Abdul-Kareem et al. Iraqi Journal of Science, 2021, Vol. 62, No. 4, pp: 1284-1292
DOI: 10.24996/ijs.2021.62.4.24

/\/
Iraqi

Journal of

Science

ISSN: 0067-2904

On Closed Quasi Principally Injective Acts over Monoids

Shaymaa Amer Abdul-Kareem*, Ahmed Amer Abdulkareem2, Yusra Amer
Abdul-Kareem®
'Department of Mathematics, College of Basic Education, Mustansiriyah University, Baghdad, Iraq
“Ministry of trade, Department of Follow-up and Monitoring Electronic
*Ministry of trade, Department of Foreign and Economic Relations

Received: 8/6/2020 Accepted: 5/9/2020

Abstract

The concept of closed quasi principally injective acts over monoids is
introduced ,which signifies a generalization for the quasi principally injective as
well as for the closed quasi injective acts. Characterization of this concept is
intended to show the behavior of a closed quasi principally injective property. At the
same time, some properties of closed quasi principally injective acts are examined in
terms of their endomorphism monoid. Also, the characterization of a closed
self-principally injective monoid is given in terms of its annihilator. The relationship
between the following concepts is also studied; closed quasi principally injective
acts over monoids, Hopfian, co Hopfian, and directly finite property. Ultimately,
based on the results obtained, the conditions on subacts to inherit a closed quasi
principally injective property were shown. Part of this paper was dedicated to
studying the relationship between the classes of closed quasi principally injective
acts with some generalizations of injectivity. Conclusions and future remarks of this
work are given.
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1. Introduction

For any given mathematical structure on a set, the collection of structure-preserving maps on the
set to itself is an example of an abstract algebraic “object”, referred to as a semigroup. Thereby,
semigroups pervade mathematics. On the other hand, given an abstractly defined semigroup, when can
it be represented as a semigroup of maps of a mathematical structure? The answer is represented by
actions. In mathematics, an action of a semigroup on a set is an operation that associates each element
of the semigroup with a transformation on the set. It is familiar that, from an algebraic perspective, an
action for the semigroup is a generalization of the notion of group action in group theory, and a major
special case is @ monoid action or act, in which the semigroup is a monoid and the identity element of
the monoid acts as the identity transformation of a set. It is recognized that the theory of monoids and
acts is a generalization of the theory of rings and modules, which has a number of direct applications
in theoretical computer science, theory of differential equations and functional analysis, etc. [1].

Throughout this work, every right S-act M is a unitary S-act (contains identity element), with zero
element © represented by Ms, and S is a monoid with zero elements 0. Let Ms refers to a right S-act
with zero where it is a non-empty set with a function f: MxS—M, (m, s) —ms such that the
following properties hold: (1) m-1=m (2) m (st) = (ms) t, for all meM and s, teS, where 1 denotes the
identity element of S. For other basic definitions, theorems, lemmas, corollaries, results and notations
for S-acts, annihilators, homomorphism, endomorphism, monomorphism, epimorphism,
isomorphism ...etc. we refer to [2, 3 and 4].

It is possible to find an S-act in different names such as S-acts, S-sets, S-operands, S-polygons,
transition acts, and S-automata [2].We will freely make use of the standard notations, terminologies as
well as results of [1, 5, 6, 7, 8 and 9].

Let As and Mg be two S-acts. Ag is referred to as an M-injective in case of an S-monomorphism a.
N—Ms where N is a subact of Mg and every S-homomorphism f: N—Ag, can be extended to an
S-homomorphism 6: Ms—As [10].

An S-act As is an injective if it is an M-injective for all S-acts Ms. An S-act As is quasi injective if and
only if it is an A-injective. Quasi injective S-acts were studied by Lopez and Luedeman [11]. In [1],
the author developed the concept presented by Lopez to C-quasi injective act. An S-act Ng is called
closed M-injective (for short C-M-injective) if for any homomorphism from a closed subact of S-act
Ms to Ns can be extended to a homomorphism from Mg to Ns[1]. An S-act Ns is referred to as a
C-quasi injective if Ng is C-N-injective. In a similar way, a monoid S is called the right
C-self-injective if it is C-S-injective. Besides, the author continues to develop and generalize the
concept of the quasi injective act introduced by Lopez to quasi principally injective act. An S-act N is
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called M-principally injective if every S-homomorphism from M-cyclic subact of S-act Ms into Ns can
be extended to an S-homomorphism from Mg into Ns (for short Ns is M-P-injective) [8]. Equally, an
S-act Mg is referred to as quasi-principally injective if it is M-P-injective [8]. In [12], Al-Bahrani and
Rahman introduced a generalization of Rickart Modules to y-closed Rickart Modules. Because the
S-act theory is a generalization of module theory, we introduced the generalization of quasi principally
injective acts over monoids to closed quasi principally injective acts over monoids.

This paper aims to introduce and study the concept of closed quasi principally injective acts by
examining their structure and properties. The importance of this concept is attributed to two points:
Firstly, it represents a generalization of closed quasi injective acts and, secondly, it signifies a
generalization of quasi principally injective acts. In addition, we characterized the behavior of the
property that is considered under well-known constructions such as the product, coproduct, and direct
sum. This article is divided into three sections. Section two is devoted to introduce and investigate a
new kind of generalization of quasi principally injective S-acts, namely closed quasi principally
injective act over monoids. Certain classes of subacts which inherit the property of closed quasi
principally injective acts were considered. Also, the characterizations of this new class of S-acts were
investigated. An example was given to demonstrate closed quasi principally injective acts over
monoids. Some known results on closed quasi principally injective for general modules were
generalized to S-acts.

For future work, one can consider the subact that is closed and finitely M-generated.

2. Results

Definition2.1: [8] Let Ms and Ns be two S-acts. An S-act N is called M-principally injective if every
S-homomorphism of M-cyclic subact of Mg into Ns can be extended to an S-homomorphism from Mg
into Ns (if this is the case, we write Ns as M-P-injective).

Definition2.2: [1] Let Ms and Ns be two S-acts, Ns is called closed M-injective (for short C-M -
injective) if any homomorphism of a closed subact of Mg to Ns can be extended to homomorphism
from Ms to Ns. An S-act Ns is called closed quasi injective if Ns is C-N-injective. A monoid S is called
right closed self-injective if it is C-S-injective.

Definition2.3: An S-act Ng is called closed M-principally injective (for short, C-M-P-injective) if
every S-homomorphism of closed M-cyclic subact of Ms to Ns extends to S-homomorphism from Mg
to Ns. Meanwhile, an S-act Ms is called closed quasi principally injective (for short, C-QP-injective) if
it is closed M-principally injective. Similarly, a monoid S is called closed self principally injective
monoid (for short, C-self-P-injective) in case that Ss is closed quasi principally injective.

Remarks and Example2.4

(1) Recall that an S-act Mg is called quasi-principally injective if it is M-P-injective, that is every
S-homomorphism from M-cyclic subact of Mg to Ms can be extended to S-endomorphism of Ms.
Accordingly, we mention that Mg is QP-injective [8]. For this reason, every QP-injective is
C-QP-injective, but the converse is not true in general. For example, Z with usual multiplication
monoid as Z-act is C-QP-injective which cannot be called quasi principally injective act.

(2) Obviously, definition2.3 is up to isomorphism. This means that every object may be replaced by
an isomorphic object.

Recall that o is an S-homomorphism if it is a mapping (i.e.a: As—Bs) from S-act Ag into S-act Bs
such that for any a€As and seS, a(as) = a(a)s. The usual meanings of monomorphism, epimorphism,
and isomorphism are also satisfied [7]. Besides, an S-homomorphism f: Ms—Ms is called an
endomorphism of Mg, where Ms is S-act.

1286



Abdul-Kareem et al. Iraqi Journal of Science, 2021, Vol. 62, No. 4, pp: 1284-1292

Definition 2.5: An endomorphism feEnd(M) is called a closed homomorphism if f(M) is a closed
subact of M.

The following theorem illustrates the characterization of C-quasi principally injective act (for
definition of annihilators see definition (1.1.27) in [7]).
Theorem 2.6: Let Mg be an S-act and T=End (M). Then the following conditions are equivalent:
(1) Mg is C-M-P-injective.
(2) #7(kera) = Ta For every closed homomorphism o €T.
3) If f: a(M) —Ms is a homomorphism, then fa €T a for closed homomorphism o €T.
(4) Kera © KerB impliesthat TB € Ta forany o, € T, where o isa closed homomorphism.
(6) £r[(B(M) x B(M))N Kera] = £4(B(M) x B(M))UTa, for each o, B €T where (aB) is a closed
homomorphism and T is right cancellative.
Proof: (1—-2) Let B €Ta be a closed homomorphism. For any o €T, we have then that = oa, S0
Ker (a) € Ker (oa). For each s, teS with ms = mt, we have a(ms) = a(mt) and then ca(ms) =
oca(mt). This implies that B(ms) = B(mt), so B € ¢t(Keroa) S #r(Kera). Conversely, let B €
¢ (Kera), then defineo: a(Ms) —Ms by o(a(m)) = B(m) for some meMs. It is clear that o is a
well-defined and S-homomorphism with Kera < Kerf. In fact, if a(ms) =a(mt), then o(a(ms)) =
o(a(mt)).Thus, B(ms)=p(mt), which means that o is well-defined. From this, it is easy to see that o
is S-homomorphism. Let o/: Ms — a(Ms), and p/: Ms— B(Ms) be S-epimorphisms induced by a
and B, respectively. Let iy:a(Ms) — Ms, i B(Ms)— Ms be the inclusion maps.Since o is
S-epimorphism, so there is an S-homomorphism ¢:a(Ms)— B(Ms) such that @a/=/, YmeMs. Let
a(m) € a(Ms). Since o is epimorphism, so there exists x€Ms such that o (X)=a(m), so
@(a(m))=p(x), where o/(x) =a(m) and p/(x)=p(x). Now, ¢ is well-defined. If a(m;)=a(m,) with
o/ (x) =a(my) and o (x2)=a(m,), then, (X, x,)EKer(a/)=Ker (a)SKer(B)=Ker(p/). So, p/(x)) =
B/(x,). Since Mgis C-M-P-injective, so there exists an S-homomorphismo: Ms—Mys such that oi; =
i», then oia/=i,qa/.This implies that oi;a/=i, B/ thenp = ca.Therefore,p €Ta and £7(Kera) S
Ta. Then, we have Ta = ¢1(Kera).
(2—3) Let f:a(M)—Ms be a homomorphism, where a is a closed homomorphism. Since Kera <
Kerfa,thenft(Kerfa) S 41 (Kera). By (2), we have ¢1(Kerfa) & ¢r(Kera)=Ta andsofa € Ta.
(3—4) Let a,p and o € T, where a is a closed homomorphism. Suppose that KeraSKerf<SKersp. Then,
by the homomorphism theorem 4.21 in ([2], P.53), there exists unique homomorphism f:o. (M) —Ms
such that 6 = fa. By using (3), fa€Ta, then o3 € Ta. Therefore, we get TBSTa.
(4—5) Let 0 € £1[B(Mg) X B(Mg) N Kera] and af is a closed homomorphism. We claim that
KeraB SKerof. For this, let (m;, my)eKeraf, so af(m;) =af(m,). This implies that (B(my),
B(my))e [B(My) X B(Mg) N Kera ], then of(my)=cB(my,). Thus (m;, m,)ekercB. By (4), we have
ToB STa and oB=uaf for some UueT. Therefore, this means that there is u€T such that off = uaf
for each o, B €T. Since T is cancellative, so o = ua. Thus, o € ¢1[B(Mg) X B(Mg). This means that
o € ¢r(B(Ms) X BM))U T and  £3[B(Ms) X B(M;) N Kera] S r(B(M) X
B(M;))U Ta.Conversely, leto € #1(B(Ms) x B(Ms))U Ta, hence this means that o € #3(B(Ms) X
B(Mg)) or o =ua for some ueT. If o € £1[B(M;) X B(Mg)], this means that of(m;)=cB(m,), V
m;,m,EMs. Now, for each m; and m,EMs, we have (m;, my) € [Kera N (M) X B(M)], which
implies that a(m;)=a(m,) and B(my)=B(m,). Since u is well-defined, so ua(m;)=ua(m,). Ifc = ua,
then this implies that o(my)=o(m,). Thus,o € £1(B(Mg) X B(Mg) N Kera ). If 0 € £1[B(Mg) X
B(My), then oB(ms)=oB(m,). Hence,c € £1(B(Ms) x B(M,) N Kera) and £1(B(Ms) X B(Ms))U Ta
< £7[B(Ms) X B(Ms) N Kera .
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(5—1) By taking = Iy, we identified the map of Mg in (5) and obtained that ¢1(kera) = Ta for
every closed homomorphism o €T. Now, let N be a closed M-cyclic subact of S-act Ms, so N=a (M)
for some closed homomorphism o €T. Assume that i;:a (M)—Ms is the inclusion map and ay:
Ms— a(M) is a homomorphism induced by closed homomorphisma. Let ¢ be S-homomorphism
from N into Ms. It is clear that @a, is S-endomorphism of Ms. Since Kera=Kera; S Kerga,,
whence for each (X, y)eKera implies a(x)=a(y), and since ¢ is well-defined, so @(a(x))= @(a(y)).
Thus, we obtain (x, y)eKere.This implies that £t (kerpa) € #t(kera). Because ¢1(kera) = Ta, then
we have Toa S Ta. Thus, @a € Ta and then there exists o €T such that ¢a = ca. Therefore Ms
is a C-M-P-injective act.

We can define a closed ideal as follows: an ideal of a monoid S is called a closed ideal if there is no
proper essential extension (i.e. no proper N-large) inside S.

The next corollary characterizes the closed self principally injective monoids.

By Definition 2.3, a monoid S is called closed self principally injective monoid (for short,
C-self-P-injective) in case that Ss is closed quasi principally injective. Thus, the proof of the next
corollary is clear by Theorem 2.6 and, hence, it is omitted.

Corollary 2.7: The following conditions are equivalent for a monoid S:

(1) S is C-self-P-injective.

(2) #s(ys(@)) = Sa, vae S, and closed right ideal aS.

(3) If f: aS—S is S-homomorphism, then f (a) €Sa for all a€eS and closed right ideal aS.

(4) ys(b) € ys(a), which implies that SacSb for any a, be S, where bS is closed right ideal.

(8) £5 (bS N(ys(a) x ys(@))) = £5(bS x bS) U Sa,va, be S.

In the subsequent theorem, we study some general properties of C-M-P-injective acts and
C-self-P-injective monoids.

Theorem2.8: Let Mg be C-M-P-injective S-act and a,f3 € T=End(M), where o is a closed
homomorphism. Then, the following statements hold:

1) If fa(M) — B(M) is a monomorphism (otherwise, an epimorphism), then there exists a
T-epimorphism (otherwise, a T- monomorphism)o: T8 — Ta.

(2) Ifa(M) = B(M), then Ta = Tp.

Proof: (1) Let f: a(M) — B(M) be an S-monomorphism, where Mg is an S-act. Let i; (otherwise, i,)
be the inclusion maps of a(M) (otherwise, B(M)) into Ms. Then fa(m) =p(m) for all meMs. Since Ms
is C-M-P-injective and o(M) is closed M-cyclic subact of Mg, so the S-homomorphism i,of can be
extended to the S-homomorphism f: Mg — Mg, such thatfoi; = i, o f. This means that fi;a(m) =
i,fa(m) for all meMs. Therefore, B(m)=fa(m) for all meMs. Define o: TP — Ta by o(A B)
=Afo, AB € TB. If A;B = A,B for mEMs, then fa(m) = (Fo iy) (a(m)) = (ize f) (a(m)) = f(ae(m)), and
hence A fa(m)=Af(a(m)). Thus, o is well-defined. It is clear that o is T-homomorphism; in fact, let
A BETP and ge T, then o(g(AB)) = o((gA)B) = grMfa= g (Afa ) =go(AB). We claim that Ker
(fa)cKera. Let (x;, X;)eEKer (fa), which implies that foa(xy)=fa(x,). This implies that f (a(x,)) =f
(a(x2)).Since f is monomorphism, so a(X;) =a(Xp). Thus, (X1, X,)EKera. By theorem3.4(4), we have
TaSTfa, so there exists A € T such that a=Afa, then a=A fa=o(A B) € o(TB). This
implies that Ta = o(Tp).Then,o is T-epimorphism.

For the second part (i.e. If f:a(M) — B(M) is epimorphism, then there exists a T- monomorphism
0:TB — Ta), as in above. Let f: a(M) — B(M), and by assumption, f is S-epimorphism. Since Mg
is C-M-P-injective, so i,of can be extended to f: Mg — Mg such that foi; =i,of, where i, and i, are
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the inclusion map of a(M) into Mg and B(M) into Mg, respectively. Define o: TB — Ta by o(AB)
=Mfa, ford € T. As in the first part of the proof, o is well-defined, then A;fa = A,fa. Since fa(M) =
foiy(a(M))="irof(a(M))=F a(M)=B(M), then Af a(M)=AB(M), hence A;B(M) =A;fa(M)=A,fa(M) =
A, B(M), then A, B=A, B. Hence o is T-monomorphism.
(2) By using (1).
Before describing the next corollary, we need the following definition:
Definition 2.9: [2, P.20] Let S be a semigroup. A nonempty subset K of S is called left ideal of S if
SKCK, aright ideal of S if KSCK, and an ideal of S if SKEK and KScK .
Recall that an ideal of a monoid S is called a closed ideal if there is no proper essential extension (i.e.
no proper N-large) inside S.
In a similar way, we can define a closed right (otherwise, left) ideal of a monoid S if there is no proper
essential extension right (otherwise, left) ideal (i.e. no proper N-large right (otherwise, left) ideal)
inside S.
Corollary 2.10: Let S be C-self-P-injective monoid. Then, for any s, t€S, and closed right ideal bS,
the following statements hold:
(1) If f:bS—aS is monomorphism (otherwise, an epimorphism), then there exists an epimorphism
(otherwise, a monomorphism) o: Sa —Sh.
(2) If bS = aS,thenSh = Sa.
The next proposition explains the concepts of Co-Hopfian and the directly finite that coincide under
C- quasi principal injectivity condition.
Proposition 2.11: Every C- quasi principally injective act and directly finite is co-Hopfian.
Proof: Similar to the proof of proposition 2.17 in [1], by replacing Mg being C-M-injective act by
being C-QP-injective.
The following proposition shows that the concepts of Hopfian and co-Hopfian are coincided in-terms
of C-QP-injective property.
Proposition 2.12: Let Mg be C-QP-injective act. Ms is Hopfian act if and only if Mg is co-Hopfian.
Proof:=) As every Hopfian is directly finite (For this, if for any a, € End(Ms) and aof=I), where
| is the identity endomorphism, then this means that o is surjective. Since Mg is Hopfian, then o is
an isomorphism and B is the inverse of a. Thus Booa=I, which implies that Mg is a directly finite act,
so by Proposition 2.11, Mg is co-Hopfian.
<) Let f be surjective endomorphism of Ms, then the inclusion map i:f (M)—Ms is isomorphism
(since Ms is co-Hopfian). Thus foi = If). By proposition 2.11, Ms is directly finite, so iof = Iy (since f
(M)=Ms). Thus f is injective and then it is isomorphism. Therefore, Ms is Hopfian.

Recall that A right S-act Bs is a retract of a right S-act, as if and only if there exists a subact W of
As and epimorphism f: As—W, such that Bs=W and f(x) = x for every xeW ([2],P.84).
Proposition2.13: Let Ms be S-act and N be closed M-cyclic subact of Ms.If N is C-M-P-injective,
then N is a retract subact of M.
Proof: Let iy be the inclusion map of closed M-cyclic subact N of S-act Ms.Since N is
C-M-P-injective, then there exists an S-homomorphism g: Ms—N such that geiy = Iy, hence iy has
left inverse and i(N) is a retract subact of Mg, but N=i(N),so N is a retract subact of Ms.

By replacing the property of Ms from C-quasi injective act to C-M-P-injective act in proposition
2.5 in [1], we can proof the following Proposition:
Proposition 2.14: Let Mg be a C-M-P-injective act. Then every fully invariant closed subact of Ms is
C-quasi principally injective.
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Proposition 2.15: Every retract subact of C-M-P-injective is C-M-P-injective.

Proof: Assume that N is C-M-P-injective S-act and A is a retract subact of N. Let X be closed
M-cyclic subact of S-act Ms and f be S-homomorphism from X into A. Since N is C-M-P-injective act,
so there exists S-homomorphism g from M into Ns such that geix= jaof, where ix is the inclusion map
of X into Ms and j is the injection map of A into Ns. Put h=ma0g, Where mais the projection map of
Ns onto A, then heiy =maegeix =macjacf = f and A is C-M-P-injective act.

Proposition 2.16: Let Ms and Ns are two S-acts. If Ng is C-M-P-injective act, and Bs is a closed
M-cyclic subact of Mg, then Ns is C-B-P-injective act.

Proof: Let X be closed B-cyclic subact of B. Since B is closed M-cyclic subact of Ms, so by lemma2.4
in [13], X is closed M-cyclic. Let f be S-homomorphism from X into Ns. Since Ns is C-M-P-injective
act, so there exists S-homomorphism g from Ms into Ng such that geigeix = f, where iy, ig be the
inclusion map of X into B and B into Mg, respectively. Put h=geig, then heiy = geigoiyx = f. Thus Ns is
C-B-P-injective act.

Corollary 2.17: Let Ms and Ns be two S-acts. Then, Ng is C-M-P-injective act if and only if Ng is
C-X-P-injective act for every closed M-cyclic subact X of Ms.

Proof: Suppose that Ns is C-M-P-injective act, then by proposition 2.16, we have Ns is
C-X-P-injective for every closed M-cyclic subact X of Ms. The converse is clear.

Proposition 2.18: Let Mg be an S-act and {N; | i€ 1} be a family of S-acts. Then []ieN; is
C-M-P-injective act if and only if N; is C-M-P-injective act for every i€l.

Proof:=) Assume that Ns =[];e;N; is C-M-P-injective. Let X be closed M-cyclic subact of S-act Ms
and f be S-homomorphism from X to N;. Since Ns is C-M-P-injective act then there exists
S-homomorphism g: Ms—Ns such that geiy = jiof, where iy is the inclusion map of X into Mg and j; is
the injection map of N; into Ns. Define h: Ms—N; by h=; og, where ; is the projection map of Ns
onto N;. Then heix=; ogeiyx =; ojiof = f. That is, for all xeX, h(x) = h (ix(x)) =m;(g(X)) =m;(g (ix(X)))
=1 (ji (f(x))) = (15; <Ji) (f(x)) = £(x).

<) Assume that N; is C-M-P-injective act for each i€l, where Mg is S-act. Let X be closed M-cyclic
subact of Mg and f be S-homomorphism from X to Ns=[];eiN;. Since N; is C-M-P-injective act, then
there exists S-homomorphism f;:Ms—N;, such that f; eix=m; of, so there exists S-homomorphism f3:
Ms—Ns such that B=j; o ;. We claim that  cix = f. Since B cix = j; o Bj eix = j; o m; of = f, so we
obtain f = o i. Therefore, Ns is C-M-P-injective.

Corollary 2.19: Let Ms and N; be S-acts, where i€l and | is a finite index set. Then, for every i, N; is
C-M-P-injective if and only if @i{L,N; is C-M-P-injective.

The next theorem gives the relationship between injective and C-N-P-injective acts:

Theorem 2.20: The following statements are equivalent for S-act Ms:

(1) Mg is injective act,

(2) Mg is C-N-P-injective act for every S-act N.

Proof: (1=2) It is obvious.

(2=1) Assume that Ms is C-N-P-injective act and E(M) is injective envelope of Ms. By corollary 2.19,
Ms@®E (M) is C-N-P-injective. Put Ns= Mg @E (M). Thus, Ms @E (M) is C-M@E-P-injective. By
proposition 2.15, Mg is C- M@®E-P-injective act. Consider the inclusion map i:Ms—E(M) and the
injection maps j;:E(M) =Ms@®E(M), j,:Ms—MsBE(M), and Iy;: Ms—Ms are the identity maps of
Ms. Letmy: Ms@®E (M) —Ms be the projection map such that my ¢ j, =Iy. Now, Ms@E (M) is
C-quasi injective, so this implies that there exists S-homomorphism g: Ms@®E (M) —Ms@E (M) such
that go j; oi=j, o Iy, then my oge jy of =m0, o Iy, Thus Iy=my oge j; oi. Put f= my oge j; and
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then Iy= fei. Therefore, Mg is a retract of E (M) and then it is injective.
Definition 2.21: An S-act Mg satisfies the CM-property if every closed subact of Ms is an M-cyclic
subact of M.
The following proposition provides a relationship among the extending act, C-M-injective, and
C-M-P-injective:
Proposition 2.22: The following statements are equivalent for S-act Ms:
(1) Mg is an extending act,
(2) Every S-act is C-M-injective,
(3) Every S-act is C-M-P-injective and Mjs satisfies CM-property.
Proof: (1=2) It is obvious.
(2=3) Let N be a closed subact of S-act Ms. By using(2), N is C-M-injective act. Thus, by
proposition 2.7, N is a retract subact of Mg and hence every retract subact is M-cyclic, by remarks and
examples 2.3(2) in [8]. Thus, Ms satisfies the CM-property. The other part is obvious.
(3=1) Let N be any closed subact of S-act Ms. Since Mg satisfies the CM-property, so N is M-cyclic.
By using (3), N is C-M-P-injective act. By proposition 2.13, N is a retract subact of Ms. Thus Ms is
extending act.
Theorem 2.23: The following statements are equivalent for the projective act Ms:
(1) Every homomorphic image of any C-M-P-injective act is C-M-P-injective.
(2) Every homomorphic image of any C-M-injective act is C-M-P-injective.
(3) Every homomorphic image of any M-injective act is C-M-P-injective.
(4) Every homomorphic image of any injective act is C-M-P-injective.
(5) Every closed M-cyclic subact of Mg is projective.
Proof: (1=2), (2=3) and (3=4) are obvious.
(4 =5) Let A be closed M-cyclic subact of Mg and f be S-epimorphism from S-act Ns onto S-act Bs.
Let g be S-homomorphism from A into Bs. Since every act can be embedded into an injective act, by
corollary 1.6 in ([2], P.186), thus Ns embedded into E and iy is the inclusion map of N into E. Letm:
E— E/p is the canonical projection map such that p = Kerf. Define £: Bs— E/p by £(b) = [b],, for
all beBs, where b=f (n) and neNs. It is clear that ¢ is well-defined and an S-homomorphism. By
using (4), E/p is C-M-P-injective, so £ o g extends to S-homomorphism g from M into E/p, such that
g*oip= £ o g.Since Mg is projective, so g* can be lifted to S-homomorphism h from Mg into E, such
that meh =g*.Since E is injective by assumption, then h represents the extension of the
S-homomorphism a from A into E. This means that he iy=a. Leth*: A—Njs is defined by h*(a) = a(a),
for all a €A. Now, £ og = g* cip= mohois= Toa = Toiyeh*= £ofoh* Thus, fo h*= g (since ¢
is monomorphism) and A is projective act.
(5 =1) Let Ns be C-M-P-injective act and f: N—W5s be S-epimorphism. Let A be a closed M-cyclic
subact of S-act Ms and g be any S-homomorphism from A into Ws. Now, since A is projective by
using (5), so g can be lifted to S-homomorphism h from A into Ns. Since Ns is C-M-P-injective act, so
h extends to S-homomorphism h* from Mg into Ns (this means that h = h* oi,, where i, is the
inclusion map of A into Mg). Put g*= fo h*. Now, g* cipy=foh* ciy=foh = g. Thus, g*ci,= g and
W5 is C-M-P-injective act.
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