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Abstract

Let R be an associative ring with identity and let W be a unitary left R-module.
Let T be a non-zero submodule of W.We say that W is a semi-T- hollow module if
for every submodule K of W such that T € K is a semi-T- small submodule
(K <s_7 W). In addition, we say that W is a semi-T- lifting module if for every
submodule X of W, there exists a direct summand F of W and H «<s_; W such that
X=F+H.
The main purpose of this work was to develop the properties of these classes of
module.
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1.INTRODUCTION

In this work, R is a ring with identity and every R- module is a unitary left R- module. Recall that a
submodule N of W is T- small in an R- module W denoted by N <4 W, in case for any submodule X
of W, T € X + N implies that T € X [1]. AL-Redeeni and AL-Bahrani [2] introduced the concepts of
T-hollow and T- Lifting modules as: Let T be a submodule of a non-zero module W, we say that W is
a T-hollow module, if for every submodule Kof W such that T € K, is a T-small submodule of W. W
is said to be T lifting module (where T is a submodule of W), if for each submodule X of W, there

exists a direct summand F of W and H <y W such that X = F + H. Elewi [3] introduced the concept
of semi-T-small:
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Let T be a submodule of a module W. A submodule N of a module W is called semi-T-small in W,
denoted by N «<s_r W, in case for any submodule X of W, T € X+ N implies that T € X +
Rad(W).

In this work we introduce the following concepts:

Let W be a non-zero module and let T be a submodule W. We say that W is semi-T-hollow module if
every submodule K of W such that T € K is a semi-T-small submodule of W. We say that W a is
semi-T- lifting module, if for each submodule X of W, there exists a direct summand F of W and
H <s_r WsuchthatX = F + H.

The main goal of this work is to develop the properties of these concepts.

2. Semi-T-Hollow modules

In this section, we present the concept semi-T-hollow modules as a generalization of T-hollow
modules.

Definition 2.1:

Let W be a non-zero module and T be a submodule of W. We say that W is a semi-T-hollow module
if every submodule K of W such that T € K is a semi-T- small submodule of .

Remarks and Examples 2.2

1. Every T- hollow module is semi-T-hollow.

2. The converse of (1) is not true, for example: consider Q as Z-module. Let T = 2Z, N = nZ
such that n # 2, thus T € N. Therefore every submodule X = mZ of Q (m #n) suchthat T € N +
X. SinceRadQ=Q, thus TE N+ Rad(Q) =N+ Q=Q. Thus Q as Z —module is semi —-T-
hollow. But Q is not T- hollow [2, Example.(2.2.2) (1), p40].

3. If W is a non-zero R- module such that Rad (W) = W, then W is a semi- T- hollow for every
submodule T of W.
4. VAD as Z- module is not semi-T-hollow, since if we  take

T=<2> K=<4>, itisclear that <2 >%<4>. Now T==< 2 >C< 3 > +< 4 >=7,,, but
<3>+Radt;, =<3 > +< 6 >=< 3> and hence TZ 3 > +Rad(Z,,). Thus Z,, as Z-module is
semi-T-hollow.

5. Consider Z as Z- module and let T = {0, 3}, thus by [2, Example (2.2.2) (2), p40] Zg is T-
hollow module. Every semisimple module is T-hollow, and hence it is semi-T- hollow. By (1), Z¢ as
Z- module is a semi-T- hollow module.

6. If W is an R- module such that Rad (W) = 0, then W is T-hollow module if and only if W is
semi-T- hollow module. In fact, let T, K < W suchthat T € K and T € X + K, where X < W. Since
W is semi-T-hollow, then T € X + Rad(W). But Rad (W) =0, thus T € X, i.e. W is T-hollow
module.

Proposition (2.3):

Let T be a submodule of a non-zero module W with Rad(W) = 0. If W is a semi-T- hollow module,
then every non-zero submodule N of W such that T € N is a semi-T-hollow-module.

Proof: Let N be a submodule of W such that T < N. Let L be a submodule of N such that T & L.
Since W is a semi —T'- hollow module, thus L <s_ W. Then by [3], L <s_r N, therefore N is a semi-
T-hollow module.

Proposition (2.4):

Let W be a semi-T- hollow module, and let f: W —IW be an epimorphism where I/ is a non-zero
module. Then W is a semi-f(T)-hollow module.

Proof: Assume that W is a semi-T-hollow module and let f: W — W be an epimorphism. Let N be a
submodule of W such that f(T) & N. Claim that N <s_scry W. To show that, let f(T) € N + X, for
some X <W. Then f~Y(f(T)) & f~*(N +X). Therefore T + Kerf < f~*(N) + f~*(X). Thus
TCfYN)+f2(X)onTgf1(N). But W is semi-T-hollow. Therefore f~1(N) «s_r W. We
can easily show thatT c f~1(X) 4+ Rad(W). So f(T) € X + f(Rad(W)) € X + Rad(W) [4,
Theorem (9.1.4), p.214]

3. Semi-T-lifting modules
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In this section, we introduce the concept semi-T-hollow module and illustrate it by some examples.
We also give some basic properties. We start by this definition which is given in [2, Definition (2.2.1),
p40].

Definition (3.1)

Let W be an R- module and let T be a submodule of W. We say that W is a T-lifting module if for
every submodule X of W, there exists a direct summand F of W and H <g_r W suchthat X = F + H.
We introduce the following definition:

Definition (3.2)

Let T be a submodule of an R —module W. We say that W is a semi-T-lifting module if for every
submodule X of W, there exists a direct summand F of W and H <g_r W suchthat X = F + H.
Remarks and Example (3.3)

1. Every T- lifting module is a semi-T-lifting module. In fact, let W be a T-lifting module, where T is
a submodule of W and let X be a submodule of W. Thus by assumption, there exists a direct summand
F of w and H<Lr W such that X=F+H.
Thus H <g_r W by [3], and W is semi-T-lifting module.

2. A semi-T-lifting module needs not to be T-lifting module, for example Zg as Z-module is not
{0, 4}-lifting [2,Remark.and Example (2.3.3) (2),p44]. But one can easily show that Zgas Z-module is
a semi-{0, 4}-lifting module, where Rad(Zg) = {0, 4},

3. A lifting module needs not be a semi-T-lifting module. For example Zg as Z-module is not a semi-
{0,2,4, 6} lifting module. To show that, assume not and let X = {0, 2, 4, 6}, then there exists a direct
summand F of Zg and H <s_x Zg such that X = F + H. Since Zg is indecomposable, thus F = 0 and
H ={0,2,4,6}. But X is not semi- X-small in Zg. Thus Zg is not semi X lifting module. One can
easily show that Zg as Z-module is a lifting module.

4. The converse of (1) is true if Rad (W) = 0, i.e. if W is an R- module with Rad(W) = 0, then W
is T-lifting module if and only if W is semi-T-lifting module

5. On can easily show that every semisimple module W is semi-T-lifting for every submodule T of .
6. Itis clear that every semi-T-hollow module is semi-T-lifting module.

Proposition (3.4)

Let W be a semi-T-lifting module. Then every submodule N of W such that T < N is also semi-T-
lifting module.

Proof: Assume that W is semi-T-lifting. Let N be a submodule of W such that T € N. Let X be a
submodule of N. Since W is semi-T-lifting, then X = F + H, where F is a direct summand of W and
H «g_p H.Clearly, H is a direct summand of N. Since T € N, then H <s_ N by [3].

Recall that a submodule X of a module M is called projective invariant, if for every P = P? €
End (M), P(X) < X [5].

It is clear that if each submodule X of W, there exists a decomposition W = F@F such that F € X
and X N F Kg_p W, then W is a semi-T-lifting module. It is natural to ask if the convers is true.
Proposition (3.5)

Let T be a submodule of a module W. If W is a semi-T-lifting module, then for each submodule X of
W, there exists a decomposition W = F@F suchthat F S X and X N F <g_y W.

Proof: Assume that W is semi-T-lifting module and every semi-T-small of W is projective invariant.
Let X be a submodule of W, then X = F + H, where F is a direct summand of W, and H <s_y W.
Now, by Modular Law, X = F@XNF. Let P: W — F be the projection map,

P(H) =P(F+H)=P(FO(XnF))=XnF.

Since H is semi-T-small in W, then, by our assumption, H is projective invariant. So P(H) = (X n
FY<H ThusXNF <g_r W, by [3]

Theorem (3.6)

Let T be a submodule of a module W, then the following statements are the same:

1. For each submodule N of W, there exists a decomposition W = L®L, where L< N and N n
LK W.

2. For each submodule N of W, there exists f € End(W) such that f2 =f, f(W)< X and (I —
W) Ks_r W
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Proof: (1)=(2): Let N be a submodule of W, thus by assumption, there exists a decomposition
W = L®L such that L<N and
NNL<«&s_rW.Let f:W — L be the projection map. Clearly, f2 = f and W = f(W)®I — f)(W),
f(W)c N.Now,wehave I — ) (N)=Nn({I - H(N)=NNL <g_p W.
(2)=(1): Let N be a submodule of W, then there exists f € End (W) such that f2=f |,
fW)<S N and (I — f)(N) <s_r W. It is clear that W = f(W)®U — f)(W). Suppose that L =
f(W) and L=U-FW). Then NnL=Nn({ - f)(W). Claim that Nn (I — f)(W) =
(I — f)(N). To show that, let x = (I — f)(y) ENn (I — f)(W). Since (I —f)?> = (I —f), then
x=1I—-fH)=U-f)x) €U —-FHN). Now, let x=(1—-f)) €U —f)(x), y €N, then
xe(I-fHW), x=y—f()eEN. Thus xeNNnU—-f)(W). Now, (I-f)(N)=Nn
I-fHW)=NnL<Ks_r W.

The following proposition gives a characterisation of a semi-T-lifting module W when every
semi-T-small submodule of W is projective invariant.
From Proposition (3.5) and Theorem (3.6) we get:
Proposition (3.7):
Let T be a submodule of a module W such that every semi-T-small submodule of W is projective
invariant. Then the following statements are the same:
1. W isasemi-T-lifting module.
2. For each submodule N of w, there exists a decomposition
W = L®Lsuchthat L< Nand N N L <g_p W.
3. For each submodule N of W, there exists f € End (W) such that f2=f, f(W) S N and
(I =N) Ls_r W
Proposition (3.8):
Let W be a semi T-lifting module and let A be a submodule of W, such that for every direct summand
N of W, ™2 is a direct summand of — Then —isa seml———llftlng module.

Proof Let % be a submodule of %. Since W is semi-T-lifting, then
= NA%H TRk By our
assumptlon 4 is a direct summand of ¥ To show that 2 T K, _T+a %, let % <Z such that 24 ¢

A
URELILOPS v thenTCT+ACH+A+K SlnceH<<5 W, thusTCA+K+Rad(W) and

A A
hence =+4 Radw) c X+ Rad (—) thus 2 is semi - =42 _ lifting module.
A A A A

Recall that W is called a distributive module if for every submodules A, B and C of W, A+ (BN C) =
A+B)Nn(A+C)andAn(B+C)=(ANnB)+ (AN C),see[6] .

Corollary (3.9)

Let W be a semi-T-lifting and distributive module and A be a submodule of W. Then % isa semi—TA%A—

lifting module.

Proof. Let N be a direct summand of W, then W = N®N, for some submodule N of W. Thus

T=TE =22 T8 Since W ois distributive, then (N + 4) 0 (1\7 +A) = ((N +4)N 1\7)

A A A
((N +A4A)nN A) = A. Hence, —= N—MGBN—M Therefore, by Prop (3. 8) Yis seml———llftlng module.

Lemma (3.10) [7, Lemma 5. 4]
Let W = W, ®W, be an R-module. Then

w.

Corollary (3.11)

Let W be a semi-T-lifting module. If A is a fully invariant of W, then % isa semi-TA%A-lifting module.
Proof: It is clear by Proposition (3.8) and Lemma (3.10).

Proposition (3.12)

Let W = W, ®W, be a module such that R = AnnW; + AnnW,. If W, is semi-T;-lifting and W, is
semi-T,-lifting, then W = W, ®W, is a semi-T; @T,-lifting module.

X=N+H, Where N is a direct summand of W and H <<5 r W. Hence %

K
c=+
A

W _ WitA
A

Wo+A

@

for every fully invariant submodule A of
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Proof : Let X be a submodule of a module W. Since R = AnnW; + AnnW,, then by the same way of
the proof of [8, proposition 4.2, chaphter1],
X = X;9X,, where X; < W, and W, <W,. By W; is semi-T;-lifting and W, is semi-T,-lifting
module, thus X; = F; + Hy, where F; <@ W; and H; <s_r, Wy, and X, = F, + H, where F, <&
W, and H, Lg_1, W,.

Hence X = X,®X, = (F;®F,) + (H;®H,). One can easily show that (F;®F,) is a direct summand
of W. By [3] we have H®H, <Ks_r,gr, W. Thus W; ®W, is a semi-T, ©T,-lifting module.
Proposition (3.14):

Let W = @;c;W; be a fully stable module and T = @;¢;T; where T; < W;, for every i € I. If W; is
semi-T;-lifting module, for each i € I, then W is a semi-@;¢,; T-lifting module.

Proof : Let X be a submodule of W. For each i € I, one can easily show that X = @;;(X N W;).
Since XnW; € W; and W; is semi-T;-lifting, then X NnW; = F; + H;, where F; <@ W; and
H; Ks_r, W;. Therefore @(X N W;) = @;¢;F + @;¢,H;. One can easily show that ®;¢;F; < @, W;.
Thus by [3], ®H; Ks_gr; W. Therefore W is a semi-@T;-lifting module.

Proposition (3.15)

Let W be a finitely generated, faithfull and multiplication module. Then W is semi-T-lifting module if
and only if R is semi-[T: W]-lifting module.

Proof: Assume that W is a semi-T-lifting module and let I be an ideal of R. Since W is a semi-T-
lifting module, then there exist F <@ W and H «<g_r W such that IW =F + H. Since W is a
multiplication module, then there exists ideals / and K of R such that F = JW and H = KW. Hence
IW = (J + K)W. But W is finitely generated, faithful and multiplication module, thus by [8] W is a
cancellation module. Therefore I = J + K. Claim that ] <@ R. To show that, let W = F @ F, where
F < W such that £ = fw, for some ideal f of R. Hence RW = W = JW@JW = (J + /)W. But W is
a cancellation module, therefore R = J + /.

To show that J n f = 0, since W is a finitely generated, faithful multiplication module, then 0 = JW n
Jw=(n/)W and hence Jnj=0. Thus ] <@®R. By [3], K <s_r.wjR. Hence R is
semi—[T: W] —lifting module.

Conversely, assume that R be a semi-[T: W]-lifting and let X be a submodule of W. Since W is
multiplication module, then there exists an ideal | of R such that X = IW. Then there exist ] <@ R
and K <Lg_r.w R suchthat I =J + K. Hence IW = JW + KW. Claim that JW <@ W. To show that,

let R = J&/, for some ideal f of R, hence W = RW = (J + /)W = JW + fJW. Since W is a finitely
generated, faithful and multiplication module, then JW n W = (J nJ)W = OW = 0. Thus JW <&
W, by [3], and KW «<s_r W. Therefore W is a semi-T-lifting module.
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