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Abstract

This paper is concerned with a Coupled Reaction-diffusion system defined in a
ball with homogeneous Dirichlet boundary conditions. Firstly, we studied the blow-
up set showing that, under some conditions, the blow-up in this problem occurs only
at a single point. Secondly, under some restricted assumptions on the reaction terms,
we established the upper (lower) blow-up rate estimates. Finally, we considered the
Ignition system in general dimensional space as an application to our results.
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1. Introduction
It is well known that many phenomena in the world can be described using partial differential
equations. Therefore, since the last decades, the analytical and numerical solutions of partial
differential equations have been studied by many authors, see for instance [1,2]. One of the remarkable
phenomena in time-dependent problems is the blow-up, which has been considered by many authors
(for a single equation and systems), see for instance [3-5]. This work is concerned with the blow-up
properties of a Coupled Reaction-diffusion system defined in a ball with homogeneous Dirichlet
boundary conditions:
ur = Au+ f(v), vy = Av + g(u), (x,t) € B X (0,T),
u(x,t) =0, v(x,t) =0, (x,t) € 0By X (0,T), D
u(x,0) = uy(x), v(x,0) = vy(x), X € By,
where f,g € C1(R) n C?(R\{0}) are positive and increasing superlinear functions on (0, ),
1/f,1/g being integrable at infinity. Moreover, f'g’, ", g'" are positive functions in (0, ), u, and
v, are nonnegative, smooth, redial non-increasing, and vanishing on dBj. That is:
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ug(x) = up(|x1), vo(x) = vo(lx|), X € By,
uO(x) = 0) UO(x) = 0) x € aBRv (2)
uor(Ix]) <0, vor(|x]) <0, X € Bg.
In addition, the following conditions are assumed to be satisfied:
Aug+ f(vy) =20, Avy+g(ug) =0, Vx € Bp. 3

In fact, Problem (1) has been used to describe physical models arising in many fields of sciences
[6]; for instance, the chemical concentration, the temperature, and in the chemical reaction process.
The coupled reaction-diffusion systems defined in a ball with homogeneous Dirichlet boundary
conditions have been studied in [6- 9].

In [7], problem (1) has been considered in one dimensional space:

U = Uy + V), U =V +g(), (x,t) € (=R,R) X (0,T),
Under some assumptions on f and g, it has been shown that the blow-up can only occur at a single
point. As applications to that result, two special cases of f, g where considered: the power forms and
the exponential forms.
Later, problem (1) has been studied in a general dimensional space [9], where f and g are of power
type functions:

U =Au+vP, vp=A7Mv+ul, (x,t) €EBrXx(0,T) pq>1.(4)
It has been proved that the blow-up can only accour at a single point. In addition, the lower point-wise
estimates are as follows:

u(x,T) = cq|x]72%,  v(x,T) = c,|x| %5,
where

o =21 , b= art

rq-1 rq-1

In [6], it was shown that the upper and lower blow-up rate estimates of this problem are as follows:

(T—t)"*<u(0,t) <c,(T—-t)"% te(0,7),

c3(T—t)P <u(0,t) < cy(T—t)7B, t€(0,7).
For another special case of problem (1), where f, g are of exponential type, we have

u; = Au + e??, v, =Av+e?™, (x,t) €EBgx(0,T), p,g>0. (5)

It has been proved that the only blow-up point is x = 0 and the upper (lower) blow-up rate estimates
are as follows [6]:

loge — log[q(T —t)] < qu(0,t) <logC —log[q(T —¢t)], t € (0,T),

logc — log[p(T —t)] < pv(0,t) <logC — log[p(T —t)], t € (0,T).
In this paper, under some conditions on the reaction terms, f and g , we prove that blow-up, in
problem (1), occurs only at a single point. Moreover, we established the upper (lower) blow-up rate
estimates. In addition, the Ignition system [10] will be considered in a general dimensional space as an
application to our result.
2. Preliminaries
By the standard parabolic theory, the local existence and uniqueness of classical solutions to problem
(1) are guaranteed [11]. In addition, for many types of the functions, fand g, if the initial functions
(ug, vp) are suitably large, then T < oo [12, 13]. Moreover, only simultaneous blow-up can occur and
that is because the system in (1) is coupled.
In the next lemma, we present some properties to the solutions of problem (1)-(2). For simplicity, we
denote u(r,t) = u(x,t),v(r,t) = v(x,t).
Lemma 1,[14]: Let (u, v) be a classical solution to the problem (1), (2). Then
1. wuand v are positive and radial.
2. u<0,v,.<0in[0,R) X (0,T). Moreover, u,, < 0,v, < 0in (0,R] x (0, T).
3. u>0,v. >0, (x,t) €Bgx(0,T7).
4. If (u, v) blows-up, then x = 0 belongs to the blow-up set.
3.

Blow-up Set
Under some assumptions, the next theorem shows that the only possible blow-up point to problem
(1)-(2)is x = 0.
Theorem 1: Let (u, v) be a blow-up solution to problem (1)-(2). Assume that
Uogr (1) < =617, V9,(r) < =6,r for0<r <R, whered;, s, >0. (6)
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If there exist two functions F,G € C2([0,)) such that F,G > 0;F’,G',F",G" =0 in (0,). In
addition, the following conditions are assumed to be satisfied:

® dv ® du 0
| 7<= | gag< ror >0
f'WFW) — f(w)G'(u) = 2¢G(w)G'(w), in (0,R)x(0,T), } ™
g WGew) —gwF' (v) = 2¢F(w)F'(v), in (0,R) X (0,T),

for some € € (0,1), then x = 0 is the only possible blow-up point .

Proof
Following the technique used in [15] for the scalar problem:

As in Lemma 1, and since (u, v) are radial, for simplicity we denote

u(r,t) =u(x,t), v(rt)=uv(xt).

By the new variables, system (1) can be rewritten as follows:

U = U+ + f(0), (1,8) € (O,R) X (0,T),

Ve =V + v+ gw), () € (O,R) X (0,T).
Wesetthat ], =" tu,. + er®G(u), J, = r" v, + er™F(v).
By the parabolic regularity results, we obtain

U, v € C>1((0,R) X (0,T)) N C([0,R] X [0,T)).

Since F, G € C%([0,»)), it follows that

J1.J2 € C*1((0,R) x (0,7)) n C([0,R] X [0,T)),
For convenience, we denote

wy =1y, wy, ="y, Lc(r) =er?,

(8)

thus
Ji=wi+c(G), J, =wy+c(F@W).
For simplicity, we write w; = w.
A direct calculation shows
we = "y,
w, ="y 4+ (n — Dr* 2y,
Wy =1 up + (n— D" 2u,, + (n — D(n — 2)r"3u,
+(n— Dr*2u,,.
This leads to
we + nT_IWr Wy =7 U + (n— Dr" 2w, + (n — 1) 30,
" e — (= Dr" 2y, — (n— D(n— 2)r"3u, — (n — Dr* 2u,,.
From (8), it follows that
n—1 n—-1 ,
Urpr = Uy — Turr + r_zur - f VUp.
Thus
n-1 ,
Wit + == Wi — Wy = wof' (V).
In the same, way we can show that
-1 ,
Wyt + nTWZr = Warr = W1 g (W).
Also, it is clear that
! ! -1
[c(MGW)]e = (G’ Wuy = &G’ (W) (pr + 1 + f(V)),
[c(r)GW)], = er™G' (Wu, + enG(w)r™ 1,
E DG, = e(n — Dr 16" @u, + en(n — G2,
[c(MGW)]rr = er™(G' Wiy + uFG" (W) + €6’ (Wuynr™™
+enG(w)(n — Dr"2 + enr™ 16’ (w)u,.
From above, it follows that
-1 ’ ’
Jit + =Ty = Jirr = ' W)z — er"F ()] + er"G' (W)f (v)
—2eG'(W[r" tu,] — er®G" (Wul.
Using the relation ™ 1w, = w; = J; — er™G(u), we obtain
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Jie + nTlhr —Jirr S W)z — er"F(v)]
+er™G' (W) f(v) — 2eG' (W) [J; — er"G(w)]
Thus
Jre + "= iy = Jiry = bly = cf; < —er™H, (©)

where

H=FW)f'(v) — fw)G'(w) —2eG(w)G'(w); b = —2¢G'(w),c = f'(v).
From our assumption (7), it follows that H > 0 in (0, R) x (0, T).
Thus

Jie+ e = Jire =Dy = 2 S0, (1,6) € (O,R) X (0,T).
In the same way, we can show that

Jat + " Jar = Jare = dJ2 = hy <0, (x,0) € (0,R) X (0,7),
where d = —2¢F'(v),h = g'(u).
Clearly, c,h,d and b are bounded functions on (0,R) X [0, t] for any fixed t € (0,T), moreover,
c,h=0.
Also,

J1(0,t) = J2(0,t) =0, t€(0,T).
By (6), we obtain

J1(1,0) = 1" ug, (1) + erG (up ()] < 178 + G (up ()],

J2(r,0) = 7w, (1) + erF (g (1))] < T[—8, + £F (1(1))].
Since u, v are increasing in time, then we obtain

u>uyv>v,, (xt)€Bgx(0,T),
Moreover, we can easily show that

u(R,t) <up-(R) <0, v-(Rt)<vy.(R)<0, te(0,T).
Thus

Ji(R,t) <7 ug,(R) + erG(0)] < R*[-6; + G(0)], t € (0,T),

J2(R,t) < 1" vy, (R) + erF(0)] < R[5, + €F(0)], t € (0,T).
Therefore, each of the functions J,(r,0),J,(r,0),J;(R,t), and J,(R,t) are nonpositive, for r €
(0,R),t € (0,T), provided that

. 61 62
< :
& —_ mln{?&%)](c(uo) ) I[](')l'%)](F(V())}
From above and the maximum principle [16], it follows that

]1,]2 < 0, (x, t) € BR X (O,T) (10)

We define
ey = [P 4w ey = [PV
G (S) - fS G(u)' F (S) - s F(V).
From (10), it follows that

Ur

=ér
G(u)
Clearly,
d g+ e dw __doudu  dou Uy = _
el (u(r,t)) = arJu G(uw) dr oo G(u) du Jeo G(w) Gw)'
Thus
G*(u(r,t)), = er.
Now, we integrate the last equation from 0 to r, as follows
G*(u(r, 1) — G*(u(0, 1)) = Zer?.
It follows that
G*(u(r,t)) = ser?. (11)
In the same way, we can show that
F*(u(r,t) = jer?. (12)

If for some r > 0; u(r,t) > w0 or v(r,t) > o0 ast — T, then G*(u(r,t)) = 0 or F*(v(r,t)) = 0 as
t — T, which is a contradiction to (11), (12).
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It follows that if x # 0, then it cannot be a blow-up point. Therefore, under the assumption of this
theorem, the blow-up in problem (1)-(2) can only occur at a single point, which is x = 0.

4. Blow-up Rate Estimates

In this subsection, we consider the lower (upper) blow-up rate estimates for problem (1)-(2) with
some restricted assumptions on £, g.

Theorem 2: Let (u,v) be a solution to (1), (2), which blows up at only one point (x = 0). Assume
that there exsits y > 1, such that

gw) syf(), f)<yg), (x,t) € Bgx(0,T). (13)
Then, there are four positive constants c,, c,, c; and c,, such that
Gi (e (T—6) <u(0,t) <Gy ey (T—1)), te(0,T), (14)
Fil(c3(T — 1) < v(0,t) S F{M(co(T — 1)), t€(0,T), (15)
where
Gi() = [ o R =[] (16)
Proof
Firstly, we derive the lower blow-up rate estimates.
We set U(t) =u(0,t), V() =v(0,t), te][0,T).

Since (u, v) attains its maximum at x = 0, we obtain
AU(t) <0, AU(t) <0, 0<t<T.
From (1), it follows that
U < fV@), V@) <gU@®) 0<t<T. (17)
From (13) and (17), it follows that
Ue(®) <ygU@®), Vi@ <yf(V(@®), 0<t<T.

Thus
Ue(t) Ve (t)
200 <v, IO <y, 0<t<T. (18)
Clearly,
_ dG,(u(o,t)) _ _d (oo du _ _ifT (du/dt) _ da t U d
dt de“u(0,t) g(u(o,t)) dt’t gu(o,t)) dt’T g(u(o,t))
this leads to

dG,(u(0,8)) _ u,(0,t)
B dt ~ g(0,0)

where G, is defined as in (16).
From the above and equation (18), we obtain

——dG;lfu) <y, 0<t<T. (19)

By integrating (19) from ¢t to T, we obtain
G1(u(0,t)) = G (u(0,T)) <y (T — ).
Clearly, G;(u(0,T)) = 0.
Thus
GL(u(0,t)) <y(T—-1t), 0<t<T.
Since G, is decreasing, then by the last equation, we have
u(0,t) = GI1(y(T—1), 0<t<T.
For v, in the same way, we can show that
v(0,6) = F{l(y(T-1t), 0<t<T.
Next, we consider the upper bounds.
We define the functions Q, H as follows
Qx,t) =u, —0f(v), H(xt)=v,—0gw), (x,t)€Bgx(0,7T),
where 8 > 0. By the parabolic regularity, we have
U, v € C¥1(Bg X (0,T)) N C(Bg X [0,T)),
and since f, g € €?(0,0) N C([0, ©)), it follows that
F,G € C*Y(Bg x (0,T)) n C(Bg % [0,T)).
A direct calculation shows
Qe — AQ = ug — 0f'vp — Dug + 0Af (v),
= Uy — Aup — 0f ' [vy — Av] + 0|Vv|?f ",
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=f've —0f'g(W) + 0|Vv|*f".
Thus
Q: —AQ — f'(W)H = 6|Vv|?>f" =0, in Bgx(0,T), due to the positivity of the functions f"
in (0, o).
In the same we can show that
H,—AH — g'(W)Q = 6|Vu|?g"”" =0, in Bgx(0,T).
Since f', g' are continuous functions, so, f'(v), g’ (w) are bounded in By x [0,t] fort < T.
By Lemmal, u;, v, > 0,in Bg X (0,T), and since u,v blow up at x = 0, therefore, there exist
ki >0,k, >0, € (0,R), T € (0,T) such that
u(x,t) = ky, ve(x,t) = ky, (x,t) €B, X [1,T).
Also, we can find 8 > 0 such that
u(x,7) =2 0f(v(x, 1)), v (x,7) 2 0g(u(x,t)), forx € B,.
Thus
F(x,7)=20,G(x,T) =0 forx € B..
Since u, v blow up only at x = 0, then there exists C;, C, > 0 such that
fwxt) <C <oo,gu(x,t))<Cy <o, in 9B, x(0,7T),
If we choose that 6 is small enough such that
ki k
0 < mln{c—i,c—z},
then, we can get
F(x,t) 20,G(x,t) =0 (x,t) €0B, x[1,T),
From the above and by the maximum principle [16], starting from t instead of zero, it follows that
F(x,t) = 0,G(x,t) >0 (x,t) € B, x (1,T).

This leads to
u:(0,t) = 6f(v(0,t)), v, =20gu(0,t)), for T<t<T. (20)
By (13), we obtain
1, (0,8) = g g(0,)), v; = g fw(,8), T<t<T. 1)
Since —2&00) _ 10D , from (21) and the last equation, it follows that
at g(o,t))

dG,(u(0,t)) - 0
dt —y’
By integrating the last inequality from ¢ to T, we obtain

J! = dG (0, 5) = G w(0,6) = G (w(0,7) = 2 (T = ©),
Thus

T<t<T.

G, (u(0, 1)) > %(T —t), T<t<T. (22)
Since G, is decreasing, by (22), it follows that
u(0,t) < G;l(g (T—1), 1<t<T.

So, there is ¢, > 0 such that
u(0,t) <G Yy (T—1)), 0<t<T.
Similarly, we can find ¢, > 0 such that
v(0,t) S F{(cy(T—1)), 0<t<T.
5. The Ignition System
In this section, we apply Theorem 1 and Theorem 2 to the so called Ignition system [7] which takes
the following form:
u; = Au + Ae?, v, = Av + BeY, (x,t) € B X (0,T),
u(x,t) =0, v(x,t) =0, (x,t) € 0By X (0,T), (23)
u(x,0) = uy(x), v(x,0) = vy(x), X € Bg,
where 4,B > 0
In order to show that the condition (13) is satisfied for system (23), we need to prove the following
lemma.
Lemma 2: Let (u, v) be a solution to problem (23) with (2).Then there exists M > 1 such that
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e’ < Me%, e* < Me¥, (x,t)€ Bgrx(0,T). (24)
Proof
We define | = Me* —e¥, (x,t) € Bg X (0,T).
Clearly, ] € C#1(Q x [0,T)). A direct calculation shows that
Je = Me"u, — e¥vy,
V] = Me%*Vu — Vve?, (25)
A] = Me¥Au + Me%|Vu|? — eV Av — e?|Vv|2.
Thus
Je — &] = MeY[u, — Au] — e¥[v, — Av] + e¥|Vv|? — Me*|Vu|?
= (MA — B)e**V + e?|Vv|? — Me¥|Vul?. (26)
From (25), we obtain
1
Vu =—— [Vve? + V]].
This leads to
Vul? = —— [e?’|Vv|? + 2e"Vv - V] + |V]|?].
Therefore, (26) becomes
Jo = 8] = (MA = B)e"™ + [ — < |2 — [25 Vv +-2V)] - V],

Met

2V
Since eV — ;eu = e”ﬁ , We can rewrite the last equation as follows:
Jt—=A] —b-V] —c] =(MA—B)e**"V >0, (x,t) € Bg x(0,T),

Provided that M > B /A, where
2e? 1 ev

b=—-[=W+.—=V/]c= WIWIZ-
It is clear that, ¢ is bounded in B x (0,t], fort <T.
Moreover, J(R,,) =M —1 > 0and J(-,0) = Me%o — e > 0, provided that M is large enough.
From the above and the maximum principle [16], we deduce that

J =0, (x,t) €Bg x(0,T).
In a similar way, one can show that the function H = Me?V —e® > 0 in By X (0,T).
Next, we apply Theorem 1 to the ignition system (23) with (2) by choosing appropriate forms for F, G.
Theorem 3: Let (u,v) be a blow-up solution to problem (23) with (2), where (uy, vy) satisfies (6).
Then, the blow-up can only accour at a single point. In addition, the point-wise estimates are as
follows

u < logC — glog(r), v <logC — zlog(r), (r,t) € (O,R] x (0, T).

Proof
Let F(v) =e%,G(u) =e**, ac€(0,1). 27
Firstly, we aim to show that F, G satisfy the condition (7).
By some direct calculations, we obtain
f'F—fG = Ae’[e®’ — ae™]. (28)
By (24) , it follows that
e’ =%, (x,t) € By x (0,T).
Thus, (28) becomes
f'F—fG' = et ze™ —ae™]
> i[ia— a] e2 > 2eqe?®™ = 2¢GG,
M LM
Provided that a < % € is small enough, such that

A 1
SSE[QM“_ ]

In the same way, we can show that
1

9'G—gF = %[ﬁ — ale?™ > 2eqe?™ = 2¢FF', (29)

1

>

Provided that
B 1

€= E;;[anda - 1]
So, the condition (7) is satisfied.
Thus, by Theorem 1, we obtain that x = 0 is the only possible blow-up point.
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Next, we derive the point-wise estimates.

We define the functions G*, F* as follows
o du co dv

G*(S) = fs @, F*(S) = fs %, s=0.
By (27), we obtain
1
G*(S) = F*(S) = m, s> 0.

Therefore, (11) and (12) become
1 r? 1 r?

> &—, =€
aedv 2 ae®v 2

Thus

et <2 eav < 2 (1) € (0,R] X (0,T),

acr?’ — aer?’

or u<logC-— élog(r), v < logC — %log(r), (r,t) € (0O,R] x (0, 7).
Next, we apply theorem (2) to derive the upper (lower) blow-up rate estimates for problem (23) with
(2).
Theorem 4: Let (u,v) be a blow-up solution to problem (23) with (2). Assume that (u,, v,) satisfies
(6). Then, there exist positive constants C; ,i = 1,2,3,4, such that

logC; —log(T —t) < u(0,t) <logC, —log(T —t), te (0,7),

logC; —log(T —t) < v(0,t) <logCy —log(T —t), t€ (0,7),

Proof
We define the functions G,, F; as follows
oo d oo d
Gi(s) = [ o Fi(s) = J; 5 ds.

It is obviously that
Gi(8) =7z Fi() =75, s20.
Moreover,
G{1(s) = —log(Bs), Fyl(s) = —log(4s), s> 0.
Therefore, from (14) it follows that
—log(Bcy (T —t)) < u(0,t) < —log(Bc,(T —t)), te€ (0,T).
Thus, there exist C;, C; > 0 such that
logC; —log(T —t) <u(0,t) <logC, —log(T —t), te€ (0,7).
By using the same way, we can find C5, C, > 0 such that
logC; —log(T —t) < v(0,t) <logC, —log(T —1t), t€ (0,T).
6. Conclusions
In this paper, we studied the blow-up set and the upper (lower) blow-up rate estimates for a
Coupled Reaction-diffusion system defined in a ball with homogeneous Dirichlet boundary conditions,
under some assumptions. We note that the results of the present work can be applied to many types of
systems, including the ignition system. Therefore, by these results, we can easily understand the blow-
up properties and profiles of such types of systems.
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