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Abstract

In this paper, we built a mathematical model for convection and thermal radiation
heat transfer of fluid flowing through a vertical channel with porous medium under
effects of horizontal magnetic field (MF) at the channel. This model represents a 2-
dimensional system of non-linear partial differential equations. Then, we solved this
system numerically by finite difference methods using Alternating Direction
Implicit (ADI) Scheme in two phases (steady state and unsteady state). Moreover,
we found the distribution and behaviour of the heat temperature inside the channel
and studied the effects of Brinkman number, Reynolds number, and Boltzmann
number on the heat temperature behaviour. We solved the system by building a
computer program using MATLAB.

Keywords: Heat transfer, Porous medium, Brinkman number, Pouger number,
Boltzmann number, Reynolds number.
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1. Introduction

Fluid is a substance that cannot resist a shear force or stress without moving. Fluid flow
may be classified in different manners, such as turbulent, laminar, real, ideal, steady, unsteady,
uniform, compressible, incompressible, etc. [1].

The heat transfer in electrically conducting fluid in circulatory and channels pipes, subject
to the effects of magnetic transverse fields, is conducted in magneto hydrodynamics (MHD),
flow meters, and pumps, and have applications in filtration, nuclear reactors, geothermal
systems, and others.

The natural convection in enclosures with localized heating from below creeping flow to
the onset of laminar instability was studied [2].

The stability of convection in a container of arbitrary shape when heated from below was
also investigated [3]. The authors analyzed the stability of two forms of convection, one with
the top flow and the other with the down flow, in a bounded domain and a layer with only one
stable form and mentioned the chaotic conditions.

Another work investigated the convection in a rotating cylindrical annulus under the effect
of MF [4]. The authors investigated the effects of radial and azimuthal components of MF on
the convection columns in a fluid filled gap between two cylinders rotating rigidly about their
common vertical axis numerically; the inner cylinder is cooled and the outer one is heated,
such that the buoyancy force driving the convection is provided by the centrifugal force.

The effects of radiation in a magneto fluid-dynamic channel flow was shown [5]. The plane
Hartmann flow was extended to account for thermally radiative effects with variable
absorption coefficient and non-uniform temperature of channel walls. Furthermore, some
aspects of stability were examined.

The convection beginning in an infinite rigid horizontal channel that has uniformly lower
heat source was determined by using a 2-dimensional Galerkin formulation of the 3-
dimensional Oberbeck-Boussinesq equations. The authors extended the previous results to the
higher truncation levels to involve patterns of convection.

The thermal convection problem in a fluid layer with a lower heat source was introduced
[7] and solved numerically when strong vertical MF parameter the layer. When the values of
Hartmann number between (200-400), the stability of the 2-dimensional convection rolls was
studied.

The convection inside a rotating cylindrical annulus was investigated by using a system
that contains three coupled amplitude equations [8]. The authors described many features of a
good approximation and showed that the time integrations based on the Galerkin expansion
display transitions to chaotic convection at a high Rayleigh number.

The fully developed free convection problem of two fluid MHD flow in a slanted channel
were discussed [9]. It was observed that the flow could be dominated effectively by the
appropriate adjustment of the values of height ratio, electrical conductivity, and viscosity of
the two fluids.

Another study proposed a solution to the magnetohydrodynamic (MHD) problem by the
analytically free convection flow of an electrically conducting fluid between two heated
parallel plates in the presence of an induced MF [10]. It was noted that the skin-friction
increases first, then gradually decreases with the increase of Hartmann number to y=1.

The effects of heat and slip transfer on the peristaltic flow of a 3th fluid in an inclined
asymmetric channel were reported [11]. In the same year, the impacts of radiation on MHD
flow of Maxwell fluid in a channel with a porous medium were examined by employing the
homotopy analysis method (HAM) [12].

The 2-dimensional steady flow of electrically conducting incompressible power-low
fluid passing an infinite porous flat plate subjected to suction or blowing was investigated
[13]. The authors also analyzed the heat transfer flow in the case when the plate is held at a
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fixed temperature. In the same year, HAM was applied to obtain an analytical solution of
partial differential equations. Numerical results and graphical representation strongly
reconfirmed the efficiency of the proposed scheme [14].

Another work [15] studied the approximated solutions for heat transfer over a porous
plate and steady MHD mixed convection boundary layer flow in the presence of thermal and
velocity. The MF impact on a viscous incompressible fluid was found to increase the fluid
velocity by reducing the drag on the flow, which causes a decrease in the temperature of the
fluid.

An earlier investigation [16] presented the impacts of mass transfer, viscous suction, and
dissipation on the flow of 2-dimensional steady hydromagnetic viscous fluid between two
parallel plates in the presence of thermal radiation. The authors found that velocity,
temperature, and concentration decrease with the increase of suction and Reynolds number.
They also reported associations among different physical properties. In this work, the solution
of the equation of heat transfer in a porous channel with the presences of MF and radiation
was investigated. It was found that the parameters of Brinkmann number (Fs), Reynolds
number (Re), and Boltzmann number( B, )have significant effects on the equation solution.

Another study [17] presented a Crank-Nicolson finite difference method to solve the time
fractional 2-dimensional sub-diffusion equation in the case where the Grunwald-Letnikov
definition is used for the time fractional derivative. The stability and convergence of the
proposed Crank-Nicolson scheme were also analysed and the numerical examples were
presented to test whether the numerical scheme is accurate and feasible. In the same year, the
modified implicit finite-difference approximation for the stability and convergence of the
proposed scheme were analysed [18]. It was found that the scheme is unconditionally stable
and the approximate solution converges to the exact solution.

The numerical solutions of the equations of motion, heat transfer, and diffusion in a
porous medium with the presences of radiation and MF were studied [19]. It was found that
the parameters of Gr, R, Sc and Pr have significant impacts on the solutions of these
equations. The aim of this article is to study the numerical solution to the problem of
convection and radiation heat transfer of a fluid in a porous channel under the influence of
magnetic field (MF) using the alternative direction implicit method (ADI). We found that the
parameters of Fs, Re,and B, had significant effects through increasing and decreasing the
fluid temperature within the channel.

2. Conservation Equation

In the present study, the steady laminar flow of fluid between parallel horizontal
walls, distanced 2h apart, is considered. The velocities v, v are zero at edges, while T; and
T, represent the temperature of the lower and upper plates, respectively.

The governing equation is:

or , 9T ot
at " Vax " Vay

_k 62T+02T
~ pC,\0x2 " 0y?

1 (0 0
— x| Ty (2.1).
pC,\ 0x  0dy

where v and v are the values of velocity inx and y, T, p, k, C, refer to temperature, density,
permeability, and specific heat, and g, and q,, are radiation values in x and y directions,
respectively.
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with the following boundary conditions:
v=v=200
T=T,T, } Y
=+h (2.2).
3. Non-dimensional Energy Equation
To solve the governing equation (2.1) with the boundary conditions (2.2), we need to

introduce the following non-dimensional quantities [5, 20]:

h . . 4 R
t=—t", T=Tieo , q=Ty0cQ

v
0 (3.1).
x=hx" , y=hy' , v=vy , v=v0v’J
By substituting these quantities into equation (2.1), the governing equation becomes:
do do do
+ 14 + !
ac " Vax T By
02 02 Ec (0 0
_ Y A AN Qr 00y (3.2).
PrRe\dx'? ~ dy'? B, \ox' ~ dy’
Butv.Q = 16w — 12w [5]; therefore, multiplying equation (3.2) by PryRe yields the non-
dimensional energy equation:
o 1 99 1 09 _
PT‘L(@‘FU W'FV 6_31’) =
(22 +28) ~ 16FsNwg + 12FsNw (3.3)
ax'2 ~ oy'? ¥ .
where:
2 3
Ec=- Re=1P%  =o,h,By=22% y=2 pr=E2 ps=prec, L=
CpT1 u Tio Cy k
Re

R
5 N =B—e are Eckert number, Reynolds number, Bouger number, Boltzmann number,
0

Specific heat ratio, Prandtel number, Brinkman number, and the new physical quantities,
respectively. The non-dimensional boundary conditions become:

= 0.0 at y' =+1
¢ =0,1.0 at y'
=+1 (3.4)

4. Solution of Heat Equation

In this section, we derive a new second-order ADI method for the numerical solution of
the parabolic equations (3.3)-(3.4).
4.1: On X-direction

Using the central difference formula we have:

09 _ Pij = Pijn

= 4.1.1
at’ At'/2 ( )
, 99
U —
ox’
, §0{+1,' - ‘P{—L'
=Vijn l JZAx’ — (4.1.2)
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, 09
v 3y
. Pij+in — Pij-1n
= vi,j,n ZAy’
0%¢
a.xlzl ! !
_ Pivrj — 20;; @i
(Ax")?
0%¢
ay'?
_ Qijrin — 2Qijnt @ij_1n
(Ay")?
16FsNwg
= 16FSNw(pi,j,n

In addition, suppose that @ = PrL and B = 12FsNw, then by substituting
(4.1.1)-(4.1.6) in equation (3.3), we obtain:

! ! !
— [‘Pi,j ~—Pijn  Pit+1,j — Pi-1; , Pij+in — Pij-1n ,

At')2 28x Vbin 28y
_ Pie1j 2005+ @iy o
(Ax")?
Pij+in = 2Pijn t Pij-1n =
16FsNw; ; B
+ Ay + 16FsNwg; j, +

Moreover, this implies that:
= <Pz{,j —Pijn| (pl{+1,j - 2§0£,j + ¢£—1,j Pijrin — 2Pijn t Pij—1n o
At'/2 (Ax')? (Ay")?

— <P£+1,j - (pl{—l,j ' Pij+in — Pij-1n ,
_ [ T Vijnt 20y’ Vijin| T 16Fstg0i,j,n

+B (4.1.7).

By multiplying equation (4.1.7) by 2—;’, we have:

: 3620-3633

(4.1.3).

(4.1.4).

(4.1.5).

(4.1.6).
the equations

(4.1.8).

’ A [Qivr) =290+ Pirj | Pijrin = 2Pijn t Pij-1n
(pi,j - (pi,f'n - ﬁ (Axl)z + (Ay/)z -
A’ [Qir1) ~ Qi-aj Pij+in — Pij-1n _, 84t’
"y 2Ax! vl{,j,n 20y’ Vijn +7F5Nw(pi,j,n+---
+ At B
2w

Let Ax" = Ay’ = h and At' = d, then:
d

Oij— Pijn = o [‘Pf+1,j —20i it Qi1+ Pijiin — 20 jn t §0i,j—1,n] —

8FsNdw

d
" 2h [(§0£+1,j - ‘Pl{—1,j)vf,j,n + ((pi,j+1,n - §0i,j—1,n)Vi',j,n] + 5  Piin +
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d —

+—B (4.1.9).
20

And let 1 = % , then:
, S T N p p p

Pij = Pijm = 5= Pir1j T =P T o=Pio1,j T o=Pijrin T =Pijn ¥ 5=Pij-1n T

A k. ah T © "8AR?FsNw
T g PirrVijn + 7 Pi-1Vijn = 7 Pij+inVijn + 7 Pij-1nVijn + = Pijn
+ cee

"',1}12_

LM (4.1.10).
2w

This implies that:

! A ! A ! A ! Ah ! ! Ah ! !
Pij = 5= Pir1 + =i~ ﬁ(pi—l,j-l' 7 Pir1iVijn = 7 Pi-1,Vijn
A A A AR ,
=@ijnt 55 Pijrin = =Pijn + 55 Pij-1n = 7 Pij+inVijn
AR _ 8Ah?FsNw AR? _
t 2 Pij-1nVijn T — 5  Pin + ﬁB
So,
A A, 1, AV, (A A7,
g+ T vian] ot [14 50t = [T vl 0ien
A Ah (1 — 8h2FsNw) A A
= [ﬁ + 4 Vz,j,n] Pij-1n t (1= > ijn [ﬁ 4 Vi,j,n] Pij+1n
Ah?% —
+—B8 (4.1.11).
2w

By multiplying (4.1.11) by % , We obtain:

ha ! ! 5 ! ha ! !
|1t Vijn|Qi-ny 2|1 20— |1 =5 V| Piva

ho |
=1+ 5 Vijn|Pij-1n t o

w 5 hw
ot 2 1~ (1+8h°FsNw)| @ jn+|1— - Viin|®ij+in

+ h%B (4.1.12).

By multiplying (4.1.112) by % , We get:

2 Yijn
w hw , how ,
o ] IO e 070 SO L S8 .
—Pi-1,j — Vij— — Piv1,j = — Qij-1n T
] Y T
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2 [% -+ 8h2FsNa))] [1 - hT“’ v{,j,n] 2B
et %7 Pijn T e Pij+in T %7
[1 + T Ul{,j,n] [1 + T Ul{,j,n] [1 + T Ul{,j,n]

which implies that:
—@i_1; + 20A/1)0i; — (a/ 1) Pirrj = s/ )01 jo1n + 202/ [3)Pijn + -
vt (f6/ f3)Pij+1n

+ (7B/F,) (4.1.13).
where:
7 ) 2 ho
A=t L= |77 AF8RTFEsNO), f3= 14— Vi)
ha , hE , ha I
fis 1= Vin| » fo= |1t Vi) fe= 1o Vigs

Equation (4.1.13) can be reduced to give:
AW @it + 2B ; + CD@iyq; =
D(@) (4.1.14)
where i = 1,2, ..........,M , and:
A() =-1
B(i) = 2(f1/f3)
c@W) = ~(f/f3) _
D) = (fs/f3)0ij-1n + 2(2/3)0ijn + (fe/f3)Pijr1n t (hZB/f3)
From equation (4.1.13), a tri-diagonal system can be created, which is solved numerically
using the Gauss elimination method and using MATLAB at the time-step t + 1/2 [21].
4.2: On Y-direction
Using the formulas of the central differences, we have:

dg
ot' )
Pijn+1 — Pij
=— 4.2.1).
, 09
v ox’ ) )
oy Piv1j — Pij
=Viin A (4.2.2).
, 09
v 3y’
0 Pij+in+r — Pij-1n+1
=Vijn 28y (4.2.3).
0%¢
ax,zl I I
Viv1,j — 20+ Qi
= 4.2.4).
(Ax")2 (4.2.4)
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0%¢
ay'?
_ Qijrint1 — 2Qijn+1 T Pijo1n41 (425)
(Ay")? e
16FsNwg
= 16FSN(U(piJ'n+1 (426)
Hence,
— | Pijn+1 — (pl{.j n (pl{+1,j - ‘Pg—l,j — Pij+1n+1 — Pij-1n+1
At' 2Ax! Ui,j,n ZAy' i,jn
2
_ ‘P§+1,j - 2<Pf,j + ‘P§—1,j Pijrint1 — 2@ jn+1 T Pij-1n+1
(Ax")? (Ay")?

+ 16FsNw@; jn41 + B

And this implies that:

= Pijn+1 — <P§,j _ 901{+1,j - Zﬁﬂf,j + ¢f—1,j Pijrint1 — 2Qijn+1 T Pij-1n41 L
At'/2 (Ax")? (Ay")?

= [(pi+1,12'A_x(:0i—1,j Uf,j,n ¢i,j+1,n+;A_y§,0i,j—1,n+1 Vi,,j,nl + 16FSNw@, jnse
+B (4.2.7).

By multiplying equation (4.2.7) by 2—;, we have:
At [fﬂfﬂ,j =20+ @i Pijrint1 — 2@ijn+1 T Oij-1n+1 o

(pi,j,n+1 - (p{,] = ﬁ (Ax’)z (Ay/)z
At' (Pf+1,j - ‘Pz{—1,j , Pij+1in+1 — Pij-1n+1 , 84t’
- 7[ > Ax Vijnt 20y Vijn| T =~ FsSNw@; jns1
At' —
+=—B (4.2.8).
20

Let Ax' = Ay’ = h and At' = d, then:

I d 1A 1A 1A
Pijmn+1 = Pij = 53— [€0i+1,j — 20t Qi_1j T Qijrint1 — 2Qijne1 T <Pi,j—1,n+1] —
d , , , , 8FsNdw
" 2h [(§0i+1,j - ‘Pi—1,j)vi,j,n + ((pi,j+1,n+1 - <Pi,j—1,n+1)Vi,j,n] + —w @i jn+1
d —
+—B8 (4.2.9).
20
And let 1 = % , then:
oA R R A A
Pijn+1 — Pij = 2/1_5<Pi+1,j T =Pij T o= Pic1j T o=Pijrints T =Pijnt1
+ ﬁ(pi,j—l,n+1 —
Ah , Ah ) Ah , Ah

!
T Pixr,Vijn + 7 Pim1Vijn T 7 Pij+intVijn + 7 Pij-1n+1Vijn + -
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N 8Ah*FsNw
W Pijn+1
Ah? _
+—8B (4.2.10).
20

This implies that:

A A A Ah ,
Pijnt1 = 5=Pij+1nt1 + =Pijnt1 T 5=Pij-1n+1 + 7 Pij+ineiVijn
AR ,
- T(pi,j—l,n+1vi,j,n -
8Ah2FsNw A A, A, A,

! !
e Qi i1 =P F =i i —=Pi i F =P i Piy1Viin T
o 901,],n+1 (pl,] 20 (pl+1,] w(pl,] 20 (pl 1,j 4 (pl-l-l,j L,jn

Ah A2

!

+ 7 Pi-1Vijn + ﬁB

So,
1
- [——"' - Vij ]fpi,j—1,n+1 +(1+

2(1) 4 i,jn (pi,j,n+1

A Ah
- [%_Z ijn] Pij+1,n+1

A1 - 8h2FsNa))l

[_+_Ul]n]§01 1,j [1__]§0l] [Z(x) 1 l]n]§01+1]
Ah?
+—B (4.2.11).
20

By multiplying (4.2.11) by 2, we obtain:

W ® ; o
-1+ = Vijn|Pij-iner T 2 77 (1 -8h*FsNw) | @i jn+1— |1 — > Vijn|Pij+int

hw ' ’ w 1] hw ! !
=11+ = Vijn|Pi-1) +2 i e +|1- > Vijn|Pir1j
+ h?B (4.2.12).

By multiplying (4.1.12) by —=——, we get:
1

2 Vijn
2 ® 1 — 8h?FsN 1 ho
7+( - sNw) — > Vijn
—@ij-1n+1 t e Pijn+1 — %7 Pij+1n+1
[1 + = 2 l,j n] [1 + T vi,,j,n]
how , w how
[1 + W vi,j,n] 2 [7 - 1] ) [1 — 7 Ui,j,n]

= e, 1Pt + %7 ®ij+ he Pir1j
[1 + T V; ] [1 + T vi,j,n] [1 + T vi,j,n]

h%B
+ = (4.2.13).
[1 4o ;,n]
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which implies that:

,j—1,n+1 gs ,jn+1 gs ,j+1,n+1 B
gs , 29, , 9gds4 h’B
== i t—@ =@+ — (4.2.14).
gs " L gs " gs L Is
where:
@ 7 X hw
gi=|7-1, G=|3+A-8FsNw)| ,  gs=|1+—vijn|,
ho ho ho
S e ] IR L et

Equation (4.2.14) can be reduced to give:

AL @i j—1n41 + BLO @i jne1 + CLD @) jr1n41 =

D1(i) (4.2.15).

where i = 1,2,..........,M , and:

A1() = -1

B1(i) = 2(92/9s)

C1()) = —(ge/gs) _
D1(i) = (93/95)Pi-1; + 2(g1/95)0i; + (ga/9s)@ir1; + (h*B/gs)

From equation (4.2.14), we create a tri-diagonal system which is solved numerically using the
Gauss elimination method and using MATLAB at the time-step ¢t + 1 [21].
With boundary conditions:

r__ ! — ! —
v’ = cons. Vo, jm =0 , Vion=0
I ’ _ !
V' = cons. Vo,jn =0 , Vion
=0 (4.2.16).

Pion = 0 Pinn = 1.0
5. Results and Discussion

The numerical computations were performed using the described alternative direction
implicit method on the energy equation to study the effects of physical parameter values that
appear in this equation, such as Brinkman parameter Fs , Reynolds parameter Re, and
Boltzmann parameter B,, as shown in Figures 1-4.

In Figure 1, the xy plane represents the location of points on the lattice, that is, the
coordinates of the point in the t-matrix resulting from the numerical solution of the energy
equation, while the third dimension z represents the temperature values at those points. It is
noticed that the increase in Fs causes an increase in temperature inside the boundary layer, as
shown in Figure 2. From Figure 3, we observe that the increase in Re causes an increase in
temperature inside the boundary layer. Finally, we found that the decrease in B, causes an
increase in temperature inside the boundary layer, as shown in Figure 4.
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0 0 X-Axis
Figure 1- Temperature Behaviour

The Effect of Brinkman Number Fs
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Figure 2- The effects of Brinkman Number Fs at two selected points with Re = 1000, B, =
15

3630



Hammodat et al. Iragi Journal of Science, 2021, Vol. 62, No. 10, pp: 3620-3633

The Effect of Reynolds number Re

1.8 I T T T T
161 .
14+ 5
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o
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8
@
Q
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—1(5,6),Re=100
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----- 1(7,8),Re=100
""" 1(7,8),Re=500
t(7,8),Re=1000
[ [ T
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lterations

Figure 3- The effects of Reynolds Number Re at two selected points with Fs = 0.32, B;=15

The Effect of Boltzmann Number Bo
6 T T T T T

Temperature

[ [ [ [
0 50 100 150 200 250 300
lterations

Figure 4- The effects of Boltzmann Number B, at two selected points with Re = 1000, Fs =
0.32

6. Conclusions

1. The present study is concerned with the energy equation, that represents a partial
differential equation obtained from fluid flow in channels under the influence of magnetic
field, perpendicular to the channel, with the presence of radiation. The study shows the
acquisition of the steady state from the unsteady state. We reached several results; the
temperature inside the boundary layer increases when the Brinkman number increases. The
temperature inside the boundary layer increases when the Reynolds number increases. The
temperature inside the boundary layer decreases when the Boltzmann number increases.
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