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Abstract 

    Let   be an associative ring with identity and let   be a unitary left  -module. 

Let   be a non-zero submodule of  .We say that   is a semi- - hollow module if 

for every submodule   of   such that     is a semi- - small submodule 

(      ). In addition, we say that   is a semi- - lifting module if for every 

submodule   of  , there exists a direct summand   of   and         such that 

        
The main purpose of this work was to develop the properties of these classes of 

module. 

 

Keywords: Small submodules,  - small submodules,  - hollow modules,  - lifting 

modules.2010. Mathematics Subject Classification: 16D99, 16L99. 

 

T T –ومقاسات شبه الرفع من النمط   -مقاسات شبه المجوفة من النمط     

  

ء عباس عليويالا  
قسم الرياضيات ، كلية العلهم ، جامعة بغداد ، بغداد ، العراق    

 الخلاصة 
مقاس جزئي غير صفري Tمقاس احادي ايسر و Wتجميعيه ذات عنصر محايد وليكن  حلقة  لتكن       
   بحيث  Wمن  Kاذا كان لكل مقاس جزئي Tانه مقاس شبه اجهف من النمط  W.نقهل عن Wمن 

 . Tيكهن مقاس جزئي شبه صغير من النمط  
يهجد جمع  Wاذا كان لكل مقاس جزئي من  Tهه مقاس شبه رفع من النمط  Wبالاضافه الى هذا نقهل عن 

  .      بحيث ان         و Wمن Fمباشر 
 .الغرض الرئيسي من هذا العمل هه تطهير خصائص هذين الصنفين من المقاسات

1.INTRODUCTION  

     In this work,   is a ring with identity and every  - module is a unitary left  - module. Recall that a 

submodule   of   is  - small in an  - module   denoted by     , in case for any submodule   

of  ,       implies that        . AL-Redeeni and AL-Bahrani [2] introduced the concepts of 

 -hollow and  - Lifting modules as: Let   be a submodule of a non-zero module  , we say that   is 

a  -hollow module, if for every submodule  of   such that      is a  -small submodule of  .   

is said to be   lifting module (where   is a submodule of  ), if for each submodule   of  , there 

exists a direct summand   of   and      such that        Elewi [3] introduced the concept 

of semi- -small:  
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Let   be a submodule of a module  . A submodule   of a module   is called semi- -small in  , 

denoted by       , in case for any submodule   of  ,       implies that     
      .  

 

 

In this work we introduce the following concepts:  

Let   be a non-zero module and let   be a submodule  . We say that   is semi- -hollow module if 

every submodule   of   such that     is a semi- -small submodule of  . We say that   a is 

semi- - lifting module, if for each submodule   of  , there exists a direct summand   of   and 

       such that      . 

The main goal of this work is to develop the properties of these concepts.  

2. Semi- -Hollow modules 

In this section, we present the concept semi- -hollow modules as a generalization of  -hollow 

modules. 

Definition 2.1: 

Let   be a non-zero module and   be a submodule of  . We say that   is a semi- -hollow module 

if every submodule   of   such that     is a semi- - small submodule of  .  

Remarks and Examples 2.2  

1. Every  - hollow module is semi- -hollow.  

2. The converse of (1) is not true, for example: consider   as  -module. Let     ,      

such that    , thus    . Therefore every submodule      of         such that     
 . Since        , thus                 . Thus   as   –module is semi – - 

hollow. But   is not  - hollow [2, Example.(2.2.2) (1), p40]. 

3. If   is a non-zero  - module such that          , then   is a semi-  - hollow for every 

submodule   of  .  

4.     as  - module is not semi- -hollow, since if we take 

    ̅  ,     ̅  , it is clear that   ̅     ̅  . Now T=   ̅     ̅     ̅      , but 

  ̅             ̅     ̅     ̅    and hence T  ̅           . Thus     as  -module is 

semi-T-hollow. 

5. Consider    as  - module and let     ̅  ̅ , thus by [2, Example (2.2.2) (2), p40]    is  - 

hollow module. Every semisimple module is T-hollow,  and hence it is semi-T-  hollow. By (1),    as 

 - module is a semi- - hollow module.  

6. If   is an  - module such that            then   is  -hollow module if and only if   is 

semi- - hollow module. In fact, let  ,     such that     and      , where    . Since 

  is semi- -hollow, then           . But          , thus    , i.e.   is  -hollow 

module.  

Proposition (2.3):  

Let   be a submodule of a non-zero module   with         . If   is a semi- - hollow module, 

then every non-zero submodule   of   such that     is a semi- -hollow-module.  

Proof: Let   be a submodule of   such that    . Let   be a submodule of   such that    . 

Since   is a semi – - hollow module, thus       . Then by [3],       , therefore   is a semi- 

 -hollow module.  

Proposition (2.4): 

Let   be a semi- - hollow module, and let      ́ be an epimorphism where  ́ is a non-zero 

module. Then  ́ is a semi-    -hollow module.  

Proof: Assume that   is a semi- -hollow module and let      ́ be an epimorphism. Let  ́ be a 

submodule of  ́ such that       . Claim that          ́  To show that, let       ́   , for 

some    ́. Then    (    )      ( ́   ). Therefore           ( ́)     ( ́)  Thus 

     ( ́)         on      ( ́). But   is semi- -hollow. Therefore    ( ́)      . We 

can easily show that                . So         (      )         ́  [4, 

Theorem (9.1.4), p.214]  

3. Semi- -lifting modules 
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     In this section, we introduce the concept semi- -hollow module and illustrate it by some examples. 

We also give some basic properties. We start by this definition which is given in [2, Definition (2.2.1), 

p40].  

Definition (3.1)  

Let   be an  - module and let   be a submodule of  . We say that   is a  -lifting module if for 

every submodule   of  , there exists a direct summand   of   and        such that         
We introduce the following definition:  

Definition (3.2) 

Let   be a submodule of an   –module  . We say that   is a semi- -lifting module if for every 

submodule   of  , there exists a direct summand   of   and        such that      .  

Remarks and Example (3.3) 

1. Every  - lifting module is a semi- -lifting module. In fact, let   be a  -lifting module, where   is 

a submodule of   and let   be a submodule of  . Thus by assumption, there exists a direct summand 

  of   and      such that      .  

Thus        by [3], and   is semi-T-lifting module.  

2. A semi- -lifting module needs not to be  -lifting module, for example    as  -module is not 

  ̅  ̅ -lifting [2,Remark.and Example (2.3.3) (2),p44]. But one can easily show that   as  -module is 

a semi-  ̅  ̅ -lifting module, where           ̅  ̅ . 

3. A lifting module needs not be a semi- -lifting module. For example    as  -module is not a semi-

  ̅  ̅  ̅  ̅  lifting module. To show that, assume not and let     ̅  ̅  ̅  ̅ , then there exists a direct 

summand   of    and         such that      . Since    is indecomposable, thus     and 

    ̅  ̅  ̅  ̅ . But   is not semi-  -small in   . Thus    is not semi   lifting module. One can 

easily show that    as  -module is a lifting module.  

4. The converse of     is true if          , i.e. if   is an  - module with         , then   

is  -lifting module if and only if   is semi- -lifting module  

5. On can easily show that every semisimple module   is semi- -lifting for every submodule   of  . 

6. It is clear that every semi-T-hollow module is semi-T-lifting module. 

Proposition (3.4)  

Let   be a semi- -lifting module. Then every submodule   of   such that     is also semi- -

lifting module.  

Proof: Assume that   is semi- -lifting. Let   be a submodule of   such that    . Let   be a 

submodule of  . Since   is semi- -lifting, then      , where   is a direct summand of   and 

        Clearly,   is a direct summand of    Since    , then        by [3].  

Recall that a submodule   of a module   is called projective invariant, if for every      
       ,        [5].  

It is clear that if each submodule   of  , there exists a decomposition      ́ such that     

and         , then   is a semi- -lifting module. It is natural to ask if the convers is true. 

Proposition (3.5)  

Let   be a submodule of a module  . If   is a semi- -lifting module, then for each submodule   of 

 , there exists a decomposition      ́ such that     and         .  

Proof: Assume that   is semi- -lifting module and every semi- -small of   is projective invariant. 

Let   be a submodule of  , then      , where   is a direct summand of  , and       . 

Now, by Modular Law,        ́. Let      ́ be the projection map, 

             (  (   ́))     ́.  

Since   is semi- -small in  , then, by our assumption,   is projective invariant. So         
 ́   . Thus    ́      , by [3]  

Theorem (3.6)  

Let   be a submodule of a module  , then the following statements are the same:  

1. For each submodule   of  , there exists a decomposition      ́, where     and   
      ́  . 

2. For each submodule   of  , there exists          such that     ,        and    
           . 
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Proof: (1) (2): Let   be a submodule of  , thus by assumption, there exists a decomposition 

     ́ such that     and 

   ́      . Let       be the projection map. Clearly,      and                , 

      . Now, we have                         ́         
(2) (1): Let   be a submodule of    then there exists              such that      , 

       and                It is clear that                . Suppose that   
     and   ́          . Then    ́            . Claim that            
          To show that, let                      . Since             , then 

                             . Now, let                    ,    , then 

          ,           . Thus             . Now,            
            ́        
       The following proposition gives a characterisation of a semi- -lifting module   when every 

semi- -small submodule of   is projective invariant.  

From Proposition (3.5) and Theorem (3.6) we get: 

Proposition (3.7): 

Let   be a submodule of a module   such that every semi- -small submodule of   is projective 

invariant. Then the following statements are the same:  

1.   is a semi- -lifting module.  

2. For each submodule   of  , there exists a decomposition 

     ́ such that     and    ́         
3. For each submodule   of  , there exists           such that     ,        and 

             .  

Proposition (3.8): 

Let   be a semi- -lifting module and let   be a submodule of  , such that for every direct summand 

  of  , 
   

 
 is a direct summand of 

 

 
. Then 

 

 
 is a semi-

   

 
-lifting module.  

Proof Let 
 

 
 be a submodule of 

 

 
. Since   is semi- -lifting, then 

     , where   is a direct summand of   and       . Hence 
 

 
 

   

 
 

   

 
 . By our 

assumption, 
   

 
 is a direct summand of 

 

 
. To show that 

   

 
 

  
   

 

 

 
, let 

 

 
 

 

 
 such that 

   

 
 

   

 
 

 

 
 

     

 
, then            . Since       , thus              and 

hence 
   

 
 

 

 
 

      

 
 

 

 
    (

 

 
)  thus 

 

 
 is semi - 

   

 
 – lifting module. 

Recall that   is called a distributive module if for every submodules     and   of  ,         
            and                    , see[6] . 

Corollary (3.9)  

Let   be a semi- -lifting and distributive module and   be a submodule of  . Then 
 

 
 is a semi-

   

 
-

lifting module.  

Proof. Let   be a direct summand of  , then      ́, for some submodule  ́ of  . Thus 
 

 
 

   ́

 
 

   

 
 

   ́

 
. Since   is distributive, then       ( ́   )  (       ́)  

(       )   . Hence, 
 

 
 

   

 
 

   ́

 
. Therefore, by Prop (3.8), 

 

 
 is semi-

   

 
-lifting module.  

Lemma (3.10) [7, Lemma 5.4] 

Let         be an  -module. Then 
 

 
 

    

 
 

    

 
 for every fully invariant submodule   of 

 .  

Corollary (3.11)  

Let    be a semi- -lifting module. If   is a fully invariant of  , then 
 

 
 is a semi-

   

 
-lifting module.  

Proof: It is clear by Proposition (3.8) and Lemma (3.10).  

Proposition (3.12) 

Let         be a module such that              . If    is semi-  -lifting and    is 

semi-  -lifting, then         is a semi-     -lifting module.  
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Proof : Let   be a submodule of a module  . Since              , then by the same way of 

the proof of [8, proposition 4.2, chaphter1],  
       , where       and      . By    is semi-  -lifting and    is semi-  -lifting 

module, thus         , where         and        
    and          where     

   and        
  .  

Hence                          One can easily show that         is a direct summand 

of  . By [3] we have              
 . Thus       is a semi-     -lifting module.  

Proposition (3.14): 

Let          be a fully stable module and          where      , for every    . If    is 

semi-  -lifting module, for each    , then   is a semi-     -lifting module.  

Proof : Let   be a submodule of  . For each    , one can easily show that             . 

Since         and    is semi-  -lifting, then           , where        and 

       
  . Therefore                       One can easily show that              . 

Thus by [3],          
 . Therefore   is a semi-   -lifting module.  

Proposition (3.15)  

Let   be a finitely generated, faithfull and multiplication module. Then   is semi- -lifting module if 

and only if   is semi-     -lifting module.  

Proof: Assume that   is a semi- -lifting module and let   be an ideal of  . Since   is a semi- -

lifting module, then there exist      and        such that       . Since   is a 

multiplication module, then there exists ideals   and   of   such that      and     . Hence 

         . But   is finitely generated, faithful and multiplication module, thus by [8]   is a 

cancellation module. Therefore      . Claim that     . To show that, let      ́, where 

 ́    such that  ́   ́ , for some ideal  ́ of  . Hence            (   ́) . But   is 

a cancellation module, therefore      ́.  

To show that    ́     since   is a finitely generated, faithful multiplication module, then      

 ́  (   ́)  and hence    ́     Thus       By [3],           . Hence   is 

semi       lifting module.  

Conversely, assume that   be a semi-     -lifting and let   be a submodule of  . Since   is 

multiplication module, then there exists an ideal I of   such that     . Then there exist      

and            such that      . Hence         . Claim that        To show that, 

let      ́, for some ideal  ́ of    hence      (   ́)      ́ . Since   is a finitely 

generated, faithful and multiplication module, then     ́  (   ́)      . Thus     
 , by [3], and        . Therefore   is a semi- -lifting module.  
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