
Muhammad                                               Iraqi Journal of Science, 2021, Vol. 62, No. 7, pp: 2307-2326 

                                                                 DOI: 10.24996/ijs.2021.62.7.19 

________________________________ 
*Email: gabbarfalcon@st.tu.edu.iq  

2307 

 
Mixing ARMA Models with EGARCH Models for Modeling and Analyzing 

the Time Series of Temperature 

 
Abduljabbar Ali Mudhir Muhammad 

Kirkuk Education Directorate 

 

                                 Received: 23/6/2020                              Accepted: 18/10/2020  

 
Abstract 

     In this article, our goal is mixing ARMA models with EGARCH models and 

composing a mixed model ARMA(R,M)-EGARCH(Q,P) with two steps. The first 

step includes modeling the data series by using EGARCH model alone, interspersed 

with steps of detecting the heteroscedasticity effect, estimating  the model's 

parameters, and testing the adequacy of the model. Also, we predict the conditional 

variance and verify its convergence to the unconditional variance value. The second 

step includes mixing ARMA with EGARCH and using the mixed (composite) 

model in the modeling of time series data, predicting future values, and then 

assessing the prediction ability of the proposed model by using the prediction error 

criterion. 
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واستخدامها في نمذجة وتحليل المتدلدلة الزمنية لدرجات  EGARCHبنماذج  ARMAمزج نماذج 
 الحرارة

 

 عبدالجبار علي مظهر محمد
العراق ، كركوك،مدرس مديرية تربية كركوك   

 الخلاصة
وتكهين انمهذج مختلط  EGARCHبنماذج  ARMAفي هذا المقال سيكهن هدفنا مزج نماذج       

ARMA(R,M)-EGARCH(Q,P)  بمرحلتين، الاولى تتضمن نمذجة متدلدلة البيانات باستخدام انمهذج
EGARCH  فقط تتخللها خطهات الكذف عن تأثير عدم التجانس ثم تقدير معلمات الانمهذج وفحص ملائمة

الانمهذج لمتدلدلة البيانات وكذلك التنبؤ بقيم التباين المذروط وتحقق اقتراب هذه القيم من قيمة التباين غير 
نمهذج المركب )المختلط( واستخدام الا EGARCHبِـ  ARMAالمذروط. المرحلة الثانية تتضمن مزج نماذج 

في نمذجة بيانات المتدلدلة الزمنية والتكهن بقيم مدتقبلية لها ثم يليها تقييم القدرة التنبؤية للأنمهذج المقترح 
 خدام معايير ومقاييس خطأ التنبؤ.باست

Introduction 

      As a general description of this research, we will show how to mix the equation model of ARMA 

model with the variance equation of the conditional variance model and compose a mixed model that 

controls the linear and nonlinear behaviors of the series that contains volatility in its data. 

The theories that were standing for most of the studies related to time series in the fifties, sixties, and 

seventies of the last century adopted the homoscedasticity hypothesis. However, the remarkable 

changes and volatilization in natural and unnatural phenomena brought this hypothesis to criticism. A 
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new hypothesis, called the heteroscedasticity hypothesis, was created and many mathematical models 

were suggested for linear and nonlinear time series, such as ARCH models and its generalized 

(GARCH) models for Engle 1982[1] and Bollerslev 1986[2], respectively, TAR models for Tong 

1983, and STAR models for Tsay 1989, along with many other models. Nevertheless, the 

autoregressive conditional heteroscedasticity (ARCH) model has a great importance globally because 

it has been used in modeling and analyzing the behavior of big changes in modern phenomena, such as 

the accompanying risks of returns for the financial time series, as in those of gold and oil prices, 

volume trading, and inflation. However, there are a lot of efforts in modeling this behavior, most of 

which being successful, but the ARCH model was the most favorable due the simplicity of its 

formulas and interpretation of the analysis of time series that has fluctuations in its data. 

The ARCH models were suggested by Engle in 1982. In 1986, Bollerslev generalized these models in 

his doctorate thesis and submitted the generalized (ARCH) models. Then, in 1991, Nelson proposed 

the exponential model for the generalized (ARCH), which is called the EGARCH model. Later, many 

models were introduced as an expansion of ARCH and GARCH models. All these models perform a 

specific work that is to make the variance steady and unchanging with time, except that these models 

cannot be used to predict the future of the series, only if they are mixed with ARMA models, forming 

what is known as Mixed ARMA(R,M)-GARCH(Q,P) models. 

Our study will mix ARMA model with EGARCH model, which is one of conditional variance models 

that process the volatility in data of some time series. This volatility makes the variance conditional 

and changing with time, while it is supposed to be steady. As known for most researchers, the 

modeling of time series is an expressing operation of the series under study, as a function depending 

on its past values. This function is often expressed as a difference equation or differential equation 

plus a term of white noise. The process of mixing EGARCH with ARMA consists of two equations; 

the first is a mean equation which will be as an ARMA model that allows controlling the linear 

behavior of the series. The second represents a variance equation which will be as an EGARCH model 

that allows controlling the nonlinear behavior in the heteroscedasticity of the variance. The real goal of 

mixing these models is to enhance the prediction process for time series containing volatility in its 

data. This volatility makes the variance conditional and changing with time,  which causes high 

prediction errors and unacceptable results. Also, since the purpose of creating the conditional variance 

models is to control changing of the variance and making it steady, the mixed model will confer good 

forecasted results and acceptable prediction errors. 

This study came as an expansion of a previous study submitted conducted by Al-Bazzoni (2013)[3]  in 

her master’s thesis, in which she analyzed the time series of temperatures for Mosul city, north Iraq, 

using the GARCH(Q,P)-AR(P) model, a mixed model of  GARCH and autoregressive (AR) models 

that provided close and acceptable predictions. Likewise, this paper can be considered as a 

comparative study with a master's thesis submitted by Al Obaidy in 2015[4], in which he proposed the 

STSech-AR(P) model for analyzing and predicting the time series of temperatures for Kirkuk city, 

north Iraq. However, there are many local and global researches that studied the ARCH and GARCH 

models and their extensions, many of which introduced predictions of conditional variance, but they 

did not process the predictions of the future values of the series. 

We gave some definitions to clarify the equations of the models. We mentioned the methodology used 

by Box-Jenkins in modeling the time series and descripted the used data and the method of mixing the 

two equations. Also, our research consists of using EGARCH model with fitting, checking the 

adequacy, and forecasting the conditional variance. We then apply the mixed model to predict the 

future of the temperature series, providing important figures and tables, and finish the paper with 

several conclusions. 

Some definitions and basic concepts 

Definition: (Ramzan, Ramzan and Zahid, 2012)(Senaviratna and Cooray, 2017)(Francq and Zokoian, 

2010)(Box, Jenkins and Reinsel, 1994)[5-8] 

Autoregressive and moving average (ARMA) is a mixed model of autoregressive AR(R) and moving 

average MA(M) models, denoted by ARMA(R,M), such that R and M are positive numbers, with the 

existence of real coefficients, namely (          ) and (          ), and a constant C, such that: 

                                                    
which can be written as: 
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   ∑             ∑       
 

   

 

   
 

and by using lag operator written as: 

 ( )      ( )   
such that: 

 ( )             
  

 ( )             
  

      There are certain requirements for the matching between the stationary condition for AR(R) model 

and invertible condition for MA(M) model. That is, for the stationarity condition of ARMA model, all 

the roots of polynomials  ( ) and the polynomial  ( ) should lie outside the unit circle. 

Definition: (Malmsten, 2004)(Moffat, Akpan and Abasiekwere, 2017)(Alexander, 2008)(Teräsvirta, 

2006)(TSAY, 2010)(Nelson, 1991)(Mohammad and Mudhir, 2020)[9-15] 

The exponential generalized autoregressive conditional heteroscedasticity model, denoted by 

EGARCH(Q,P), was introduced by Nelson in 1991 with the following formula: 

                               (   
 )                                     

                                     (   )                                        

     
    ∑   

 

   
        

   ∑   
 

   
  (    )                   

such that: 

 (    )     (    )    (|    |   |    |)  

where (       ) , (       ),   is a constant and          are parameters of GARCH, ARCH, 

and leverage, respectively.    is a sequence of independent variables with zero mean and variance 

equal to one. The stationary condition of EGARCH model is expressed so that the summation of all 

roots of the polynomial (          
       

 ) lies outside the unit circle,  which is 

expressed as ∑     
 
   . 

Definition: (Francq and Zokoian, 2010)(Jelonek, 2017)[7,16] 

The mixed ARMA(R,M)-EGARCH(Q,P) model is defined by the formula: 

     ∑           ∑       
 

   

 

   
                                           

such that              ;              are real numbers,    is a constant, and     is the white 

noise term with            (    
 ).  

                                                (   ) 

     
    ∑          

  ∑   (    )
 

   

 

   
                      

 ∑   [|    |   |    |]       
 

   
                                                                          

with                ,                         are real numbers. 

Box-Jenkins Methodology in Time Series Modeling: (Box, Jenkins and Reinsel, 1994)(Box, Jenkins 

and Reinsel, 2015)(Makridakis, Harvard and Hyndman, 1998)[8,17,18] 

The Box-Jenkins methodology is a process of five steps. The first step is ensuring the stability of the 

data series, such that if the series is not stable about its mean and variance, which is supposed to be 

steady, then we must use a transformation, such as returns, difference, or logarithm transformations. 

The second step is diagnosing the model, i.e. whether we use the autoregressive (AR) model, the 

moving average (MA) model, a mixed (ARMA) model, or may be a conditional variance model if the 

Ljung-Box Q-test shows the heteroscedasticity effect in variance. The third step is estimating the 

parameters of the used model. The forth step is testing the adequacy of the used model, which is 

achieved by inferring the residuals and ensuring that they are uncorrelated, homoscedastic, and 

normally distributed. The fifth step is forecasting the future and testing the predictive ability by using 

the prediction error criterion, which is achieved by dividing the data under study into two groups; the 

first group is called (in sample) and used in all previous steps, while the second group is called (out 

sample) and left to compare it with the predicted values. 
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Data Description 

     The data used in this study represent monthly mean temperature records for Kirkuk city from 

January 1980 until November 2016 with 444 observations. We divided the data set into two groups; 

the first group represents data until April 2016, which is used in creating the time series and fitting the 

model. The second group represents eight months data that are left for the comparison with the 

predicted values and testing the prediction performance of the model. 

Materials 

    The method used in the present study is not different from the Box-Jenkins methodology because 

the structure of GARCH models is similar to that of the ARMA models. The modeling operation 

consists of two parts. The first part is to use EGARCH model in creating the time series and ensuring 

the convergence of conditional variance to the unconditional variance value. This is performed by 

testing the heteroscedasticity effect, fitting the model, estimating its parameters, testing its adequacy, 

and forecasting the conditional variance to observe its approach. The second part consist of applying 

the mixed ARMA-EGARCH model and choosing its best rank by using AIC and BIC criteria, then 

predicting eight future values. We used MATLAB R2016a program and attached the used data in 

appendix (1). Also we attached a programing text as (m.file) of modeling the first part in appendix (2) 

and the second part in appendix (3). Finally, appendix (4) represents a programing text used to 

examine the stationarity conditions of the models. 

Using EGARCH Model and Forecasting the Conditional Variance 

The data attached in appendix (1) were entered as a vertical vector of (Nx1) to create the time series, 

as shown in Figure-1. 

 
           Figure 1 - Time series plot of monthly mean of temperature. 

The original series was transformed to the returns series by using the formula: 

                    (
  
    

) 

    where    is temperature of the month t,    is return series. 

However, the series became stable about its mean after being transformed to the returns series, but it 

still had volatility in its data. This caused heteroscedasticity effects, as appears in Figure-2. To control 

this behavior, we used the conditional variance models. 



Muhammad                                               Iraqi Journal of Science, 2021, Vol. 62, No. 7, pp: 2307-2326 

8033 

 
           Figure 2- Plot of the return series. 

 

     We then found the squared errors series and plotted the autocorrelation function (ACF) and the 

partial autocorrelation function (PACF) to check the heteroscedasticity effect, as shown in Figure-4. 

 
         Figure 3- Plot of squared errors return. 

 

 

 
         Figure 4- ACF and PACF of equared errors. 

 

     Figure-4 shows that the coefficients of ACF and PACF lay outside the boundaries of the trust 

interval, which represents a visual detection for the heteroscedasticity effect. To check it numerically, 
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we used Ljung-Box Q-test in MATLAB program. If the result is (h=1), this means the acceptation to 

reject the null hypothesis    and take the alternative hypothesis   . This refers to the existence of a 

heteroscedasticity effect and that the p-value will be less than (      ), as shown in Table-1. 

Table 1: Ljung-Box Q-test results 

Lag10 Lag9 Lag8 Lag7 Lag6 Lag5 Lag4 Lag3 Lag2 Lag1  

1 1 1 1 1 1 1 1 1 1         

0 0 0 0 0 0 0 0 0 0         

982.0 931.4 928.9 851.3 684.5 474.3 305.2 233.5 230.8 186.3        

18.30 16.91 15.50 14.06 12.59 11.07 9.487 7.814 5.991 3.841                

 

Model Fitting and its Parameters Estimation 

      In this step, we fit EGARCH model for the return series and estimate the parameters of the model. 

Then we choose the best rank of the model based on the lowest values of AIC and BIC criteria, as 

shown in Table-2. 

Table 2: Parameters, AIC and BIC values of the EGARCH model orders. 

BIC AIC 
         

  EGARCH(Q,P) 
                           

117.2 105 - - -0.22 - - 0.67 - - - -2.6 EGARCH(0,1) 

97.6 77.2 - -0.65 -0.05 - -0.5 0.2 - - - -2.5 EGARCH(0,2) 

48.6 20.1 -0.5 -0.4 0.09 -0.4 -0.5 0.3 - - - -2.6 EGARCH(0,3) 

71.8 55.5 - - -0.4 - - 0.61 - - 0.67 -6.6 EGARCH(1,1) 

45 21 - -0.5 -0.07 - -0.7 0.3 - - 0.5 -1.2 EGARCH(1,2) 

51 18 -0.2 -0.4 0.02 -0.4 -0.5 0.3 - - 0.2 -1.9 EGARCH(1,3) 

54.6 34.2 - - -0.1 - - -0.1 - -0.7 1.5 -0.6 EGARCH(2,1) 

41 12 - -0.5 0.2 - -0.7 0.2 - -0.4 0.8 -1.5 EGARCH(2,2) 

44 7.5 -0.09 -0.3 0.1 0.6 -1 0.2 - -0.7 1.2 -1.4 EGARCH(2,3) 

111 87 - - 0.09 - - 0.3 0.5 -0.3 0.3 -4.1 EGARCH(3,1) 

40 7.5 - -0.2 -0.08 - -0.3 0.1 0.6 -1.5 1.6 -0.6 EGARCH(3,2) 

26 -14 -0.5 0.3 -0.2 0.2 -0.3 0.1 0.5 -1.5 1.5 -1.1 EGARCH(3,3) 

Table-2 shows that the best model is EGARCH(3,3) and its equation is written as: 

                                         (   ) 
     

                          
 

           
                

          [|    |   |    |]
         [|    |   |    |]          [|    |   |    |]          (    )
         (    )          (    ) 

with standard errors and t-statistic as listed in table 3. 

EGARCH(3,3) Conditional Variance Model 

Conditional Probability Distribution : Gaussian 
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Table 3: Parameter values of EGARCH(3,3) model. 

Parameter Value Standard Error t - Statistic 

Constant -1.18205 0.359252 -3.29031 

GARCH(1) 1.55242 0.152433 10.1842 

GARCH(2) -1.5 0.17014 -8.81628 

GARCH(3) 0.52666 0.145101 3.6296 

ARCH(1) 0.199012 0.208635 0.953876 

ARCH(2) -0.398616 0.287039 -1.38871 

ARCH(3) 0.229099 0.225754 -1.01482 

Leverage(1) -0.294789 0.169753 -1.73658 

Leverage(2) 0.357283 0.256345 1.39376 

Leverage(3) -0.517839 0.188835 -2.74228 

 

Also, when examining the stationary condition, we see that the model is stationary, as follow: 

∑   
 

   
                             

and the unconditional variance value can be calculated as : 

  
     (

 

  ∑   
 
   

)      (
        

       
)           . 

Checking the adequacy of the model 

       As in the Box-Jenkins methodology, we tested the adequacy of the selected model to ensure its 

efficiency in analyzing and explaing the data series. Then, we could use the model for forecasting, 

which was achieved by finding the standard residuals series, by using the following formula, and 

checking it visually and numerically: 

   
  
  

 

      where    is standard residuals,    is white noise residual of return series, and    is squared root of 

inferred conditional variance. Figure-5 represents a visual test plot of squared standard residuals (  ) 
and its distribution line, compared with the normal distribution line and plot of ACF and PACF. 

 
       Figure 5- Plot of squared standard residuals. 
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     Table-4 presents results of the numerical test and Ljung-Box test for squared standard residuals 

series with h=0, which implies unaccepting the rejection of the null hypothesis (  ), i.e. accepting it. 

This refers to the removal of the heteroscedasticity effect, where the p-value is higher than       . 

Table 4: Ljung-Box test for squared standard residuals. 

 Lag1 Lag2 Lag3 Lag4 Lag5 Lag6 Lag7 Lag8 Lag9 Lag10 

        0 0 0 0 0 0 0 0 0 0 

        0.675 0.903 0.723 0.648 0.2612 0.228 0.054 0.086 0.128 14.440 

       0.174 0.202 1.325 2.477 6.494 8.133 13.82 13.83 13.83 14.44 

               3.841 5.991 7.814 9.487 11.07 12.59 14.06 15.50 16.91 18.30 

 

     These results show that the residuals series of EGARCH(3,3) model is uncorrelated and 

homoscedastic. That is, the variance equation of EGARCH(3,3) is adequate. 

Convergence of the Conditional Variance 

Now, we can use EGARCH(3,3) model and forecast the conditional variance. We plotted the inferred 

and the forecasted conditional variance in Figure-6. The results clearly demonstrate the steadiness of 

the conditional variance and the removal of the heteroscedasticity effect. 

 
        Figure 6-: Plot of the inferred and the forecasted conditional variance. 

 

     Figure-7 shows the results of the convergence of the conditional variance to the unconditional 

variance value, which is fixed at a equal to 0.06031. 
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Figure 7- Plot of the forecasted conditional variance 

 

Applying the Mixed ARMA(R,M)-EGARCH(Q,P) Model 

      The EGARCH model was mixed with the ARMA model to be used for the prediction of future 

values of time series under study. We attached data of the text program in appendix (3), which 

represents this process. Data were entered and transformed to the return series, as we did before. We 

fitted the mixed model and found its parameters until the fourth rank, considering the stationarity of 

ARMA and EGARCH models separately by another text program attached in appendix (4). This 

included finding roots of polynomial (  ∑    
  

   ) such that (  ) represents autoregressive (AR) 

coefficients and L is the lag operator. It also included finding roots of polynomial (  ∑    
  

   ) such 

that (  ) represents moving average (MA) coefficients. To check the stationary condition of ARMA 

model, all roots of the two polynomials must lie outside the unit circle, or we can find the roots of the 

characteristic equation of the two polynomials which is supposed to lie inside the unit circle, that is, 

the absolute value of the roots which is less than one. Also, the EGARCH stationary condition must be 

verified, which is also achieved by the program attached in appendix (4). Beside that, we selected the 

best model with the best rank, based on AIC and BIC criteria. Table (5) provides the stationarity 

statement along with AIC and BIC values of the models until the fourth rank (ARMA(4,4)-

EGARCH(3,3)..). 

Table 5: The stationarity, AIC and BIC values of tests. 

Model Stationarity AIC BIC 

ARMA(0,1)-EGARCH(3,3) yes -205.9446 -157.0404 

ARMA(0,2)-EGARCH(3,3) yes -274.5847 -221.6052 

ARMA(0,3)-EGARCH(3,3) yes -315.3907 -258.3358 

ARMA(0,4)-EGARCH(3,3) yes -359.1872 -298.0570 

ARMA(1,0)-EGARCH(3,3) yes -383.5985 -334.6944 

ARMA(2,0)-EGARCH(3,3) yes -384.5214 -331.5449 

ARMA(3,0)-EGARCH(3,3) yes -414.7844 -357.7844 

ARMA(4,0)-EGARCH(3,3) yes -441.7856 -380.6554 

ARMA(1,1)-EGARCH(3,3) yes -371.7142 -294.2826 

ARMA(1,2)-EGARCH(3,3) yes -389.7796 -312.3481 

ARMA(1,3)-EGARCH(3,3) yes -407.0524 -329.6208 

ARMA(1,4)-EGARCH(3,3) yes -415.9260 -338.4944 

ARMA(2,1)-EGARCH(3,3) yes -373.8480 -296.4165 
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ARMA(2,2)-EGARCH(3,3) yes -654.0337 -576.6021 

ARMA(2,3)-EGARCH(3,3) yes -639.1614 -561.7298 

ARMA(2,4)-EGARCH(3,3) yes -714.8210 -637.3894 

ARMA(3,1)-EGARCH(3,3) yes -547.5221 -470.0905 

ARMA(3,2)-EGARCH(3,3) yes -653.8175 -576.3859 

ARMA(3,3)-EGARCH(3,3) yes -655.5629 -578.3131 

ARMA(3,4)-EGARCH(3,3) yes -639.2609 -561.8294 

ARMA(4,1)-EGARCH(3,3) yes -576.2726 -498.8410 

ARMA(4,2)-EGARCH(3,3) yes -654.3702 -567.9386 

ARMA(4,3)-EGARCH(3,3) no -649.5050 -572.0734 

ARMA(4,4)-EGARCH(3,3) yes -699.7428 -592.3112 

 

Table-5 shows that the better model, with the lowest value of AIC and BIC criteria, is ARMA(2,4)-

EGARCH(3,3) and the formula of the model will be as follows: 

  
                                                                 
                                                               (    

 )                                                     
                                                                                                (   ) 
     

          
                

 

                
                  

          (|    |   |    |)
       (|    |   |    |)           (|    |   |    |)        (    )
          (    )
          (    )                                                                               

The mean equation represents ARMA(2,4) model and the stationary condition was verified, since all 

roots of the polynomial for AR(2), which is: 

                        , 

lie outside the unit circle, as follow: 

                      |  |         
                      |  |         

Also, all roots of the polynomial for MA(4), which is:  

                                          
lie outside the unit circle, as follow: 

                |  |         
                  |  |         
                    |  |         
                      |  |         

The variance equation represents the EGARCH(3,3) model, where its stationary condition was verified 

because: 

∑                              
 

   
             

Now, we must infer the standard residuals series of the model ARMA(2,4)-EGARCH(3,3) and plot the 

series and the Quantle-Quantle function (QQ-plot). It appears from Figure-8 that the residuals series 

takes a straight line beside the normal distribution line. This implies that it is normally distributed. 

Figure-9 shows the plot of the curve of kernel distribution, compared with the curve of normal kernel 

distribution. Also, we plotted the histogram of the residual series. 
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Figure 8- Plot the series and the Quantle-Quantle function of the residuals series. 

 
Figure 9- Plot of the curve of kernel distribution and the histogram of the residual series. 

 

We can calculate the unconditional mean and unconditional variance of the model as follow: 

   
             

  ∑              
      

           

                  
        

      (
             

  ∑                 
)     (

        

                            
)         

The standard deviation value is equal to    √         . 

Figure (10) shows the convergence of the predicted return series for 250 future values along with its 

steadying at the value of unconditional mean. The predicted series lies inside the trust interval, 

bounded by (  
    

√   
   

    

√   
). The predicted values of mean square error (MSE) converge to zero 

as the prediction steps increase. Also, we noticed the converge of the forecasted conditional variance 

and its steadying at the unconditional variance value. 
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Figure 10- Plot of the convergence of the predicted return series. 

 

Result and Discussion 

      After fitting, estimating, and testing the adequacy of the mixed model, we can use it in predicting 

the future of the series. We predicted eight future values, which is the same as the number of data that 

we left as a validating set. Then, we compared the predicted results with real values to asses and 

calculate the prediction error visually, by plotting the predicted and the real series, and then 

numerically, by using the prediction error criteria. We used the best three models in prediction, based 

on AIC and BIC criterions value as mentioned in table (5), which are ARMA(2,4)-EGARCH(3,3), 

ARMA(3,3)-EGARCH(3,3), and ARMA(4,4)EGARCH(3,3), to compare the prediction performance 

and estimate the magnitude of difference between the real values and the predicted results. 

     This process is necessary since it is worth noting that, although the model is good in adequacy, 

there is no guarantee that it will be a good predictor, as it may lack a good predictive performance. 

Table (6) presents the predicted values of the three chosen models, along with the values of prediction 

mean squared error (PMSE) and prediction mean absolute error (PMAE). We noticed that 

ARMA(4,4)EGARCH(3,3) model gives the lowest prediction error compared with the other models. 

However, this does not negate that the predictions of the other two models are acceptable. 

 

Table 6: The real and predicted values of the three chosen models, along with the values of the 

prediction error criterions. 

ARMA(4,4)-

EGARCH(3,3) 

ARMA(3,3)-

EGARCH(3,3) 

ARMA(2,4)-

EGARCH(3,3) 

Real 

data 
months 

Predicted 

steps 

29.2 29.5 30.4 28.9 MAY 1 

35.8 35.7 36.3 35.2 JUNE 2 

39.1 38.5 39.4 38.3 JULY 3 

37.3 36.5 36.8 39.1 AUG. 4 

31.8 31.2 30.3 31.8 SEP. 5 

25.1 25.2 23.3 27.5 OCT. 6 

19.4 20.2 17.8 19.2 NOV. 7 

15.6 17.0 14.6 9.4 DEC. 8 
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5.4287 8.1065 6.6042   MSE 

1.3860 1.7238 2.0345   MAE 

      The three following figures ( 11, 12, and 13 ) illustrate the plots of real and predicted series of the 

three models. 

 
Figure 11 – ARMA(2,4)-EGARCH(3,3) 

 
Figure 12 -ARMA(3,3)-EGARCH(3,3) 
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       Figure 13 –ARMA (4,4)-EGARCH(3,3) 

 

Conclusions 

      A mixed model of ARMA and EGARCH was suggested to be used in modeling and analyzing 

mean temperature time series. We also provided definitions and sufficient explanations on modeling 

and analyzing methodology. We showed that the EGARCH model cannot be used alone to predict 

future of the series, unless we mix it with ARMA, since the EGARCH model only forecasts the 

conditional variance. Also, forecasting by using ARMA model alone for data series containing 

volatility gives an unacceptable predicted result with high prediction error. Three of the best ranks of 

the mixed model were tested and its stationarity was verified. The results revealed that the best model, 

based on prediction error value, is ARMA(4,4)-EGARCH(3,3), with  comparable predictive values 

and very acceptable prediction error. 

     In conclusion, the proposed model can be used with another data series but may need certain 

transformations that can be found in Box-Cox transformations. Also, the used methodology, which is 

known globally for many researchers and we mentioned before with its complete steps and 

procedures, enables the proposed model to control the linear and non-linear behavior of the series data. 

It has a prediction ability that allows its usage in predicting the future of temperature series. 
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Appendixes 

Appendix (1) 

STATION:- 

KIRKUK       Mean Air Temperature  C        

                          

YEAR JAN. FEB. 

MAR

. 

APR

. 

MA

Y 

JUN

. 

JUL

. 

AUG

. 

SEP

. 

OCT

. 

NOV

. 

DEC

. 

1980 7.6 10.3 14.4 19.5 27.0 33.5 36.8 34.6 29.9 23.7 16.4 11.0 

1981 9.3 10.3 14.6 18.7 24.5 32.4 36.8 35.5 32.2 25.8 15.1 12.3 

1982 8.4 7.5 12.3 20.5 26.6 32.2 34.2 34.0 31.4 21.7 12.8 8.6 

1983 6.1 9.1 13.0 19.8 27.4 32.0 35.0 33.3 30.4 23.5 19.9 11.3 

1984 10.2 12.5 15.8 21.0 25.6 33.0 36.1 32.6 30.9 23.8 15.7 9.2 

1985 10.5 7.7 13.1 21.2 28.8 33.1 34.7 37.3 31.7 23.2 18.3 10.0 

1986 10.2 11.6 14.9 21.1 26.0 31.7 37.2 37.1 34.1 25.6 14.1 9.2 

1987 10.5 13.4 12.2 20.1 29.3 33.8 37.0 35.7 31.5 22.8 17.3 11.3 

1988 8.9 11.0 13.3 19.4 27.2 32.2 35.4 34.7 30.9 25.2 14.4 11.3 

1989 6.8 9.9 15.8 24.2 29.5 32.5 36.6 35.5 30.6 25.3 16.3 9.8 

1990 7.4 9.8 15.4 19.6 28.3 33.2 37.0 34.6 30.8 24.9 18.7 12.3 

1991 9.2 9.0 14.9 20.9 26.4 34.2 36.3 35.5 31.2 24.3 17.7 9.7 

1992 6.0 7.1 10.9 18.4 24.4 31.4 34.0 35.4 30.9 24.4 14.9 8.5 

1993 8.0 9.5 13.7 19.0 24.1 31.8 36.7 35.7 30.9 25.7 13.9 12.3 

1994 11.6 10.7 15.6 22.8 27.9 33.0 35.9 34.5 32.7 25.6 15.5 7.5 

1995 10.5 11.8 15.1 19.4 28.6 33.3 34.7 35.2 30.5 24.2 15.4 10.0 

1996 10.3 12.6 13.7 19.2 29.3 32.8 38.1 35.9 30.7 24.0 17.6 13.8 

1997 9.9 8.5 11.4 18.7 28.3 33.8 35.3 33.4 30.1 24.7 16.5 10.6 

1998 7.6 10.4 13.9 20.4 27.6 35.6 37.5 37.8 31.6 25.5 20.5 14.5 

1999 11.4 12.5 16.2 21.8 29.2 33.8 36.1 36.7 30.8 25.6 16.5 12.7 

2000 8.8 10.5 14.4 23.4 28.6 33.7 39.0 36.8 30.8 23.2 17.0 11.3 

2001 10.3 11.7 17.8 21.8 27.4 33.6 36.9 37.0 32.2 26.6 17.0 12.7 

2002 8.7 12.6 16.7 19.5 27.3 33.5 34.7 34.9 31.7 26.6 16.3 11.0 

2003 8.9 10.9 14.9 20.9 29.2 33.6 35.4 36.9 29.0 24.6 15.9 10.8 

2004 10.6 10.5 17.0 20.6 26.5 33.4 36.5 34.7 32.1 26.7 15.6 8.8 

2005 9.3 10.0 15.2 22.5 27.7 33.2 37.0 36.1 30.5 24.4 15.7 14.1 

2006 8.9 12.1 16.9 21.1 28.0 35.8 36.4 38.1 29.8 25.2 14.5 9.4 

2007 8.1 11.6 15.5 19.3 30.6 34.9 37.2 36.8 32.6 26.8 16.9 10.8 

2008 6.4 10.8 19.6 24.7 28.0 34.3 36.7 37.1 32.1 24.3 17.1 11.1 

2009 9.2 13.4 15.7 20.8 27.8 34.3 35.4 35.3 28.3 25.2 18.7 12.8 

2010 12.9 13.3 17.0 21.1 28.9 35.2 38.3 38.4 33.4 26.3 19.3 14.0 

2011 9.9 11.1 15.7 21.1 27.8 34.4 37.5 36.9 31.1 23.2 13.7 10.5 

2012 8.5 10.3 13.1 23.8 29.9 35.7 37.9 36.6 32.6 26.1 18.4 11.9 

2013 9.8 13.0 16.5 23.2 27.4 34.0 36.4 36.0 31.0 23.7 17.0 9.6 

2014 11.2 12.6 17.3 22.9 30.1 34.5 37.3 37.4 32.1 24.4 15.6 12.9 

2015 10.1 12.3 16.4 21.6 29.6 34.4 38.8 37.6 34.5 26.2 16.2 10.5 

2016 9.4 13.9 16.0 22.4 28.9 35.2 38.3 39.1 31.8 27.5 19.2 9.4 
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Appendix (2) 

Data = [enter data here]; 

figure(1) 

hold on 

xlabel('Months'); 

h = gca; 

h.XTick = [1 121 242 363]; 

h.XTickLabel = {'Jan 1980','Jan 1990','Jan 2000',... 

     'Jan 2010'}; 

ylabel('Monthly Mean Of Temperature'); 

title('Time Series Plot Of Monthly Mean Of Temperature For Kirkuk City From: JAN.1980 - 

DEC.2016') 

plot(Data,'b'); 

hold off 

r=price2ret(Data); 

N =length(r); 

meanR = mean(r); 

error = r - mean(r); 

squerror = error.^2; 

figure(2) 

plot(r) 

hold on 

plot(meanR*ones(N,1),'--r') 

xlim([0,N]) 

xlabel('Months'); 

h = gca; 

h.XTick = [1 121 242 363]; 

h.XTickLabel = {'Jan 1980','Jan 1990','Jan 2000',... 

     'Jan 2010'}; 

ylabel('Returns'); 

title('Plot The Returns Series Of Monthly Mean Of Temperature') 

hold off 

figure(3) 

hold on 

xlabel('Months');ylabel('Squared Error'); 

title('Plot Of Squared Errors Return') 

plot(squerror,'b'); 

hold off 

figure(4) 

subplot(2,1,1) 

autocorr(squerror) 

subplot(2,1,2) 

parcorr(squerror) 

title('Autocorrelation & Partial Autocorrelation Functions Of Squared Errors Return Series') 

[h,pValue,Qstat,cValue] = lbqtest(r,'Lags',[1:10])  

Q=3; 

P=3; 

Mdl=egarch(Q,P); 

[EstMdl,EstParamCov,LogL,info] = estimate(Mdl,r);  

numParams = sum(any(EstParamCov)); 

[AIC,BIC] = aicbic(LogL,numParams,N) 

rng default; 

V=infer(EstMdl,r); 

StdRes=r./sqrt(V); 

SquStdRes=StdRes.^2; 
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figure(5) 

subplot(2,2,1) 

plot(SquStdRes,'r') 

xlim([1,N]) 

title('Squared Standardized Residuals') 

subplot(2,2,2) 

qqplot(SquStdRes) 

subplot(2,2,3) 

autocorr(SquStdRes) 

subplot(2,2,4) 

parcorr(SquStdRes) 

[h,pValue,Qstat,cValue]=lbqtest(SquStdRes,'lags',[1:10]) 

Vf = forecast(EstMdl,200,'y0',r); 

figure(6) 

plot(V,'Color',[.4,.4,.4]) 

hold on 

plot(N+1:N+200,Vf,'r','LineWidth',2) 

xlim([1,N+200]) 

legend('Inferred Variance','Forecasted Variance','Location','Northwest') 

title('The Inferred And The Forecasted Conditional Variance For The Returns OF Monthly Mean Of 

Temperature') 

hold off 

UnConVar=exp(EstMdl.Constant/(1-EstMdl.GARCH{1}-EstMdl.GARCH{2}-EstMdl.GARCH{3})) 

figure(7) 

plot(Vf,'r','LineWidth',1.5) 

hold on 

plot(ones(200,1)*UnConVar,'k--','LineWidth',2) 

xlim([1 200]); 

title('The Forecasted Conditional Variance Of EGARCH(3,3) Model Compared With The Theortical 

Variance') 

legend('Forecasted Conditional Variance','Un-Conditional Variance','Location','SouthEast') 

hold off 

 

 

 

 

Appendix (3) 

Data = [enter data here]; 

r=price2ret(Data); 

N =length(r) 

R=2;D=0;M=4;Q=3;P=3; 

Mdl = arima(R,D,M); 

Mdl.Variance = egarch(Q,P); 

[EstMdl,EstParamCov,LogL,info]= estimate(Mdl,r); 

numParams = sum(any(EstParamCov)); 

[AIC,BIC] = aicbic(LogL,numParams,N) 

rng 'default'; 

[E0,V0,~] = infer(EstMdl,r); 

stres=E0./sqrt(V0); 

figure(8) 

subplot(1,2,1) 

plot(stres) 

title('Standardized Residuals') 

subplot(1,2,2) 

qqplot(stres) 
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figure(9) 

subplot(1,2,1) 

histogram(stres) 

x = -4:.05:4; 

[f,xi] = ksdensity(stres); 

subplot(1,2,2) 

plot(xi,f,'k','LineWidth',2); 

hold on 

plot(x,normpdf(x),'r--','LineWidth',2) 

legend('Standardized Residuals','Standard Normal(default)','Location','South') 

hold off 

[Y,MSE,V] = forecast(EstMdl,250,'Y0',r,'E0',E0,'V0',V0); 

upper = Y + 1.96*sqrt(MSE); 

lower = Y - 1.96*sqrt(MSE); 

figure(10) 

subplot(2,1,1) 

plot(r,'Color',[.6,.6,.75]) 

hold on 

UnConMean=0.000934623/(1-1.71632+0.978243); 

p1=plot(N(end):N(end)+250,[r(end);Y],'r','LineWidth',2); 

p2=plot(N+1:N+250,lower,'k-.','LineWidth',0.5); 

plot(N+1:N+250,upper,'k-.','LineWidth',0.5); 

plot(ones(685,1)*UnConMean,'k--','LineWidth',0.5) 

xlim([0,N+250]); 

title('The Originally & The Forecasted Returns') 

legend([p1,p2],'Return Series Forecast','95% Interval','Location','SouthEast','Orientation','vertical') 

hold off 

subplot(2,1,2) 

UnConVar=exp(-2.05536/(1-0.904027-0.446547+0.804221)); 

plot(V0,'Color',[.6,.6,.75]) 

hold on 

plot(N(end):N(end)+250,[V0(end);V],'r','LineWidth',2); 

plot(ones(685,1)*UnConVar,'k--','LineWidth',0.5) 

xlim([0,N+250]) 

title('The Infered & The Forecasted Conditional St. Deviation for 250 Period') 

hold off 

disp(UnConVar) 

STDVriance = sqrt(UnConVar) 

disp(UnConMean) 

rng default; 

[Y1,MSE1,V1]=forecast(EstMdl,8,'Y0',r,'E0',E0,'V0',V0); 

[YSim,ESim,VSim] = simulate(EstMdl,8,'NumPaths',20000,'Y0',r,'E0',E0,'V0',V0); 

Real = [22.4; 28.9; 35.2; 38.3; 39.1; 31.8; 27.5; 19.2; 9.4]; 

Fdata=ret2price(Y1,22.4) 

sim=mean(YSim,2); 

Sdata=ret2price(sim,22.4) 

figure(11, 12 and 13) 

plot(Real,'k','LineWidth',2) 

hold on 

plot(Fdata,'r--','LineWidth',1.5) 

xlim([0,11]) 

title('Prediction Error') 

legend('Observed','Forecast','Location','NorthWest') 

hold off 

MSE = mean((Real-Fdata).^2) 
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MSEsim = mean((Real-Sdata).^2) 

MAE = mean(abs(Real-Fdata)) 

MAEsim = mean(abs(Real-Sdata)) 

Appendix (4) 

EGARCH stationary text program 

 x1=1.61895; x2= -1.5; x3=0.643516; 

 p = [x3 x2 x1 -1]; 

 r = roots(p) 

 Absr=abs(r) 

 A = LagOp({1,-x1,-x2,-x3},'Lags',[0,1,2,3]); 

 [indicator,eigenvalues] = isStable(A) 

 AbsE=abs(eigenvalues) 

 Sum=x1+x2+x3 

ARMA stationary text program 

 A1=1.71632; A2=-0.978243; A3=0; A4=0; 

 B1=-2; B2=0.997374; B3=0.437468; B4=-0.400353; 

 p = [A4 A3 A2 A1 -1]; 

 r = roots(p) 

 Absr=abs(r) 

 pB = [B4 B3 B2 B1 1]; 

 rB = roots(pB) 

 AbsrB=abs(rB)  

 A = LagOp({1,-A1,-A2,-A3,-A4},'Lags',[0,1,2,3,4]); 

 [indicator,eigenvalues] = isStable(A) 

 AbsE=abs(eigenvalues) 

 AB = LagOp({1,B1,B2,B3,B4},'Lags',[0,1,2,3,4]); 

 [indicatorB,eigenvaluesB] = isStable(AB) 

 AbsEB=abs(eigenvaluesB) 

 


