Iraqi Journal of Science, 2018, Vol. 59, No.3B, pp: 1450-1452 DOI:10.24996/ijs.2018.59.3B.12

Best Approximation in Modular Spaces By Type of Nonexpansive Maps

Salwa Salman Abed*, Nadia Jasim Mohammed

Department of Mathematic, College of Education for Pure Sciences, Ibn Al-Haitham, Uinversity of Baghdad, Iraq

Abstract

This paper presents results about the existence of best approximations via nonexpansive type maps defined on modular spaces.

Keywords: Modular spaces, best approximation, fixed points. AMS (2010) subject classification: 46B20, 47H09.

أفضل تقدير في الفراغات المعيارية حسب نوع الخرائط غير التقريبية سلوى سلمان عبد*، نادية جاسم محمد قسم الرياضيات ، كلية التربية للعلومالصرفه / ابن الهيشم ، جامعة بغداد ، بغداد، العراق

الخلاصة

تقدم هذه الورقة نتائج عن وجود أفضل التقريباات بواسطة تطبيقات من نوع اللامتمددة معرفة على

فضاءات الوحدات.

1. Introduction and Preliminaries

Modular spaces are extensions of Lebesgue, Riesz, and Orlicz spaces of integrable functions [1]. A general theory of modular linear spaces was founded by Nakano 1950 [2]. Nakano's modulars on real linear spaces are convex functionals. Nonconvex modulars and the corresponding modular linear spaces were constructed by Musielak and Orlicz (we refer to [2]). In 2006, Vyacheslav Chistyakov [3, 4] was introduced the concept of a metric modular on a set, inspired partly by the classical linear modulars on function spaces employed by Nakano and other in the sense of Chistyakov. In the formulation given by Kowzsłowski[5], "a modular on a linear space \mathcal{V} over the field $\mathcal{K} (= \mathcal{R} \text{ or } \mathcal{C})$ is a function $m: \mathcal{V} \to [0, \infty]$ such that

(i) $m(x) = 0 \Leftrightarrow x = 0$;

(ii) $m(\alpha x) = m(x)$ for $\alpha \in \mathcal{K}$ with $|\alpha| = 1$, for all $x \in \mathcal{V}$;

(iii) $m(\alpha x + \beta y) \le m(x) + m(y)$ such that $\alpha, \beta \ge 0$, for all $x, y \in \mathcal{V}$.

Moreover, modular m is called convex, if (iii) replaced by

(iii) $m(\alpha x + \beta y) \le \alpha m(x) + \beta m(y)$ if $\alpha, \beta \ge 0, \alpha + \beta = 1$ for all $x, y \in \mathcal{V}$."

"A sequence $\{v_n\} \subset \mathcal{V}$ is said to be γ -convergent to $v \in \mathcal{V}$ and write $v_n \to v$ if $m(v_n - v) \to 0$ as $n \to \infty$. A sequence $\{v_n\}$ is called Cauchy whenever $m(v_n - v_m) \to 0$ as $m, n \to \infty$. Also, \mathcal{V} is called complete if any Cauchy sequence in \mathcal{V} is convergent. A subset $B \subset \mathcal{V}$ is called closed if for any sequence $\{v_n\} \subset B$, convergent to $\in \mathcal{V}$, we have $v \in B$ " [6].

"A closed subset $B \subset \mathcal{V}$ is called compact if any sequence $\{v_n\} \subset B$ has a convergent subsequence" [7].

"A selfmap J on $B \subseteq \mathcal{V}$ is called contraction mapping if $\exists h \in (0, 1)$ for all v, u in $\mathcal{V}, m(J(v) - J(u)) \leq h m(v - u)$

and if h = 1 then J is called a non –expansive mapping" [7].

"A map *J* is demi-closed at 0 if $\{v_n\} \subseteq B$, v_n converges weakly to $v, w_n \in J(v_n)$ and $w_n \to 0 \Rightarrow 0 \in J(v)$.

 \mathcal{V} is said to be Opial if for every sequence $\{v_n\}$ in \mathcal{V} weakly convergent to $v \in \mathcal{V}$ the inequality

*Email: salwaalbundi@yahoo.com

)

$$\lim_{n \to \infty} \inf \gamma(v_n - v) < \lim_{n \to \infty} \inf \gamma(v_n - u)$$

holds for all $u \neq v''$ [7].

"Let \mathcal{V} and W be two modular spaces, recall that a set -valued mapping $J: \mathcal{V} \to W$ is a subset of $\mathcal{V} \times W$ with domains \mathcal{V} ; equivalently, I is a point to set map assigning to each $u \in \mathcal{V}$ a nonempty subset J(u) of W.

let $v \in V$, v is called a fixed point of S if $v \in J(v)$ (when S is single valued, v is fixed point of S if v = I(v) A set-valued mapping is upper semi continuous (shortly, u.s. c.) if and only if the set $\{u \in M_{\mathcal{V}}: J(x) \cap B \neq \emptyset\}$ is closed for each closed subset B of W." See [8].

"Consider $\emptyset \neq B \subset \mathcal{V}$, the element $y \in B$ is a best approximation for a given $x \in \mathcal{V}$; if

$$m(x-y) = d_m(x,B) = \inf_{y \in B} m(x-y)$$

and $P_B(x)$ or Px the set of all elements of best approximation of x by B.

A subset B is called Chebysev if $\forall x \in \mathcal{V}, \exists ! y \in \mathcal{U}$ such that $m(x - y) = d_m(x, B)$. "[9]. Main Results.

First we start with the following definition:

A multivalued map $I: B \to 2^B$ is called *-nonexpansive if $\forall x, y \in B$ and $a_x \in$ **Definition 1:** I(x)with $m(x-a_x) = \sigma(x, I(x)),$

 $\exists a_{y} \in J(y) \text{ with } m(y - a_{y}) = \sigma(y, J(y)) \ni m(a_{x} - a_{y}) \leq m(x - y).$

The concept of *-nonexpansive map coincides with a nonexpansive for a single Remark (2) valued map. Thus we have the result shown in [10].

Define *-nonexpansive map $K: B \to 2^B$ by

$$K(x) = \bigcup \{ P(y) \colon y \in J(x), \sigma(J(x), B) = \sigma(y, B) \}$$
(1)

For the first result, fix C(B) as the class of all nonempty compact subsets of B and b-starshaped mean starshaped with starcenter at b. Then we have the following

weakly compact *b* –starshped Theorem 2: let *B* be a nonempty subset of complete convex modular space \mathcal{V} , *K* as in(1) and $J: B \to C(B)$ is usc such that $\exists x_0 \in B, a_{x_0} \in B$ $J(x_0), m(a_{x_0}) < \infty$. If $\forall x, K(x)$ is compact Chebyshev and I - K is demiclosed at 0 then $\exists z \in B \ni B$ $\sigma(z, I(z)) = \sigma(I(z), B).$

Proof:

The compactness of J(x), $\forall x$ implies that $K(x) \neq \emptyset$. Since K(x) is Chebyshev so by definition of *-nonexpansive, $a_x \in K(x)$ is unique and $\exists ! a_y \in K(y), \forall y \in B \exists$ $m(a_x - a_y) \le m(x - y)$ (2)

Let $J_n: B \to B$ such that $J_n(x) = \theta_n a_x + (1 - \theta_n)b$, where $0 < \theta_n < 1, \forall n \text{ and } \theta_n \to 1 \text{ as } n \to \infty$. By convexity of \mathcal{V} and (2), we have $\forall x, y \in B$, $m(J_n(x) - J_n(y)) \le \theta_n m(x - y).$

So, $\forall n$, J_n is contraction and hence, by [6], has a fixed point $z_n \in B$. the sequence $\{z_n\}$ has a subsequence, also say{ z_n }, converging weakly to $z \in B$. By definition of $J_n, \exists a_n \in K(z_n) \ni$ Z_n

$$a = J_n(z_n) = \theta_n a_n + (1 - \theta_n)$$

And then

 $y_n = a_n - z_n = (1 - \theta_n)(a_n - b) \rightarrow 0 \text{ as } n \rightarrow \infty$ (3)Since I - K is demi-closed at 0, the sequence $\langle z_n \rangle$ converges weakly to $z, y_n \to 0$ where $y_n =$ $a_n - z_n \in K(z_n) - z_n$. Thus $0 \in (I - K)(z) \Rightarrow z \in K(z)$. Therefore, for some $w \in I(z)$ with

$$m(J(z)) = \sigma(w, B), z \in P(w).$$

We have

$$\sigma(z, J(z)) \le m(z - w) = \sigma(w, B) = \sigma(J(z), B) \le \sigma(z, J(z))$$

$$\Rightarrow \sigma(z, J(z)) = \sigma(J(z), B)$$

The proof is complete.

Now, we state the definition of weak nonexpansive map (shortly, called w –nonexpansive map) **Definition 3:** A multivalued mapping $J: B \to 2^B$ is called w- nonexpansive if $\forall x \in B, a_x \in$ J(x) there is $a_y \in J(y), \forall y \in B \ni m(a_x - a_y) \le m(x - y).$

Theorem 4: The result of Theorem (2) also hold if \mathcal{V} satisfies Opial's condition instead of demi closeness.

Proof: Since the *-nonexpansive mapping *K* is weakly nonexpansive. So, $\forall n, a_n \in K(x_n), \exists b_n \in K(z)$ such that $m(a_n - b_n) \leq m(x_n - z)$ (4) As K(z) is compact so $\langle b_n \rangle$ converges to some $u \in K(z)$. Combination of (4) with $b_n \to 0$ and $z_n \to u \Rightarrow$ $\liminf m(z_n + x_n - b_n) = \liminf m(x_n - u) \leq \liminf m(x_n - z)$

By Opial's condition, we have $B_{1}^{(2)}$

$$\liminf m(x_n - z) < \liminf m(x_n - u).$$

Thus $z = u \in K(z)$.

Therefore, the final step of proof follows from previous argument.

About invariant best approximation we prove the following result **Theorem (5):** Let *B* be a closed subspace of a convex modular space *V* and $J: B \to V$ be a continuous map. If $P^\circ J: B \to B$ is linear nonexpansive map such that $\exists u_0 \in B$ with $(P^\circ J)^2 (u_0) - 2(P^\circ J)(u_0) +$

 $u_0 = 0$ then $m(u_0 - J(u_0)) = \sigma(J(u_0), B)$. Moreover, if $J(u_0) \in B$, then J has a fixed point.

let $K = P^{\circ}J$ then $K: B \to B$ is linear nonexpansive \exists

$$(K)^{2}(u_{0}) - 2(K)(u_{0}) + u_{0} = 0$$

From linearity of K, we have $(K - I)(K - I)(u_0) = 0$ Let $(K - I)(u_0) = u$ $\Rightarrow (K - I)(u) = 0 \Rightarrow K(u) = u$. $\Rightarrow K(u_0) = u_0 + u \Rightarrow K^n(u_0) = nu, \forall n \ge 1$. Consider $nm(u) = m(K^n(u_0) - u_0)$ $\leq m(K^n(u_0) - K(0)) + m(u_0)$

$$\leq 2m(u_0) \qquad m(u_0) + m(u_0)$$

Hence, $m(u) \leq \frac{2m(u_0)}{n}$, $\forall n \geq 1$. As $n \to \infty$, we get $u = 0 \Rightarrow K(u_0) = u_0$. Therefore, $(P^\circ J)(u_0) = u_0 \Rightarrow m(u_0 - J(u_0)) = \sigma(J(u_0), B)$ done. **Open problem**

Consider $J: B \to V$, where *B* is convex set *J* is midpoint concave (or convex) map if $\frac{1}{2}J(x) + \frac{1}{2}J(y) \subseteq J\left(\frac{x}{2} + \frac{y}{2}\right), \forall x, y \in B.$ (or, $J\left(\frac{x}{2} + \frac{y}{2}\right) \subseteq \left(\frac{1}{2}J(x) + \frac{1}{2}J(y)\right)$ respectively. Is there $u_0 \in B \ni m(u_0 - J(u_0)) = \sigma(J(u_0), B)$?.

References

- 1. Chistyakov, V.V. 2015. "Metric modular spaces" Springer.
- 2. Nakano, H. 1950. "Modulared semi-ordered linear spaces", in: Tokyo Math. Book Ser., vol. 1, Maruzen Co., Tokyo.
- 3. Chistyakov, V.V. 2006. "Metric modulars and their application", Dokl. Akad. Nauk, 406, no. 2, 165{168. MR 2258511}.
- 4. V. V. Chistyakov, V.V. 2010. "*Modular metric spaces. I. Basic concepts*", Non-linear Anal. 72, no. 1, 1-14. MR 2574913.
- 5. W. M. Kozlowski, W.M. **1988.** "*Modular function spaces*", Monographs and Text books in Pure and Applied Mathematics, vol. 122, Marcel Dekker, Inc., New York, 1988. MR 1474499.
- 6. Chen, R. and Wang, X. 2013. Fixed point of nonlinear contractions in modular spaces, J. of Ineq. and Appl., 2013, 399.
- 7. Abed, S.S. and Abdul Sada, K.A. 2017. "Common fixed points in modular spaces" accepted in Conf. of coll. Of education for pure sciences, Ibn Al-Haitham, 2017.
- 8. Abed, S.S. and Abdul Sada, K.A. 2017. "*Approximatively Compactness and Best Approximation in Modular Spaces*" accepted in Conf. of Scie. Coll., Nahrain University.
- **9.** Abed, S.S. **2017.** "On invariant best approximation in modular spaces", Global Journal of Pure and Applied Mathematics, **13**(9): 5227-5233.
- 10. Abed, S.S. and K.A. Abdul Sada, K.A. 2017. "An Extension of Brosowski- Meinaraus Theorem in Modular Spaces", Inter. J. of Math. Anal., Hikari Ltd., 11(18): 877 882.