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Abstract

In this paper, chaotic and periodic dynamics in a hybrid food chain system with
Holling type 1V and Lotka-Volterra responses are discussed. The system is observed
to be dissipative. The global stability of the equilibrium points is analyzed using
Routh-Hurwitz criterion and Lyapunov direct method. Chaos phenomena is
characterized by attractors and bifurcation diagram. The effect of the controlling
parameter of the model is investigated theoretically and numerically.
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Introduction

Nonlinear phenomena play important rules in design systems of engineering and structures. The
works of Lotka [1] and Volterra [2] are the most major works in mathematical models and dynamical
systems. Researchers in ecology and engineering reported the essence of chaos [3-12]. In the analysis
of the mechanical model, the geometrical non-linearity, represented by the pendulum, may lead to
chaotic dynamics [4, 13]. Continuous three species food chain models from dissipative dynamics are
accounted for to have complicated patterns, such chaos limit cycle, and stable cycle [14-17]. Two
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types of hybrid functional responses of a food chain model were investigated [18] and the numerical
works proved the existence of chaotic dynamics. Upadhyay et al. [19] proposed and studied a tri-
trophic food chain model with Sokol-Howell functional response, incorporating the multiple gestation
time delays. They explored the existence of various dynamical structures, such as Hopf-bifurcation,
periodic solutions, and chaotic dynamics. Fayeldi et al. [20] applied Euler method to discretize a SIR
epidemic model with non-monotone incidence rate. They showed analytically and numerically that the
discrete model is dynamically consistent with its continuous model. Liu and Huang [21] investigated
the dynamical behavior of a predator-prey system with Holling type IV functional response, in which
both species are subject to harvesting. They illustrated that using the harvesting effort as a control
parameter can change the behaviors of the system, which may be useful for the biological
management.

The primary motivation behind this work is to examine the dynamics of a three species model. A
food chain model with Lotka-Volterra and Holling type IV functional responses is proposed and
studied both theoretically and numerically. The food chain model is modified to the food chain model
studied in [9], so that it involves Lotka-Volterra type of functional response in the second and third
levels, instead of Holling type-1l functional response that was used in the previous work. The idea of
such modification comes from the fact of availability of food at the second level in the environment.
The second reason for such modification is that we want to reduce the intensity of nonlinearity in the
system and then study the effects of such reduction on the existence of chaos.

The Mathematical Model

Consider a three species food chain model consisting of the prey, their density at time t is denoted by
x(t), the intermediate predator, their density at time t is denoted by y(t), and the top predator, their
density at time ¢t is denoted by z(t). It is assumed that the intermediate predator preys upon its sole
food at the lower level according to a modified Holling type IV functional response, and the top
predator preys upon the intermediate predator at the second level according to Lotka-Volterra
functional response. The dynamics of the above food chain model can be represented by the following
system:

dx wiXxy
E: ax—bx2 _h-}-xz = Fl(x'yrz)

dy Wy Xy

dt hixz —diy —wsyz = F,(x,y,7) @
dz

T wyyz —d,z = F3(x,y,2),

with x(0) > 0,y(0) = 0,z(0) = 0. Obviously, system (1) is continuous and has continuous partial
derivatives on the positive octant R3 = {(x,y,z) € x(0) = 0,y(0) = 0,z(0) = 0}, and hence the
solution of the system (1) exists and is unique.

Here, the positive constants a, b, dj, h; j=12 and W,; k=1,2,34 denote the following: a is
the growth rate of the prey X, b represents the intraspecific competition of prey X, W, represent the

maximum values attainable by each per capita rate, h is the half-saturation constant, and d;

represent the death rates of the intermediate and the top predators, respectively. Moreover, it is easy to
verify that system (1) is uniformly bounded.
Stability Analysis

This section deals with the stability analysis of the non-negative equilibrium points of system (1).
There are at most four non-negative equilibrium points, which are denoted respectively as Ey, Ey, E,
and the interior equilibrium point E.

The trivial equilibrium point E, = (0,0,0) and the axial equilibrium point E; = (%,0,0) always
exists. While the planer equilibrium point is E, = (X, ¥, 0) where

fo e @b @

- 2d4 2d4 ’ w1
Clearly, there are two positive planar equilibrium points denoted by E,; = (¥;,¥;,0) and E,, =
(x5, ¥2,0) if and only if the following condition holds

w,2 — 4d,%h > 0, (3a)
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while system (1) has a unique planar equilibrium point E, = (x, y, 0) provided that

w,2 = 4d,°h. (3b)
The positive equilibrium point E; = (x*,y*, z*) exists in the interior of the first octant if and only if
the following conditions hold

d, ah
e Sy ()
dy <25, (4b)
where
*_k * _i wox* _
y = w,' z = ws <h+x*2 dl)' (5)
While x* is a positive root of the following equation
bx3 — ax?® + bhx + (W1 42 _ ah) =0. (6)
Wy

According to Descartes's rule of signs, Eq. (6) has either one positive root (given by E3) and two
complex conjugate roots or three positive roots. Straightforward computation using Mathematica
software shows that Eq. (6) has only one positive root with two complex conjugate roots.

Now, the local dynamical behavior of the food chain system (1) near the above equilibrium points is
investigated. It is observed that the eigenvalues of the variational matrix of system (1) near the trivial
equilibrium point (E,) are determined as

) Yo =a> 0; Yoz = —dl,_V_03 = —dz_, _ @)
while the eigenvalues near the axial equilibrium point (E,) are given by
b
Yi1=-a<0; ¥z = ,wwzz—;z— d1,¥13 = —d;. (8)

Hence, the trivial equilibrium point is a saddle point, while the axial equilibrium point is locally
asymptotically stable provided that the following condition holds

wyab
hb22+a2 <d;. (9)

Moreover, the eigenvalues of system (1) near the planar equilibrium point E, can be written as:
T VT2-4D T VT2-4D _
Vo1 =5 =5 5 Va2 =5t V23 = WaY —dy, (10)

_ =] 2w, XY _ wiwy(h—%%)xy . . .
where T = x[ b+(h+f2)2] and D =y Thus, according to these eigenvalues, if the

condition (3a) holds then both the planar equilibrium points are saddle points due to the negativity of
D that leads to the existence of positive eigenvalues. However, if the condition (3b) holds, then the
unique planar equilibrium point becomes non-hyperbolic point due to the existence of zero eigenvalue
and hence the linearization does not give the real stability type.

Now, for the positive equilibrium point, the variational matrix of system (1) around E; = (x*,y",z")
is computed as:

* * *
z") = (v;; 11
vyt e) = (), L (11)
where
*2 % * * %2
oy XY _ o wax _ 0 _woyt(h—x)
V11 = —bx —B*z » V12 = B Viz =V, V21 = —B*z )
*
_ sz b * _ * _ 0 _ * — O
1722——3* —0—W3Z, VUy3z=—W3y, V31 =VU, U3y =Wyz, V33 =V

here B* = h + x**. Then the characteristic equation of the variational matrix (11) can be written as

/13 + K1/12 + Kzl + K3 = 0 (12)
where
2W1x*2y*
Kl = bx* — T 2
wiw,x*y*(h — x*
K, = WXy ( ) + waw,y'z®

B*®
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* Zwlx*zy* * *
K3 = | bx" — ——=— ) (Wsy") (Waz")

B**
while . * * .
KKy — Ky = <bx* - ZW;Z Y )(W;x )(Wzy (;2_ )
Clearly, K; > 0,K3; > 0 and K; K, — K3 > 0 if and only if the following conditions are fulfilled
2 < (13a)
x* <h (13b)

Therefore, according to the Routh-Hurwitz criterion [22], the locally asymptotically stable E; =
(x*,y", z") takes place. However, the region of the global stability of the positive equilibrium point is
investigated in the following theorem.

Theorem 1. Assume that E; = (x*,y*,z*) of system (1) is locally asymptotically stable and the

following condition holds
wy*(x+x*)

w5 <b (14a)
xy*+x'y <xy+x'y* (14b)
W W1, Wa(x+x7) (14c)

B B BB*
where B = (h + x?2). Then, the basin of attraction in the Int. (R3) of E; satisfies the above conditions.

Proof. . Consider the positive definite function
_rx (X=x9) y Y-y) ws rz (Z-2%)
L(x,y,z) = fx*TdX + fy*TdY +W_4_fZ*TdZ'

Taking the derivative of L with respect to t along the solutions of system (1), we get after some
algebraic manipulation that
daL *(x+x") * (x+x7) * *
th= [ - [t e )

Clearly, under the given conditions that % is negative semi definite and then by using Lyapunov

method, the positive equilibrium point is stable. Moreover, it is easy to verify that, by using LaSalle's
invariance principle , E3 is the only invariant set for which the solution is approached
asymptotically and hence it becomes an attracting point. Therefore, E5 is an asymptotically stable
point for any initial point that belongs to the region that is satisfying the above conditions.
Numerical exploration
The global dynamics of system (1) is studied numerically using six order Runge-Kutta method.
Many cases of system (1) are obtained for the following set of fixed parameters values
a=0.7,b=091h=0.15w, = 595,w; = 0.9,w, = 0.6,d; = 0.0005,d, = 0.01 (15)
Bifurcation diagram and the typical 3D attractors of system (1) are plotted with their projections and
time series in the boundary planes. The fundamental target is to investigate the possibility of chaotic
behavior in system (1) by relying upon the controlling parameter and keeping different parameters of
(15) fixed.
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Figure 1- Bifurcation diagram of system (1) for data set (15) that showing the successive
maxima of y as a function of a € (0.65,0.90) and w; = 6.1.
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Figure 2- 3D chaotic attractor of system (1) for data set (15) with w; = 6.1

Now, in the first case when w; = 6.1 with the data set (15), it is observed that system (1) is chaotic
and approaches to periodic attractor, as shown in Figure-2 and Figure-3a-b. In the second case, by
decreasing the value of w; to 4.1, system (1) approaches to a limit cycles attractor, as shown in Figure-
4a-b. The third case deals with keeping on decreasing the values of w, and d, to 0.001 for data (15),
where we observe the change in the dynamics of system (1) from limit cycles attractor to stable point,
as blotted in Figure-5a-b.
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Figure 3- a) 2D projection in the xy — plane of the chaotic attractor given by Figure-2,
b) Time series of Figure-3a
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Figure 4- a) 3D of system (1) periodic attractor for data (15) with w, = 4.1,
b) Time series of Figure-4a.
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Figure 5- a) 3D of system (1) stable point for data (15) with w; = d, = 0.001,
b) Time series of Figure-5a

Conclusions

A food chain system with modified Holling type IV and Lotka-Volterra functional responses is
proposed and discussed. The global stability of the system is investigated using Routh-Hurwitz
criterion and the second method of Lyapunov. Bifurcation diagram and attractors are blotted to study
the behavior of the hybrid continuous time model. The parameter w; is controlling the dynamics of
this food chain model. Moreover, replacing Holling type-Il functional response in [9] by Lotka-
Volterra response in system (1) above reduces the effect of nonlinearity and makes the dynamics less
chaotic. In fact, the system approaches clearly a periodic behavior.
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