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Abstract

The aim of this paper is to study the combined effects of the concentration and
the thermo-diffusion on the unsteady oscillation flow of an incompressible Carreau
fluid through an inclined porous channel. The temperature is assumed to affect
exponentially the fluid's viscosity. We studied fluid flow in an inclined channel
under the non-slip condition at the wall. We used the perturbation series method to
solve the nonlinear partial differential equations. Numerical results were obtained
for velocity distribution, and through the graphs, it was found that the velocity of
fluid has a direct relation with Soret number, Peclet number, and Grashof number,
while it has a reverse variation with chemical reaction, Schmidt number, frequency
of oscillation, and Froude number.

Keywords: Oscillatory flow, Carreau fluid, Inclined porous medium, Perturbations
method.
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Introduction
The oscillatory flow is very important to study blood dynamics in the arteries and veins to prevent
cardiovascular diseases, as a flow of Carreau fluid in a diagonal channel indicates the nature of blood
flow in the human body. Mathematical modelling of blood dynamics helps to understand this
phenomenon in vivo. Theoretical and practical investigations can reveal important relationships

between the oscillatory flow of the Carreau fluid in the closed duct and the movement of blood in the
arteries and other blood vessels. Many researchers presented their scientific results related to
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oscillatory flow of different flow engineering (Poiseuille and Couette flows) and they were among the
first researchers in this field [1, 2]. Recently, many researchers investigated the oscillatory flow [3- 6].

The viscosity of fluids is of great importance in the fields of industrial food, medicine, and other
sciences. There are many studies in the scientific literature on the movement of viscous fluids in the
canal. Person [7] discussed the effect of high temperature on the flow of viscous fluids through
channels. Al-Khafajy [8] developed a model that treats the oscillating flow of a viscous Jeffrey fluid
through a porous channel and found that the velocity of a variable viscosity fluid is lower than that of
a fluid with a fixed viscosity, under the same conditions for both cases. Peristalsis of Sisko fluids with
variable viscosities was investigated by Tanveer et al. [9]. The influence of heat transfer on MHD
oscillatory flow for Williamson fluid with variable viscosity through a porous medium was
investigated by Khudair and Al-khafajy [4]. Increased interest has led to study the effects of
temperature with the focus on fluid movement in recent years. Most research confirmed that the
increase in temperature increases the velocity of the fluid, while the fluid velocity changes in an
unclear manner with the difference in concentration and according to the location of the fluid in the
canal [10- 13]. In nature, most of the flow channels, especially in the human body, are inclined
channels. For this reason, there was a great interest in the recent period on fluid flow through inclined
channels, as many researchers presented mathematical models in different fluid flow values in inclined
channels [13- 15].

The present analysis aims to discuss the combined effects of the concentration and the thermo-
diffusion on the unsteady oscillatory flow for Carreau fluid with variable viscosity through an inclined
porous channel. Such attempt has not yet been explored, to the best of our knowledge. This paper
consists of five sections, the first of which is the current one "Introduction”. The second section
includes formulating the governing equations with the boundary conditions, in addition to the basic
equation for Carreau fluid with variable viscosity. The third section includes solving the problem. We
discuss the effects of parameters affecting the velocity of the fluid through graphs in the fourth section.
The last section briefly reviews the most important parameters on the problem.

MATHEMATICAL FORMULATION

Consider the unsteady oscillation flow of an incompressible Carreau fluid with variable viscosity
between two parallel porous plates which are inclined in an upward extending in the x-axial direction.
The width (2I) is much smaller than the length of the channel so that the flow is approximately in one
direction. As shown in Figure-1, the Cartesian coordinate system may be chosen for the channel,
whereas X is taken as the coordinate axis parallel, whereas y is perpendicular, to the channel plates.
Also, we set the no-slip boundary conditions for the movement of fluid through the channel while the
two walls of the channel are held at different temperatures T_; and T; (with T_; < T;) and different
concentrations C_; and C; (with C_; < C;), respectively. Moreover, there is an inclined channel
making an angle o with the horizontal (x-axis) and an angle ¢ with the vertical (y-axis).

Figure 1- Design of the problem(inclined flow channel)

The governing equations of the problem are given by:
The continuity equation: V7.V =10 (D)
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The momentum equations: p % =V.85+ p; AT + 5, AC — %V + pg(ising — jcosp) 2

The concentration equation: ? =V. (D Ve + %VT) — K7 AC (3)
The temperature equation: pcp =V.(T,VT) = V.Qr + hy AT 4
where V = (u(y, t),0,0) is veIOC|ty field, T = T(y, t) is temperature”, C = C(y, t) is concentration,
90r _ 4q?(T_, —T) is a radiation heat flux, a is a radiation absorption, 8, = pgfr sin(a), B, =

ay
pgBc sin(a), p is a density, g is a gravity field, c, is a specific heat at constant pressure, T, is a

thermal conductivity, h, is a heat generation, D, is a coefficient of mass diffusivity and T is a thermal
diffusion ratio. The velocity, concentration, and temperature at the inclined walls of the channel are

given as:
u=0at y ==L (5)
C:C_I,T:T_lat:}_/:—landC:Cl,T:Tlat)_/:l. (6)
The basic equation for Carreau fluid with variable viscosity is given as:
S=-pl+7

_ n-1 — —
7= ue+ (1) — 1) A+ 0P 2 | (7 + (@7)7)
where T is extra stress tensor, p is pressure, I is unit tensor, Y is time constant, p__ is infinite shear
rate viscosity and u(T) is variable viscosity. In the case of Y < 1 and u_, = 0, we can write:
7= (T [1+ (57) Y272| (07 + (V)T
The stress components are given by:

Tez = Tyy = 0 and Tgy = Ty = u(T) [( ) ( )Yz( y) ] (7
We rewrite the system of a non-linear partial differential (1) - (4) as follows:

LA 8)

% ay

0Txx |, 9Tx (T) - ou _ 9

BE+ SR R pT =~ pghy (T —T-)) = pgBa(C — C-) + pgsin(y) ©)

o _

Frie 0 (10)
0%c ac " D.Tg4 9%T

Dcm____K (C_C—l)=_ dea—yz (11)
2T

K35 Z—pCPE+(40{ +hy)(T—T_) =0 (12)

Method of Solution
The governlng equatlons for non-dimensional conditions are:

T-T_; pl plVey k\
=2u=2,0=—Ttp=L_p ,Da =~
l’y z’u v’e T,-T—;’ P = Vo’ =% RE
_tv bl - .l _Cc-C _ B212(C1—C_))
't—tiw—zﬁwﬁ—t% | (13)
Re = ,u(0) = w(T) G, = _ BA(T=T_) _ DcTa(T1=T-1)
to po 't Vo 7T T VTul(C—Cop)’
_ &7 hgl? 40212 V2
=D s =Yk = Hy=-2- X =—,Fr=—
W= S v g K K K '’ gl

where W iS mean flow velocity, Da is Darcy number, Re is Reynolds number, Pe is Peclet number,
K is radiation parameter. Sc is Schmidt number, S, is Soret number, Hy is heat generation, T, is mean
temperature, G, is thermal Grashof number with tilt up, G, is solutal Grashof number with tilt up, K,
is chemical reaction, W is Weissenberg number, and Fr is Froude number.
By substituting (13) into (8)-(12), we have the following system of the non-dimensional partial
differential equations with independent variables y and t and dependent variables u, 6, and Q.

3(n 1) ,,2 (0u 6 u ou  p(d) dp __ Resin(gp)
n(®) [1 W (ay) 3y Reg — g U= g T Gnb — G0 ——= (14)
19%20 0Q 920
scoyz e =S (15)
70— pe 9+(H +%)6 =0 (16)
dy? ot g
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With boundary conditions (after substituting the equations (13) into equations (5) and (6)), we have:

u(-1)=u(1) =0 (17)
Q-1)=0,0(1) =1 (18)
6(-1)=0,0(1)=1 (19)

Solution of the heat and the concentration equations

Using the separating variables method to solve the heat equation (16) with boundary conditions
(19) and the concentration equation (15) with boundary conditions (18), assuming that 6(y,t) =
el@tg,(y) and Q(y, t) = e'“tQ,(y), respectively, where w is the frequency of oscillation, we obtain
the solution of the heat equation and the concentration equation, which are:

e3VA eV - A+B-S, S, _
6o(y) = ( Tro 4«/_) WA 4 ( ) WA, Q) = #(6(3”)\/@ _ e y)\/ﬁ) —

1+e4VA (c/l+B)(e4‘/§—1)
Sy S¢ csc[2vA] sin[(1+y)VA]
A+B
where A = iwPe — Hy — X, B = S. (K, + iw).
Solution of motion equations
To solve the momentum equation for oscillatory flow, we defined Reynold's variation for the
viscosity model with temperatures as u(0) = e %9, see [8]; Let

u(y, t) = U(y)e't, Z—Z = —)el@t (20)
By using the Maclaurin series, we get:
u@ =1-¢6, e«1 (21)

where w is the frequency of oscillation and 4 is a real constant. The viscosity is fixed at € = 0.
By substituting equations (20) and (21) into the momentum equation (14), we get:

2
(1 - e0) |1+ 22200t (B2 _ (e D)y — (A4 G,y 0,4 Gop 0 +

Resm((p)) (22)

elWitFy
It is difficult to solve the nonlinear differential equation (22) and thus we propose a perturbation

technique method [16] to solve this equation by taking a small value for W. Accordingly, we write:
U=Uy+ WU, +OWH) (23)

By substituting equation (23) into equation (22), with boundary conditions U(—1) = U(1) = 0, then

equating the like powers of W, we obtain:

1 - Zeros-order system

( — (iwRe +
with boundary condltlons Uo(— 1) =Uy(1) =0.
2 - First-order system

(1 —£6) 3(n=1) 9imr (0U\2 82U

( L — (iwRe + S2) Uy = — (1 — £0) T2 20t (a—y‘)) o (25)
with boundary condltlons U, (- 1) =U,(1)=0.
We note that it is difficult to solve equations (24) and (25), and therefore we use the perturbations
method again with respect to the parameter & by considering that it is small. So that let:

U; = Ujp + €Uy +0(e?), fori = 0,1 (26)
And by equating the coefficient of a like power in ¢, then the following set of equations are obtained:
(A) Approximation Solution for U,

By substituting (26) into (24), we get:
(1- 9)6 ('uoo+e’u01) ( wRe + (1 £0)

By equating the coefficient of like powers in &, we obtain:

i- Zeros-Order System (£%)

o%u Re sin(¢p)
ayg" (lee + )uoo =— (/1 + Gy Og+ Gy Qo + :iii?Ff )
ii- First-Order System (eh)

02U 2%U 1
ay;” — (La)Re + )Um 6 ( ay;"’ — Euoo)

(B) ApprOX|mat|0n Solution for U4

(1 £0)

)UO = - (/1 + Grl 90 + GCZ QO + Re'Sin((P)) (24)

elwtpy

) (Ugo + Upq) = (/1 + Gy 0p+ Gy Qp + Relsin(q)))

elwtfFy
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By substituting (26) into (25), we get:
6 (U10+£’U11) (1 86)

3(n-1) 0Uy\“~ 92U

1-et) (ke + 552 (g + ety = (1 e0) X0 i ()" 2
By equating the coefficient of like powers in &, we obtain:
i- Zeros-Order System (£°)
62u10 3(77. 1) let auo azuO

oy? (lee + )ulo 2 ( ay ) ay?
ii- First-Order System (1)
62u11 _ a ’u10 _ i 3(71—1) 2iwt % 2 azuo

oy? (lee + )ull 0 ( ay Da Uso + 2 € ( ay ) oy?
Hence, the fluid veI00|ty is given as:

u(y, t) = ((uoo +eUgy) + W2(Uyp + <‘3U11))elwt (27)

Results and Discussion

We discussed the effects of temperature and concentration on the unsteady oscillation flow of an
incompressible Carreau fluid with variable viscosity through an inclined porous channel. Analytical
solutions are acquired for the problem by the perturbation technique up to the second-order using
MATHEMATICA program. We discussed graphically all solutions obtained under variations of
different relevant parameters. The results obtained are graphically presented through Figures (2-16).
Figures-(2-10) illustrate the effects of the parameters K,., S, o, Da, t, S, W, 4, €, G4, K, w, @, Fr,
Pe, Hy, Re and G,, respectively, on the velocity. It is found that the velocity profile u achieves its
maximum height in the center of the channel (at y=0). The speed of the fluid begins to increase and
tends to be fixed in the walls 1, particularly at the boundary conditions. Figure-2 illustrates the
influence of the parameters K, and S, on the velocity distribution function u vs. y. It is found that the
velocity profile u decreases with increasing K,- and S, respectively. Figure-3 shows that the velocity
profile u rises with increasing Da, while u decreases with increasing ¢ when —1 <y < 0.2 and u
increases with increasing o when 0.2 < y < 1. We noted that the velocity profile u decreases with
increasing t while u rises with increasing S,., as shown in Figure-4. Figure-5 illustrates the influences
of the parameters W and A on the velocity distribution function u vs. y. It is found that the velocity
profile u rises with increasing A, while u decreases with increasing W when —1 <y < 0 and u
increases with increasing W when 0 < y < 1. Figure-6 contains the velocity profile behaviour under
different € and G, values. It is indicated that the velocity profile rises with increasing € and G,.; when
0.5 <y < 1and u decreases with increasing € and G,; when —1 < y < 0.5. Figure-7 demonstrates
that the velocity profile u decreases by increasing w, while u increases with increasing 7 when
—1 <y < 0.15and u decreases with increasing K when 0.15 < y < 1. We noted that the velocity
profile u increases with increasing ¢ and u decreases with increasing Fr,as shown in Figure-8.
Figures- 9 and 10 show that the velocity profile u rises with increasing the parameters Pe, Hy, Re and
G, respectively.

Figures- (11-12) illustrate the effects of the parameters Pe, H,, w and ¥, respectively, on the
temperature function 6. It is found that the temperature of fluid 6 rises with increasing Hg, while it
decreases with increasing Pe, as shown in Figure-11. Figure-12 demonstrates that the temperature of
fluid 6 is reduced by increasing w and rises with increasing 7. Figures- (13-16) illustrate the effects
of the parameters K,., S¢, t, S,., Pe, Hy, w and XK, respectively, on the concentration function Q.
Figures- 13 and 14 indicate that the fluid concentration Q decreases by increasing the parameters K.,
S., t and S,., respectively. In Figure-15, we notice that the concentration Q increases with the increase
in Pe and decreases with the increase in H,. The last Figure-16 shows that the concentration Q

increases with the increase in w and decreases with the increase in X .

49



Al-Khafajy and Labbban

30
25 ¢
20 ¢
15 F
10 ¢
05
00 F

‘33
K ={1,2} o¢¢®
.0
L4
L4
L4
L4
’
e’
,
e
,
’,
,
’
’
’
’
’
-10 -05 00 05 10
y
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Concluding Remarks

We refer in this section to the most important parameters that affected the unsteady oscillation flow
of an incompressible Carreau fluid through an inclined porous channel. We found the velocity
function by using the perturbation technique and MATHEMATICA-12 program. We discussed
graphically all solutions obtained under variations of different relevant parameters. The main findings
can be summarized as follows:
e The velocity flow rises with the increase of Da, S, 4, @, Pe, Hg, Re and G,, while decreases with
the increase of K., S, t, w and Fr.
e The velocity is decreasing function vs.g, G,, andW, respectively, when -1 <y < 0, while it is an
increasing function when 0 <y < 1.
e The velocity flow rises with the increase of K when -1 <y < 0.15, while it decreases when 0.15 <
y<1.
e The temperature of fluid rises with increasing K andH,, while it decreases with increasing w
andPe.
e The concentration of fluid rises with increasing «w and Pe , while it decreases with
increasing?C,Hg,Kr,SC, t and S,.
e Over time, the fluid's temperature and concentration decrease, which affects the movement of the
viscous Carreau fluid, according to its location in the flow channel, where the fluid is increasingly
flowing near the upper wall of the channel while the movement of the fluid decreases near the lower
wall.
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