cumulative Sums Test n= 1000 0.4115109937213085 Pass

Random Excursions Test n=1000000

0.0056619077387473

0.0010311071692925963

0.0014068972466118319

0.18319958540651377

0.0014065357774440772

0.0045508377340672864

0.000007804519757542395

0.00000046357882553574

Not pass

Not pass

Not pass

Pass

Not pass

Not pass

Not pass

Not pass

Random Excursions Variant

Test
n=1000000

0.255290613059326

0.29560006577759812

0.344097645926986

0.40333954631811753

0.47728920158360388

0.68701344031731193

0.999999999

0.90203456854890085

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Sulaiman and Hassan Iraqi Journal of Science, 2017, Vol. 58, No.4C, pp: 2427-2437

2436

0.66981543226924267

0.83117047808536737

0.80554069520404659

0.63355349763355051

0.57270229278806206

0.522431165077713

0.56289823005204886

0.5946004961621425

0.74118164220184

0.87672171783646025

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

 As shown in the above tables, Hadmard Generator passes 5 tests which are: Longest run of ones in

a block test, Discrete Fourier transform test, Overlapping template matching test, Cumulative sums

test and Random Excursions Variant Test.

 While Geff Generator passes 8 tests which are: Frequency test, Frequency within block test,

Longest run of ones in a block test , Discrete Fourier transform test , Non-overlapping template

matching test , Overlapping template matching test , Cumulative sums test and Random Excursions

Variant Test.

The output of the proposed generators are converted to characters and numbers form, and this is done

by taking every 11 bits (since, the maximum representation required for Arabic characters in the

binary form is 11 bits), mapping these 11 bits to numbers in decimal representation which is

considered as ASCII-code , then represent the ASCII- code in the form of symbol.

The output symbol should be in the range of Arabic characters and numbers as stated before, so the

representing of resulted decimal number in the range of Arabic characters and numbers ASCII –code

is done by applying the following steps:

1. Subtract the required number from the minimum number of the range.

2. Take the modulus of the resulted number from step 1 and the difference between the maximum and

minimum number of the range.

3. Check the resulted number from step 2 if it is negative, then add it with the difference between the

maximum and minimum number of the range and continue until it becomes a positive number.

4. Add the nonnegative value with the maximum number of the range.

The final result for CAPTCHA schema is a stream of random Arabic characters, numbers or mix of

them which are displayed on the selected background image.

A distortion and some CAPTCHA effects are added to background image to complicate the characters

recognition process by the automated programs; Figure-10 shows an image of random Arabic letters

and numbers with some types of noise:

.

a. Gaussian Noise b. Salt and Pepper Noise

Figure 10- Arabic CAPTCHA

Sulaiman and Hassan Iraqi Journal of Science, 2017, Vol. 58, No.4C, pp: 2427-2437

2437

Conclusion

 CAPTCHA is a system that keeps website services from attacks by making tests; it's easy for

human but difficult for computer programs to pass. CAPTCHA has many types and the most common

types are text, image and video based CAPTCHA. In this paper, an Arabic characters and numbers are

generated randomly for Arabic CAPTCHA schema by using two types of generator which are

Hadmard generator and Geff generator. The randomness of both generators is tested , its conclude that

Hadmard generator has less randomness compared with Geff generator since Hadmard generator

consists of two LFSRs while Geff Generator consists of three LFSRs, also the non-linear function of

the Hadmard Generator is less complex than of the Geff Generator.

References

1. Kulkarni, S. and Fadewar, H. S. 2013. CAPTCHA Based Web Security. International Journal of

Advanced Research in Computer Science and Software Engineering. 3(11):154-158.

2. Mathew, G.T. 2010. CAPTCHA Seminar Report. Submitted in partial fulfillment of the

requirements for the award of the degree of Bachelor of Technology. Computer Science

Engineering of Cochin University of Science and Technology.

3. RAGAVI, V. and GEETHA, G. 2014. Captcha And Its Applications. Journal of Computer Science

Engineering and Information Technology Research (JCSEITR). 4(1):11-16.

4. Kaur, K. and Behal, S. 2014. CAPTCHA and Its Techniques. International Journal of Computer

science and Information Technologies. 5(5): 6341-6344.

5. Naor, M. 1996. Verification of a human in the loop or Identification via the Turing Test. ed.

Dept. of Applied mathematics and computer science. Weizmann institute of science. Rechovot

76100.

6. Lillibridge, M.D., Abadi, M., Bharat, K. and Broder, A. 2001. Method for selectively restricting

access to computer systems. United states patent. US Patent 6,195,698 B1. Applied April 1998.

7. Elson, J., Douceur, J. and Saul, J. 2007. Asirra: A CAPTCHA that Exploits Interest-Aligned

Manual Image Categorization. in Proceedings of the 14th ACM Conference on Computer and

Communications Security. Virginia USA. Pp: 366-374.

8. Gupta, A., Jain, A., Raj, A. and Jain, A. 2009. Sequenced Tagged CAPTCHA: Generation and its

Analysis. in Proceedings of International Advance Computing Conference. India. pp. 1286-1291.

9. Khan, B., Alghathbar, K. , Khan, M.K., Alkelabi, A. and Alajaji, A. 2013. Cyber Security Using

Arabic CAPTCHA Scheme. The International Arab Journal of Information Technology. 10(1):

76-84.

10. remanand, V.P., Meiappane, A. and Arulalan, V. 2015. Survey on CAPTCHA and its Techniques

for BOT Protection. International Journal of Computer Applications (0975 – 8887). 109(5): 1-4.

11. Menezes, A., Oorschot, P.V and Vanstone, S.A. 1996. Stream Ciphers. Handbook of Applied

Cryptography. CRC Press.pp.191-222.

12. klein, A. 2013. Stream Ciphers. Dept. of Pure Mathem & Computer Algebra, London. New York.

state university of Ghent, Ghent, Belgium.

13. saluja, K.K.1987. Linear Feedback Shift Registers Theory and Applications. Department of

Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin

53706, Revised October 1988, Updated 1991.

14. Rukhin, A. , Soto, J. , Nechvatal, J. , Smid, M. , Barker, E. , Leigh, S. , Levenson, M. , Vangel,

M. , Banks, D. , Heckert, A. , Dray, J. , Vo, S. 2010. A Statistical Test Suite for Random and

Pseudorandom Number Generators for Cryptographic Applications. National Institute of

Standards and Technology. Technology Administration, U.S. Department of Commerce.

