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Abstract

This paper is concerned with the study of the fixed points of set-valued
contractions on ordered
g —metric spaces. The first part of the paper deals with the existence of fixed points
for these mappings where the contraction condition is assumed for comparable
variables. A coupled fixed point theorem is also established in the second part.
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1. Introduction

Recently, the fixed point theory was developed rapidly in a partially ordered metric space.
Some generalization of the usual metric space is provided here. In 1993, Czerwik [1] introduced the
b —metric spaces, followed by several results which dealt with the fixed point theory in such space
[2,3,4]. In 2000, Branceciri [5] defined a generalized metric space as a metric space in which the
triangle inequality is replaced by the rectangular one. Since then, many authors proved results in the
field of metric fixed point theory [6,7]. In 2006, Mustafa and Sims [8] presented another modification
of a usual metric which is known as G-metric space. Saadati et al. [9] proved some fixed point results
for contractive mappings in partially ordered G-metric space. Lakshmikantham et al.[9],[10]
demonstrated the notion of coupled coincidence point for a mapping T and studied coupled fixed point
theorems in partially ordered metric spaces. Therefore, Mustafa and Sims together with other
researchers extended some pervious results and provided new findings [1,11-14]. In 2014, Aghajani et
al. [11] introduced a new generalization of b-metric and G-metric spaces. Recently, Mustafa et al. [15]
obtained some coupled coincidence point theorems for G, —metric space. Abbas and Rhoades studied
common fixed point theory in generalizes metric space, while many authors obtained fixed and
common fixed points in G-metric spaces [16-23]. In 2006, Bhaskar and Lakshmikantham[23]
introduced the concept of mixed monotone property. In 2009, Lakshmikanthem and Ciric [10]
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generalized the concept of mixed monotone mapping and proved a common coupled fixed point
theorem.
2. Preliminaries
We begin with the following definition.

Definition (2.1): [2]

Let M be a nonempty set and w: M 3—[0, ) be satisfying the following conditions:
1-w(p,q,e)=0ifandonly ifp = g = e.
2-0< w(p,p,q),VYp,q € M withp # q
3-wp,p,q) <w(pq,e)foralp,qg,ee M withq#e
4- w(p,q,e) = w(p,e, q) = -, (symmetry in all three variables),
5-w(p,q,e) < w(p,a,a) +w(aq,e)forallg,e,a e M.
then the function w is called generalized metric on M and the pair (M, w) is called a g —metric space.
Example(22): [23]. Consider M=R* with usual distance d(p, q) =I p — ql, for all p,q in M. Define
w:M3 >Rt
w@qe)=Ip—ql+|lg—el+|e—p| forallpqg,eeM.
Then w is a g —metric on M.
Definition (2.3): [8]

Let (M, w ) be a g-metric space, then the g-metric is called symmetric if w(p,q,q) = w(p,p, q) for
all p,q, EM.
Example (2.4):[8] Let M' = {p, q}andw(p,p,p) = w(q,9,9) = 0,w(p,p,q) = 1,
w(p,q,q) = 2 and extend w to all of M x M x M by symmetry in the variables. Then it is easy to
verify that w isa g —metric, but w(p, q,q) # w(p,p, Q).
Proposition (2.5): [2]
Let (M, w ) be a g —metric space, then the following are equivalent:
1- (M,w ) is symmetric.
2—a)(p, q, Q) < w(p' q, a)' vVp,q,a EM.
3-w(p,q,e) <w(pq,a)+wlepb),Vpq,eabeM.
Definition(2.6): [2]
Let (M, w) be a g -metric space and {r;} be a sequence of points of M, if there existL € N e>
0 for j,i,1 > L then the sequence {r;} is said to be
1- w - convergent to r if w(r,7;,1;) <€ forall i,j > L.
Thatis, lim; ;. w (1,75, 1;) =0as i, j - .
2- w — Cauchy if w(rj, 73, m) <€ forall i,j,l=>L.
Thatis, w(rj,73,1) >0 as i,j, 1 — oo
Proposition (2.7): [2]. Let (M, w) be a g-metric space, then the following statements are equivalent:
1- {r;} is w-convergent to r, if and only if w(rj,7j,7) — 0, asj — .
2- w(rj,7,7) = 0,as j — oo.ifand only if w(rj,7;,7) = 0,as j,i - .
Remark (2.8): [8]
Every g -metric (M, w) on M defines a metric d,, on M given by
dow (0,q9) = w(p,q,9) + w(q,p,p) forall p,q € M and
w(,qe) =max{lp—q LLIlg—e |lle=p I}.
Definition (2.9): [2]
A g—metric space ( M, w) is complete if every w-Cauchy sequence is
w-convergent in (M, w).

Proposition(2.10): [8]. Let (M,w) be a g-metric space, then, for any p,q,e, and a€ M, it follows that
Ifw(p,q,e) =0thenp=qg=ce.

w(p,qe) < w(p,p.q)+ w(q,q,e).

w(p,q9.9) <2w(q,p,p).

w(p,q,e)< w(p,a,e)+w(a,q,e).
w(p,qe)< 2/3(wp,qa)+ w(p,a,e)+ w(a,q,e)).
w(p,qe)< (w(p,a,a)+ w(qg,a,a)+ w(e,a a)).
Definition (2.11): [5] The point M in M is called a fixed point of the multivalued mapping
M - 2Mif M € SM and M is the fixed point of a single mapping S: M — M if M = SM.
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2M ={A:0#AcM} and CB(M) ={A:0 +# A c M,Ais closed and bounded}and K (M) =
{0 # A c M,Ais compact}.
Definition(2.12):[21]. Let M be a g-metric space. The mapping H: M — R* is called the
Hausdorff g —distance on CB(M), if
Hy(A, B, C) = max{supyea 9(®,B,C),suppep g, C,A), suppec 9,4, B)},
where g(p,B,C) = dy(p,B) +dg(B,C) + dy(p,C), dy(p,B) = inf{dy(p,q),q € B}, dy(A,B) =
inf{dg(a,b),a € A,b € B,and 4,B,C € CB(M)}.
Lemma(2.13): [7]. If A,B € CB(M) with 2(A4, B, B)< ¢ then for each a € A there exists an element
b € B suchthat w(a, b, b) < e.
Lemma(2.14) :[7] If A,B € CB(M) and a € A, then for each ¢ > 0, there exists b € B such that
w(a,b,b) < N(A,B,B) +e.
Lemma(2.15):[7] If A € CB(M) and b € K(M) then for any a€ A, there is b € B such
that:w(a, b, b) < 2(4, B, B).
Lemma(2.16): [6]. Let {A;} be a sequence in CB(M) and lim;,,2(4;A,A)=0 for A€
CB(M).Ifp; € A; and lim;_,, w(p;,p,p) = 0, thenp € A.
Definition(2.17):[6]. Let M be a non-empty set, S: M XM — M be a mapping. An ordered
pair (p,q) € M x M is called coupled fixed pointif S(p,q) = pandS(q,p) = q.
Example[22] (2.18)
Let M = R. Define w: M x M X M - R*hy
w@qge)=[Ilp—ql+Ip—el+lq—el].Defineamapping S: M XM — M by
p® +q*
S(p,q)={ i p=d
0, p<q
And: M — M, T(p) = p?. Then (0,0) is the only coupled fixed point of S and T.
3. Main Results
For the next part, (M, w, <) denotes the partially ordered complete g — metric space.
Theorem(3.1): Let S: M - CB(M) be satisfying the following
1. There exists k € (0,1) with 2(Sp, Sq,Se) < Kw(p,q,e),forallp < q,q <e.
2. If w(p,q,e) <e< 1forsomee € Spthenp < e.
3. There exists py € M,and some p; € Spop, €SP,  with  py <p;,p; <p, such that
w(po,P1,P2) < 1.
4. If a non-decreasing sequence p; — p in M, thenp; < p, for all j.
Then S has a fixed point.
Proof: Let p, € M by assumption 3, there exists p; € Sp, with p, < p;,p; < p, such that
w (Po,p1,p2) < 1. 1)
By using assumptions (1) and (2), we have 2(Spg, S p1,Sp2) < Kw(pg, p1,p2) < K. Using
assumption (2) and Lemma (2.14), we have the existence of p; € Sp, with p, < p5 such that
w(p1, P2 P3) <K (2
Again, by assumptions (1) and (2), we have 25 (Spy,Sp2, S p3) < Kw(pq, P2, P3) < k2.
By continuing in this way, we obtain p; € Sp;_; with p;_; <p; and p;,, € Sp; with p; <
Ppj+1 such that
w (Pj-1,Pj,Pj+1) < KI 71 and w (0, pj,Pj+1) < K
From the above inequality and by the assumption (2), we have the existence of p;., € Spj
withp; < p;iiandpj,, € SpjWithp;,q < pj,, such that
o), Pj+1,Pj+2) < K’ (3)
Next, we will show that {p;} is a g — Cauchy sequence in M. Leti > j. Then
w(Pj:Pi;Pi) < w(Pj,Pj+1»Pj+1) + w(Pj+1'Pj+z,Pi+z) + - w(Pi—1, 0i D)
< [K)+ K+ K1
=K[1+K +-+K" 1 =K/[1-K'"J/1-k]
< K//1—k. Because k € (0,1),1- K"/ < 1.
Therefore, w(p;, p;, pi) » 0asj — oo implies that {p;} is a g — Cauchy sequence and hence
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converges to some point (say) p in the complete g — metric space M.
Next, we have to show that p is the fixed point of the mapping S. Since {pj} is a non-decreasing
sequence in M such that p; — p, therefore we have p; < p for all j. From assumptionl, it follows that
2(Spj,Sp,Sp) < kw(p;,p,p) — 0, because pj,, € Spj, it follows by using Lemma(2.16) that
p € Sp, i.e.,p is fixed under the set-valued mapping S.
Remark (3.2). If we replace assumption 2 in Theorem (3.1) by the condition:
if p,q € M withp < q and if for all u € Sp there exists v € Sq such that w(u,v,v) < 1thenu <
v, and assuming all other hypotheses, we hypothesize that S has a fixed point. The proof is clear.
Corollary(3.3): Let S: M — M be satisfying the following:
1. There exists k € (0,1) with 2(Sp, Sq,Se) < Kw(p,q,e),forall p<q,qg<e
2 S is order-preserving, ie., if p,qe € M,withp < q then Sp < Sq.
3.There exists Do EM with Po < Spo =11 (Say)
4. If a non-decreasing sequence p; — p in M, then p; < p, forall j.
Then S has a fixed point. The proof is clear.
Theorem(3.4) Let S: M — CB(M) be satisfying the following:
1. There exists k € (0,1) with 2(Sp, Sq, Se) < Kw(p, q,e),forallp < q,q <e
2.1f w(p,q,e) <e< 1forsomee € Spthenp <e
3.There exists py € M',and somep; € S pop, €SPy Wwith p; <pg,p, <p; such that
w(po,p1,p2) <1
4. A non-increasing sequence p; — p in M, then p < p;, forall j.
Then S has a fixed point
Proof: It follows on the similar lines as Theorem (3.1).
Theorem(3.5): Let S: M — CB(M) be satisfying the following:
1. There exists k € (0,1) with 2(Sp, Sq,Se) < Kw(p,q,e)forallp < q,q<e
2. If w(p, q,e)<e<lforsomee € Spthenp < eore < p.
3. There exists py € M,and some p; € Spyp, €SP;  with  p; <pg,p, <p;  such that
w(po,P1,P2) < 1.
4. 1f p; — p is any sequence in M for which the terms are comparable, then p; < p or p < pj forall j.
Then S has a fixed point.
Proof: It follows on a similar line by using Theorem (3.1) and Theorem (3.4).
Theorem(3.6): Let S: MxMxM - CB(M) be satisfying the following:
1. There exists K € (0,1) with 2(S(p,q,e),S(u,v,w)) < Kw(p,q,e), (u,v,w)), for all (u,v,w) <
(».q.e ).
2. Ifp; <py ,q2 <qi,e3 <eipi,qi,e; € M (i = 1,2), then for all u; € S(p1,q1,e1), there exists
U, € (p2,qz,€3), there exists u; € S(ps3, q3,e3) , Wwith uy < uy, u, < uz, and for all v, €
S(q1,p1, 1) there exists v, € S(q,,p,,€2) and v; € S(q3,p3,€3) Withv, < v, v; < vy, and for all
w; € S(ey,p1,q1) there exists w, € S(e,,p2,92) and ws € S(es, ps,q3), such that w, < wy,ws <
wy, provided that w((uq, vy, wy), (Uy, V3, wy)) < 1.
3. There exists pg, 4o, 9 € M and some p; € S(Po,q0,€0),91 € S(qo,Po,€0),€1 €S (eg, Po, qo) With
Po <P1q1 < qo e1 < egsuchthat w((py q0,€0), P1,91,€1)) < 1- K, where K € (0,1).
4. If a non-decreasing sequence p; — p in M thenp; < p , for all j, and if a non-increasing sequence
qj = qinM thenq < q;, for all j, and if a non-increasing sequence e; —» e in M then e < ¢;, for
all j. Then S has a coupled fixed point.
Proof: Let py, qo , €9 € M then by assumption 3 there exists p; € S(po, 90, €0) 91 € S(qo,Po,€0)€1 €
S(eo,Po, Qo) With pg < p1, q1 < qo, €1 < eg, such that

w((Po,q0,€0), (P1,q1,€1)) <1—-K 4
Since (pg, 90, €0) < (p1,q1,€1), then by using assumptions (1) and (4), we have
Similatl 2(S(Po, G0, €0), S(P1, 91, €1)) < K/2 w((Po, G0, €0), (P1,91,€1) < K/2(1 = K)

imilarly,

02(5(q0,P0,€0),5(q1,p1,€1)) < K/2(1 — K), 2(S(€0,P0,90),S(€1,P1,91)) < K/2(1 —K)

Using assumption (2) and Lemma (2.14), we have the existence of p, € S(p1,91,€1).92 €
S(q1,p1,€1) €2 € S(e1,p1,41) With py < p3, g2 < g1, €; < ey, such that
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] w (p1,02,p3) < K/2(1 = K) .- (5)
an
w(q1,92,93) < K/2(1-K)
and
w (eq,ez,e3) <K/2(1—-K)
From (4) and (5)

w((P1,q1.€1), (P2, G2, €2)) <K (1-K) ... (6)

Again, by assumptions (1) and (6), we have 2(S(p1, ¢1,€1),S(P2, G2, €2) < K?/2(1 —K)
?gd 02(8(q1,p1,€1),5(q2, P2, €2)) <K?/2(1—K) and Q(S(ey,p1,q1),S(e2,02,q2) < K?/2(1 -
From Lemma (2.14) and assumption (2), we have the existence of p; € S(p;,q2,€2),93 €
S(q2 D2, €2), €3 € S(€2,02,42) With p; < p3,q3 < g3, €3 < e, such that
w (p2,P3,02) < K?/2(1 = K)w (q2,93,94) < K?/2(1 —K), w (e3,e3,e4) <K?/2(1—K)
It follows that w((py, g2, €3 ), (p3,q3,e3)) < K?/2(1 — K). By continuing in this way, we obtain:
Pj+1 € S(0j,4;,€), 941 €5(q;,pj,€)) €41 € S(€ ), 4 )Wit_h Pj S Pj+1,9j+1 = G, €j+1 < €
such that w(pj, pj+1,Pj+2) < 2(f—_JK)and (9,941, 9j42) < Z(f—_]m,a)(ej, ej+1,€+2)K’ /2(1 — K).

Thus  Q2(S(j,qj,€; ), S@j+1,9j+1,€+1) < K/ (1 — K). veee (D)
Next, we will show that {pj} is a g —Cauchy sequence in M. Leti > j. Then
@, pi0i) < W@}, Pj+1,Pj+1) + O(Pj41,Pj42: Pis2) + - 0(Pi—1,Pi> Pi)
< [Ki+Kj+1+.,~2+Ki—1](1—k) — Kj(l—zKi_j) < K?] Because k € (0’ 1)’ 1- Ki—j <1.
Therefore w(p;, p;,p;)) > 0, as j — oo, implies that {p;} is ag — Cauchy sequence and hence
converges to some point (say) p in the complete g — metric space M. Similarly, we can show that
{q;} is also ag — Cauchy sequence in M, and we can show that {e;} is also ag — Cauchy sequence
in M. Since M'is a complete g-metric space, there exists p,q,e € M such thatp; » p and q; —
q,e;j — e as j — oo, Finally, we have to show thatp € S(p,q,e) and q € S(q,p,e), e € S(e,p,q).
Since {p; }is a non-decreasing sequence, {q;}is a non-increasing sequence, and {e;}is a non-
increasing sequence in M, such thatp; — pand q; — q,e; — e, therefore we have p; < pandq <
qj,e < e for all j. From assumption 1, it follows that

n (S(pj, q;.¢),5,q, e)) <kw ((pj, aj.¢) (.q e)) -0 Because
Pj+1 € S(p]-, 4 ej) and lim;_,q, w(pj+1,p, p) = 0, itfollows, by using Lemma(2.16), thatp €
S(p, q, e). Again, by assumption 1, 2(S(q;,p;,€;),S(q,p,e)) < K w((q;,pj,€),(q,p,e)) = O.
Since 41 € S(q;,pj,€j) and limj_,ooa)(qj+1,q, q) =0, it follows by using Lemma(2.16) that
q € S(q,p, e). Again, by assumption 1, 2(S(e;, pj, q;),S(e, v, q) < Kw(ej,pj,q;),(e,p,q)) = O.
Hence, (p, q, e) is a coupled fixed point of the set-valued mapping S.

Corollary (3.7): Let M be a partially ordered set and ® be a g — metric on M such that (M, w) is a
complete g — metric space. Let S: M'x MxM — M be a single-valued mapping satisfying:

1. There exists K € (0,1) with 02(S(p,qe),Suv,w) <K/2[ ( w (p,u,u
)+ w(q,v,v))+ w (e,w,w)], forall (u,v,w) < (p,q,e).2. S is a mixed monotone mapping.

3. There exists pg,qo,eo € M withpy < S(po,q0,€0) =P1, @1 = S(qo,Po.€0) < qo,ande; =
S(€o,Po, 90) < €o.

4. If a non-decreasing sequencep; — p in M, thenp; < p, for all j, and if a non-increasing sequence
qj — qin M then q < q;, forall j, and if a non-increasing sequence e; — e in M then e < e;, for all
j .Then S has a coupled fixed point.

The proof is clear.

Remark(3.8): If in assumption (4) of theorem (3.6), p,q,e are comparable, then p = q = e and
pE€S(p,pp).Letp<qg,q<eorq<p,e<q,then

2(S(p.q.e),5(q,p,e) < K/2[w(p,q,q) + ©(q,p,p)] = Kw(p, g, e).

Because p € S(p,q,e), q € S(q,p,e),and e € S(e,p, q), by Lemma(2.16),

w (p,q,e) <w(p,q,e), this implies that w (p,q,e) = 0. Since K € (0,1), thus p =q =e and
p € S(p,p,p)- The proof is clear.
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