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Abstract
This paper presents results about the existence of best approximations via
nonexpansive type maps defined on modular spaces.

Keywords: Modular spaces, best approximation, fixed points. AMS (2010) subject
classification: 46B20, 47H09.

L A 8 BiAY £od s Ajlaal) SR B ks Lo
dana anly Lol Fae Glala gl
Ghadl sy ¢ 2y Aaala ¢ Augdl Gl [ Abpalloglell Ayl IS ¢ clualy)ll and

-

Al
e A snadl) g e cligd daulsy iyl duadl sy oo 2 A0 o2 A
sl el

1. Introduction and Preliminaries

Modular spaces are extensions of Lebesgue, Riesz, and Orlicz spaces of integrable functions [1]. A
general theory of modular linear spaces was founded by Nakano 1950 [2] . Nakano’s modulars on real
linear spaces are convex functionals. Nonconvex modulars and the corresponding modular linear
spaces were constructed by Musielak and Orlicz (we refer to [2]). In 2006, Vyacheslav Chistyakov [3,
4] was introduced the concept of a metric modular on a set, inspired partly by the classical linear
modulars on function spaces employed by Nakano and other in the sense of Chistyakov. In the
formulation given by Kowzslowski[5], *a modular on a linear space V over the field X'(= Ror C) is
a function m:V - [0, co]such that
()mx)=0=x=0;
(i)m(ax) = m(x) for a € X with|a| = 1,forallx €V ;
(iym(ax + By) < m(x) + m(y) suchthata,B = 0,forallx,y € V.
Moreover, modular m is called convex, if (iii) replaced by
(i) m(ax + By) < am(x) +pm(y) if @, > 0,a + B =1 forallx,y € V.

"A sequence {v,} c Vis said to be y-convergent to v € Vand writev,, > v if m(v, —v) - 0as
n— oo. A sequence {v,} is called Cauchy whenever m(v,—v,,)— 0 as ,m,n — o. Also, V is called
complete if any Cauchy sequence in Vis convergent. A subset BcV is called closed if for any
sequence {v,}cB, convergentto € V , we have v € B" [6].

"A closed subset BCV is called compact if any sequence { v, } cB has a convergent subsequence”
[7].

"A selfmap J on B <V is called contraction mapping if 3 h € (0,1) for all v, u in V, m(J(v) —
JW) < hm@ — u)

and if h = 1thenJ is called a non —expansive mapping" [7].

"A map J is demi-closed at 0 if {v,,} € B, v, convergrs weakly tov,w, € J(v,,)

andw,, » 0 = 0 € J(v).

V is said to be Opial if for every sequence {v,} in V weakly convergent to v € Vthe inequality
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lim,_, infy(v, —v) <lim,_ infy(v, —u)

holds for all u= v" [7].
"LetVand W be two modular spaces, recall that a set -valued mapping/: V — W is a subset of
V x Wwith domainsV ; equivalently, J is a point to set map assigning to each u € V a nonempty
subset J(u)of W.
let veV , vis called a fixed point of S if veE J(v) (when S is single valued , v is fixed point of S if
v=J(v) A set-valued mapping/ is upper semi continuous (shortly, u.s.c.) if and only if the set
{fueM,:J(x) N B # @}is closed for each closed subset B of IW." See [8].

"Consider® # B c V, the element y € B is a best approximation for a givenx € V; if

mx—y) = dn(x,B) = infyegm(x-y)

and Pg(x) or Px the set of all elements of best approximation of x by B.
A subset B is called Chebysev if Vx € V, 3!y € U such that m(x —y) = d,,(x,B). "[9].
Main Results.

First we start with the following definition:
Definition 1: A multivalued map J:B — 2B is called *-nonexpansive if Vx,y € Band a, €
J(x)with m(x —ay,) = o(x,j(x)),

da, €]() Withm(y - ay) = U()’J()’)) 3 m(ax_ay) <m(x—y).
Remark (2) The concept of *-nonexpansive map coincides with a nonexpansive for a single

valued map. Thus we have the result shown in [10].
Define *-nonexpansive map K:B — 2B by
K(x) =U{P(y):y €J(x),c(J(x),B) = a(y, B)} 1)

For the first result, fix C(B) as the class of all nonempty compact subsets of B and b-starshaped
mean starshaped with starcenter at b. Then we have the following
Theorem 2: let Bbe a nonempty weakly compactb —starshped subset of
complete convex modular space V, K asin(1) and J:B — C(B)is usc such that 3x, € B, a,, €
J(xo),m(ay,) < oo. If Vx, K(x)is compact Chebyshev and I — K is demiclosed at 0 then 3z € B 3
0(2,](2) = 6(/(2), B).
Proof:

The compactness of J(x),Vx implies that K(x) # @. Since K (x)is Chebyshev so by definition of
*-nonexpansive, a, € K(x) is unique and 3'a,, € K(y),Vy € B 3
m(ax —ay) <m(x—y) @)

Let J,.B - B such thatJ,,(x) = 6,a, + (1 — 68,)b, where 0 < 8,, < 1,vn and 8, > lasn > oo,
By convexity of V and (2), we have Vx,y € B,
m(Ja(® = Jn()) < Gpm(x - ).
So,Vn,J,is contraction and hence, by [6], has a fixed point z, € B. the sequence {z,} has a
subsequence, also say{z, }, converging weakly to z € B. By definition of J,,3a, € K(z,) 3

Zn = Jn(2n) = Opa, + (1 - 6,)b

And then
Yn=0ap— 2, =(1—6,)(a,—b) > 0asn - oo €©)

Since I — K is demi-closed at 0, the sequence (z,) converges weakly to z, y,, - 0 where y,, =
an,—2n €EK(z,) —2,. Thus 0 € (I — K)(2) = z € K(2).
Therefore, for some w € J(z)with

m(](z)) =o(w,B),z € P(w).
We have
O'(Z,](Z)) <m(z-w) =0Ww,B) =c((2),B) < O'(Z,](Z))
= a(z,](z)) =0(/(2),B)

The proof is complete.
Now, we state the definition of weak nonexpansive map (shortly, called w —nonexpansive map)
Definition 3: A multivalued mapping J:B — 28 is called w- nonexpansive if Vx € B,a, €
J(x) thereis a, €J(y),Vy €B 3 m(ax - ay) <m(x—y).
Theorem 4: The result of Theorem (2) also hold if V satisfies Opial's condition instead of demi
closeness.
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Proof: Since the *-nonexpansive mapping K is weakly nonexpansive. So, Vn,a, € K(x,),3b, €
K(z)such that
m(an — bp) < m(xy —z) 4
As K (z) is compact so {(b,,) converges to some u € K(z).
Combination of (4) with b,, » 0 and z, > u =
liminf m(z,, + x,, — b,) = liminfm(x,, — u) < liminfm(x,, — z)
By Opial's condition, we have
lim inf m(x,, — z) < liminf m(x, —u).
Thus z=u € K(2).
Therefore, the final step of proof follows from previous argument.
About invariant best approximation we prove the following result
Theorem (5): Let B be a closed subspace of a convex modular space V and J: B — V be a continuous
map. If P°J:B — B is linear nonexpansive map such that3u, € B with (P°))? (ug) — 2(P°)) (ug) +
uy =0 then m(uy— J(ug)) = a(J(uy), B). Moreover, if J(uy)€ B, then J has a fixed point.
Proof:
let K = P°J then K: B — Bis linear nonexpansive 3

(K)? (up) — 2(K)(ug) +ug =0
From linearity of K, we have
(K—DEK-Due)=0
Let (K—D(ug) =u
=>K-Dw=0=>Ku)=u.

= K(ug) =ug+u= K"(uy) =nu,vn > 1.

Consider nm(u) = m(K™(uy) — ug)

< m(K™(up) — K(0)) +m(ug)

< 2m(uyp)

Hence, m(u) < ,Vn=>1.Asn— oo,wegetu =0 = K(ugy) = u,.
Therefore, (P°))(uy) = uy = m(ug—J(ug)) = a(J(uy),B) done.
Open problem
Consider J: B — V, where B is convex set J is midpoint concave (or convex) map if

%](x) +%](y) E]G+§),Vx,y€B.

(or,J (’2—6 + %’) c (%](x) + %](y)) respectively. Is there ug € B 2 m(ug— J(ug)) = a(J(ug), B)?.

2m(ug)
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