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Abstract

The linear non-polynomial spline is used here to solve the fractional partial
differential equation (FPDE). The fractional derivatives are described in the Caputo
sense. The tensor products are given for extending the one-dimensional linear non-
polynomial spline 5; to a two-dimensional spline 5; & 5, to solve the heat
equation. In this paper, the convergence theorem of the method used to the exact
solution is proved and the numerical examples show the validity of the method. All
computations are implemented by Mathcad15.

Keywords: Caputo derivative, non-polynomial spline, tensor product, fractional
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1- Introduction
Fractional calculus is the study of fractional order derivatives and integrals. It gained extensive
attention form the researchers in the last few decades. It has exceptional applications in diverse fields
of science and engineering. Spline functions are piecewise polynomials of degree n that are joined
together at the break points with n — 1 continuous derivatives. A piecewise non-polynomial spline
function is a blend of trigonometric, as well as polynomial basis functions, which form a complete
extension. In [1], Saeah solved linear Volterra integral equations using non-polynomial spline
function. In [2], Batool used the variational iteration method to solve partial integro differential
equations of fractional order. In [3], Ghulam et al. studied the application of Caputo K- fractional
derivatives. In [4], a method based the fractional shifted Legendre polynomials was applied to solve
non-homogeneous space and time fractional partial differential equations (FPDES), in which space and

time fractional derivatives are described in the Caputo sense. In [5], some applications of the non-
polynomial spline approach to the solution of the Burgers’ equation were studied. In [6], the_non-

*Emaill: alzaer1972@uomustansiriyah.edu.iq
2327



Hasan and Salim Iragi Journal of Science, 2021, Vol. 62, No. 7, pp: 2327-2333

polynomial spline methods were used for the solution of a system of obstacle problems. The main
objective of the present paper lies on introducing a new approximate solution of time-space fractional
heat equations by using the linear non-polynomial spline method.
2- Tensor Product of Two-dimensional Problems
The treatment of high-dimensional problems, such as heat equation, can be approached by concepts
of tensor product approximation.
Let R be aregain such that R = {(x,y) |a <x < b,c <y < d}.
The method of finding two dimensional functions g(x, y) is applied in a tensor product space S; & S,
, such that S;and S, are two spline spaces, namely s; = span{®,, ®,, ..., ®,} and
Sy = span{ ¥1,¥,, ..., ¥}, given in
g(x,y) € (51 ® S,), where
9gxy) = 2;7;1127;:21 Cp,qwq(y)(pp(x) - (@)
where ¥,and®, may be considered as the basis for the generalized spline functions,
so that my, m, are integer numbers.
The interpolation condition is
90 Yp=fij  i=012.m1 joo12,.m;
hence
Y1 Xa21 Cp W) P (X)) = fij i =12,e,my j=12,..,m,
In the matrix form,
we solve the system AC =F .. (2) We find the
coefficients ¢, , which are unknown of the function g, which is given in eq(1),
where A = ¥ @ @ is tensor product of two matrices ¥ and &.

aj; ot Gy bii - bim,
Y= : , @ = :
Amy1  Gymy g1 bmym,
a b - a1,m1<b
A=PQd = - =
A, 1P 0 Apym, P
C=lci1 -« Cmy1 €12 = Cmy2 = Cmymy)

F= [f1,1 fml,l f1,2 fml,,z fml,mZ]T
3- Non- Polynomial Spline Function for Caputo derivative
Definition (3.1) [7]
The Caputo fractional derivative of the fractional order 0 < a < 1 is defined as
DEF(O) =t Jy x— D7 4O 4y

Now consider the partition A= {t,,tq,t, ..., tn} Of [a,b] € R . Let S(A) denotes the set of
piecewise polynomials on subinterval I; = [¢t;, t;.1] of partition A. Let u(t) be the exact solution. This
new method provides an approximation, not only for u(t;) at the knots, but also for u™(¢t;) n =
1,2, ..., at every point in the range of integration . Also, Cof the differentiability of the trigonometric
part of non-polynomial splines compensates for the loss of smoothness inherited by the polynomial [1]
. The non-polynomial spline function is obtained by the segment Pi(t). Each non- polynomial spline of
the n order Pi (t) has the form
pi(t) = a;cosk(t —t;) + b; sink(t —t;) + -+ y;(t —t)" 1 + z
where a;, b;, ..., y;and z; are constants and k is the frequency of the trigonometric functions which will
be used to raise the accuracy of the method.

In this paper, the linear non-polynomial spline function will be used for solving fractional partial
differential equations.
Definition (3.1) [1]: Linear Non-Polynomial Spline Function
The form of the linear non-polynomial spline function is
pi(t) = a; cos k(t - ti) + bi Sink(t - tl’) + Cl'(t - tl’) + di
where a;, b;, c;and d; are constants to be determined.
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Definition (3.2) [8]
Let Hiand H, be two Hilbert spaces. If H,and H, have the orthonormal bases {®,}and {¥,},
respectively , then {&, & ¥, } is an orthonormal basis for H; @ H, . In particular , the Hilbert
dimension of the tensor product is the product of the Hilbert dimensions.
Definition (3.3) [9]
A set of functions {®, (x), @,(x), ... } is an orthogonal set of functions on the interval [a, b] if any two
functions in the set are orthogonal to each other, so that
(D, D) = fab D ()P (x)dx =0 n#m

In the following theorem, the convergence of the method to the exact solution using a tensor
product is given.
Theorem (3.4)
Non-polynomial solutions of the two variables x,t given in equation (1) converge to the exact
solution u(x, t).
Proof: The set of basis of linear non-polynomial spline functions {cos(x), sin(x), x, 1} is orthogonal
basis, then S; = span{cos(t),sin(t),t,1} and S, = span{cos(x),sin(x),x, 1}
S1® Sz = Crm = (u(x, t), D (x) ¥ (2) )
r=1234,m= 1,234, where <.> represents an inner product and @,(x)¥,(t) forms the
orthonormal basis.
Let @,.(x)¥,,(t) = a(x,t) and
define S, to be the partial sum of y;a(x, t),
where y; = (u(x, t),a(x, t)),j=12,...,n
ie. Sy =Y vjalx,t),
T. p (S, is Cauchy sequence in Hilbert space ).
Let S,,, be the arbitrary partial sum with n > m

(u(xl t)' Sn ) = ( u(x' t)' Z V} a(x; t) >
= Z}l=1 ]/_] ( u(xl t)la(xl t) >
2
= Xkl ,
”Sn - Smllz = ||Z§l=m1 }/ja(xl t) ||
= (Z?=m+1 Y_] a(x, t)l Z?=m+1 Y_] a(x, t))
n 2
= j=m+1|Vj| ,forn>m
Hence, |27 i1 v; a(x, t)||2—>0 asmn,m — o
and {S, } is a Cauchy sequence and it converges to s.
To prove that u(x,t) = s
(s —u(x, t),a(x, t)) = (s,a(x,t)) — (ulx, t),a(x,t))
= (limy0 Sy a(x, t) ) — ¥
=yi—vi=0
Hence, s = u(x, t) and X7, y; a(x, t) converges to u(x, t), which completes the proof .
4- Solution of Fractional Heat Equation Using Tensor Product of Linear Non-Polynomial Spline
The non-polynomial spline method will be used here to approximate the solution of the
failure probability density function (FPDF):

%u(x,t) = [0t U Uy), 0Sx<1,0Sa<1,t>0 .3
with boundary condition: u(0,t) = u(1,t) =0, t >0 ...(4)
and initial condition: u(x,0) = g(x),0<x <1 ...(5)

where g(x) is a given function.
By equation (2), the function g(x, t) is replaced by z(x, t), which is used to approximate the solution
of the FPDE. Hence,

Z(x, t) = 2?;10 ;-n=20 Cl’lej(t)(pl(X) (6)
where @;(x) ,i = 0,1,2, ..., m, are the basis of the linear non-polynomial spline function and ¥(t),j =
0,1,2, ..., m, are the basis of the linear non-polynomial spline function.

From the initial condition given by equation (5), one my get:
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my mp

D) #0200 = g6 ~(7)
i=0 j=0
We substitute the knot points for the x-axis to get an equation for each knot point, and form the
boundary condition given in equation (6), we have
Yz 272y Ci ¥ ()i (0) = py (£) - (8)
and 3714 3] mz NI AGLAOENNG . (9)
Similarly , we substltute the knot points for the t-axis to get an equation for each knot point at x = 0
and x = 1. Form the boundary condition given in equation (4), we have

lezq,<a - W(t>>a> @

i=0 j=0

= flxt, ZZCU‘P(t)d) (), ZZCU’I’(t)dD”l(x) ..(10)
i=0 j= i=0 j=

We substitute the mesh points (xi,tj),for i=012,..,m ,j=0,12,..,m,, to get an equation
for each pair (i,j),foralli =0,1,2,...,mq,
j=0,12,..,m,. Then, from equations (7-10), a system with unknown coefficients C;; must be
determined to compute equation (6).
5- Hlustrative Example

To demonstrate the effectiveness of the proposed method, we consider here two test examples of
one dimensional fractional heat equation problem. The software MathCad 15 is used to get the
numerical results.
Example(1. 1)' Consider the homogeneous one-dimensional fractional heat equation

9% 2 d?
- == <x< <a<
ataz(x t) 2x xzz(x,t) ,0<x<10<a<1,t>0

subject to the boundary condition : z(0,¢t) = 0, z(1,t) = et
and the initial condition : z(x, 0) = x2.
The exact solution for « = 0.9 is given by: u(x,t) = x%e’.

Let A;be a partition for the x-axis, such that: A1:0 = xy < x; <x, <x3 =1, then xy = 0,x; =
%,xz = %,x3 = 1, the mesh points for the x-axis. Let A, be a partition for the t-axis such that: A,: 0 =
to <ty <t, <tz =0.03,
thent, = 0,t; = 0.01,t, = 0.02,t3 = 0.03, the mesh points for t-axis.

By solving the linear system 16 unknown coefficients, we get
Coo = —4.095, ¢y = —2.328, ¢y, = —0.418, cy3 = 2.298,
10 = 13.641,c;, = 7.887 x 1073, ¢;, = 1.409,¢;3 = —14.623,

€0 = —14.641,cy; = 2.173 x 1076, ¢c,, = —1.454,c,3 = 15.382,

c30 = 4.095,¢c3; = 2.328,c3, = 0.418,c33 = —2.298
Then, the approximate solution is: z(x,t) = (—4.095cost — 2.328sint — 0.418 t + 2.298) cos x +
(13.641cost + 7.887 X 1073 sint + 1.409 t — 14.623) sinx + (—14.382 cost + 2.173 X
107°sint — 1.454 t + 15.382)x + (4.095cost + 2.328 sint + 0.418 t — 2.298)
Table (1.1) illustrates the absolute error between the exact solution and the non-polynomial spline
approximate solution.
Table (1.1)-The exact and approximate solutions of example (1.1) when a = 0.9.

X t u(x, t) z(x, t) | u(x,t) — z(x, 1) |
0 0 0 0
0.01 0 0 0
0 0.02 0 0 0
0.03 0 0 0
0 0.111 0.111 1.706 x 10~*
1 Jo.01 0.112 0.112 1.876 X 1073
3 0.02 0.113 0.114 2.073 x 107
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0.03 0.114 0.115 3.948 x 1074
0 0.444 0.444 2.563 x 107*
2 |o.01 0.449 0.449 2.385x107*
3 1002 0.453 0.454 7.1155 x 10~*
0.03 0.458 0.459 1.174 x 1073
0 1 1 2478 x 10~*
1 0.01 1.01 1.01 241x107*
0.02 1.02 1.02 2.343x 107*
0.03 1.03 1.03 2.297 x 1074

The approximation solution z(x, t) is illustrated in Figure- (1.1) (a), while the exact solution is
illustrated in Figure (1.1) (b).

2

y u
cY (b)
Figure (1.1)- (a) the approximate surface z(x, t) and (b) the exact surface u(x, t) for example (1.1).
Example(1.2): Consider the nonhomogeneous one-dimensional fractional heat equation

1-aq 2 1-ay

%u(x, t) = aatl—wl %u(x, t) — ;tl—ﬂzu(x, t) + f(x,t)
0<x<L,t>0,05a<1

with boundary and initial conditions, respectively:
u(0,t) =u(1,t) =0, 0<t<1

u(x,0)=0, 0<x<1

Zn.Zt(l1+1 2 ta2+1 .
where f(x,t) = (Zt + TZraD F(2+a2)) sin(mx).

The exact solution [10] for a; = a, = 0.5
isgiven by :  u(x,t) = t? sin(mx).

Let A, be a partition for the x-axis, such that: A;: 0 = xy < x; < xp, < x3 =1, then xy = 0,x; =
%,xz = %,x3 = 1, the mesh points for the x-axis. Let A, be a partition for the t-axis such that A,:0 =
to <t; <t,<t3=0.03,
then t, =0,t; = 0.01,t, = 0.02,t3 = 0.03, the mesh points for t-axis.

By solving the linear system 16 unknown coefficients, we get

Coo = —4.23, cp; = 3.814, ¢y, = —0.565,cy3 = 4.23,

C10 = —2.311,¢44 = 2.083,¢;, = —0.309,¢,5 = 2.311,

€20 = 5.102 x 1071, ¢y, = 4.304 x 10715,¢,, = —1.141 x 10711,

Cy3 = —5.12x 1071, ¢3¢ = 4.23,¢c3; = —3.814,¢3, = 0.565,c33 = —4.23.
Then, the approximate solution is:
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(—4.23cost + 3.514sint — 0.565t + 4.23) cosx + (—2.311cost + 2.083sint — 0.309 t +

2.311) sinx + (5.102 x 10~ cost + 4.304 x 10" sint — 1.41 x 1071 t - 5.12 x 10~ V)x +
(4.23cost — 3.814 sint + 0.565 t — 4.23).

Table- (1.2) illustrates the absolute error between the exact solution and the non-polynomial spline

approximate solution.

Table (1.2)-The exact and approximate solutions of example (1.2) when a; = a, = 0.5.

X t z(x,t) u(x,t) | u(x, t) — z(x,t) |
0 0 0 0
0.01 0 0 0
0 0.02 0 0 0
0.03 0 0 0
0 —0.06 x 10712 0 0.06 x 1012
0.01 4,042 x 1073 8.66 X 107> 0.3953x 10?2
- 0.02 8.13 x 1073 3.464 x 10~* 0.779 x 102
0.03 0.012 7.794 0.012
0 0.12 x 10712 0 0.12 x 10712
5 0.01 4,039 x 1073 8.66 X 107> 0.3953 x 1072
3 0.02 8.131x 1073 3.464 x 105 0.7784 x 1072
0.03 0012 7.794x 1074 0.011
0 -0.18x 10712 0 0.18x 10712
0.01 -0.7877x 1073 0 0.7877x 1073
1 0.02 -0.1574x 10~* 0 0.1574x 10~*
0.03 -0.2359% 10~* 0 0.2359x 10~*

The approximation solution z(x,t) is illustrated in Figure-(1.2) (a), while the exact solution i

illustrated in Figure-(1.2) (b).

(a)

1
08~
0.6
0.4+
0.2+

(b)

Figure (1.2)- (a) the approximate surface z(x, t) and (b) the exact surface u(x, t) for example (1.2).

6-Conclusions and future work

In this paper, the approximate solutions of the fractional-order heat equation are determined using
the method of a linear non-polynomial spline. The results revealed the highest agreement with the
exact solutions for the problems. The solutions for the numerical examples showed the validity of the
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proposed method. In addition, it is observed that the solutions of the fractional-order equation are
convergent to the exact solution for the problem. In the future, the method of linear non-polynomial
spline can be used to find the solution of other FPDEs that are frequently used in science and
engineering.
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