Kider Iragi Journal of Science, 2021, Vol. 62, No. 7, pp: 2384-2392
DOI: 10.24996/ijs.2021.62.7.28

N/
Iraqi
Journal of
Science
N/
ISSN: 0067-2904

Some Properties of Fuzzy Inner Product Space

Jehad R. Kider
Branch of Mathematics and Computer Applications, Department of Applied Sciences, University of Technology

Received: 3/11/2020 Accepted: 13/1/2021

Abstract

Our goal in the present paper is to introduce a new type of fuzzy inner product
space. After that, to illustrate this notion, some examples are introduced. Then we
prove that that every fuzzy inner product space is a fuzzy normed space. We also
prove that the cross product of two fuzzy inner spaces is again a fuzzy inner product
space. Next, we prove that the fuzzy inner product is a non decreasing function.
Finally, if U is a fuzzy complete fuzzy inner product space and D is a fuzzy closed
subspace of U, then we prove that U can be written as a direct sum of D and the

fuzzy orthogonal complement D" of D.

Keywords: Fuzzy inner product space, Fuzzy orthogonal vectors, Fuzzy orthogonal
Complement.
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1.Introduction
It is known that probabilistic inner product spaces is a generalization of inner product spaces. This
type of spaces are defined in [1]. Also, in a special case, the notion of a probabilistic Hilbert spaces
was introduced in [2]. Other researcher introduced the fuzzy inner product spaces [3- 6].
The fuzzy topological structure of a fuzzy normed space was studied by Sadeqi and Kia in 2009 [7].
Kider introduced a fuzzy normed space in 2011 [8]. Also he proved that this fuzzy normed space has a
completion [9]. Again, Kider introduced a new fuzzy normed space in 2012 [10].
Kider and Kadhum, in 2017 [11], introduced the fuzzy norm for a fuzzy bounded operator on a fuzzy

normed space and proved its basic properties. Then, other properties were proved by Kadhum in 2017
[12]. Ali, in 2018 [13], proved basic properties of complete fuzzy normed algebra. Kider and Ali, in
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2018 [14], introduced the notion of fuzzy absolute value and studied properties of finite dimensional
fuzzy normed space.

The concept of general fuzzy normed space was presented by Kider and Gheeab in 2019 [15]. They
proved basic properties of this space and the general fuzzy normed space GFB(V, U) [16]. Kider and
Kadhum, in 2019 [17], introduced the notion of fuzzy compact linear operator and proved its basic
properties.

There is a need to understand how to define fuzzy inner product space to be reasonable to get the
similar results to the classical case. Therefore, we give a modification for the definition of fuzzy inner
product space. After that, two examples are solved to show the existence of such type of inner space.
Then, we prove some properties of this space.

2. Preliminaries

Definition 2.1 [8]. Suppose that U is any set, a fuzzy set Ain U is equipped with a membership
function, pz :U— [0,1]. Then A is represented by A ={(u,uz (w)): ueU, 0 < uz (u) < 1}.

Definition 2.2 [2]. Suppose that ®:1x1-1 is a binary operation where I1=[0, 1], then ® is known as a
continuous triangular norm (or continuous t-norm) if forall o, 3,y ,8 € |, the following properties are
satisfied:

(1) a®B = B, (Qa*1=a, B)(a®PVY = a ®(P®Y).

4 Ifa < Band y < §, then a®y < BRS.

Remark 2.3 [11]. (1) If a, B € (0, 1) with a > B, then we can find y € (0, 1) with a®y = B. (2) Ifo
€ (0, 1), then we can find § €(0, 1) with ®5 > o.

Definition 2.4 [12]. Let V be F-space, ® is a continuous t-norm, and N:VX[0. c0) —1 is a fuzzy set. If
the following conditions are satisfied for all a, b € V,and o,3 > 0:

(1) N(a, @) =0, (2) N(a, «)=1 if and only if a=0.

(3) N(ca, a) = N(a, %) forallc #0 € FF, (4)N(a, @) ® N(b, ) < N(a+b, a + ).

(5) N(a, .):[0, 00) — I is a continuous function of a.

(6) limg_, N(a, )=1,

then triple (V, N, ®) is known as a fuzzy normed space.

Remark 2.5 [12]. Assume that (V, N, ®) is a fuzzy normed space and suppose that €V. t>0 and
ge(0, 1). If N(a, t)>(1—q), then there is s with 0<s< t such that N(a, s)>(1—q).

Theorem 2.6 [18]. If & is a continuous t-norm, then (1)1® 1=1,(2)0® 1=0=1Q 0
B0®0=0,4aQa<aforallacl

Definition 2.7 [12]. Assume that (V, N, &) is a fuzzy normed space. Put FB(a, p, t)= {b €V:N(a—b,
t)>(1—p)}, FB[a, p, t]= {b €V:N(a—b, t)>(1—p)}. Then FB(a, p, t) and FB[a, p, t] are known as open
and closed fuzzy balls, respectively, where a €V is the center and pe(0, 1) the radius.

Definition 2.8 [12]. Assume that (V, N, ®) is a fuzzy normed space and W €V is known as fuzzy
bounded if there ist > 0 and q € (0, 1) with N(w, t) >(1—q) for eachw € W.

Definition 2.9 [12]. A sequence (v,) in (V, N, &) is said to be converges to v € V if for eacht >
0and g € (0, 1) we can find Ke N with N(v, -v, t) > (1—q) for all n>K. Or, in other words,
lim,_ . N(v,-v,t)=1orlim,_. v, =V, or simply represented by v,, —=v, v is known as the limit of
(Vn).

Definition 2.10 [12]. A sequence (v,,) in (V, N, ®) is known as a Cauchy sequence if for all g € (0, 1)
t> 0 there is Ke N with N(v, - v, ) > (1—q) forall m, n =K.

Definition 2.11 [12]. Suppose that (V, N, @) is a fuzzy normed space and W V. Then the closure of
W is written by W or CL(W), which is W= N{W<B: B is closed in V}.

Lemma 2.12 [14]. Assume that (V, N, ®) is a fuzzy normed space and W €V. Then w € W if and
only if we can find (wy) in W with w, - w.

Definition 2.13 [14]. A fuzzy normed space (V, N, ®) is known as complete if whenever (v,) is
Cauchy se in V then we can find veV with v,, -v.

3. Fuzzy Inner Product Space

Definition 3.1

Let U be a vector space over the field K (where K=R or K=C) and let ® be a continuous t-norm.
Assume that A:UxUxK—I where I=[0, 1] is a fuzzy set, then A is known as a fuzzy inner product if it
satisfies the following conditions:
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(AL A(p+a,w, |a| +B]) = Alp, w, |a]) ® A(g, w, |B1),
(A2) A(p, a, laBl) = A(p, p, lal?) ® A(q, g, |B1?),

(A3) A(p, g, a) = A(q, p, @),

(A4) A(sp, g, @) = A(p, 1, %) forall s #0 €K,

(A5) A(p,p,a)=0foralla e C— R,

(A6) For all a €[0, ), A(p, p, ) = 1 if and only if p=0,

(A7) A(p, 9, ): R —1 is a continuous function,

(A8) limy_e A(u, v, )=1,

forall p, g, w €U. Then (U, A, ®) is called a fuzzy inner product space.
Example 3.2

Let (U, <.,.>) be inner product and a @ b=aAb for all a, b €l. Define

lal if a € C—{0}and

lee|+|<p.g>|
u, v are linearly

independent

AP, 4 @) =10 ifa=0anduvarelinealy
independent

0 if a € C— (0,0)and u,v are
\ linealy independent
Then (U, A, ®) is a fuzzy inner product space.
Proof
We will show that all conditions of definition 3.1 are satisfied.
(A1)(1) If |a|=0and || #0, then A(p, w, |a|)=0, and notice that
I<Kp+qw>=|<pw> +<qw>|
<|l<pw>|+|<q,w>| Also
I<p+qw>|<|<q,w>| whichimplies |B| +|<p+qw>| <|B|+|<qw>|or

18] 18] ;
A1+ 1<piaws] > BT 1<amsT thatis A(u + v, w, [s]) = A(v, w, |s])
Thus, A(p +q, w, |al +[B]) = A(p, w, |al) A A(a, w, |B]).
(2) Similarly, we can show that
Alp+q,w, |al+|B]) = Alp, w, |al) A A(d, w, |B]) when |a| #0 and |B| = 0.
(3) When |a|=0 and |8|=0, then A(p + q, w, |a| + |8])=0, A(p, w, |a|)=0 and
A(g, w, |B1)=0, thus A(p + g, w, |a| +|B]) = A(p, w, |al) A A(g, w, | B]).
(4) Now, if |a| #0 and |B| #0, then we can assume, without losing the generality,
that A(p, w, |a|) = A(q, w, |B]) and |a| < |B], which implies that
|| > 18] lal+l<p.w>| _ |BI+|<q.w>| or
lal+l<pw>| — |Bl+ [<qw>| la| - 18I
|Blllal + 1< p,w>[] < lal[lB] + |< q,w >[] or
lal [B] + |al [< q,w >| =B la] = |B] |<p,w >| =0, thatis
la| < qw>|— |8l I<p,w>|=0........ @))

Now, A(p +q, w, |a| + |B]) — A(q, w, |B]) =

(lal+IBDIBI+I<qw>]1-|BI[lal+ |1B]+|<p+q.w>[]
lel+ |Bl+I<p+a.w>(1[IBl+]<qw>|
lallBl+lall<qw>|+ 817+ |<qw>|-|B]lal
- —IBI>=IBlI<p+q.w>|
lel+ |Bl+I<p+q.w> (1[I Bl+]I<qw>|
lallBl+lall<qw>|+ B +|B] |<qw>|
— —IBllal=1B 1= |BlI<p.w>|-|BlI<qw>|
llel+ |Bl+I<p+q.w>][|Bl+]|<qw>|
- lall<qw>|-|B||<p.w>|
[lel+ 1Bl1+I<p+qw>[IBl+]I<qw>| —
Since, from equation (1), we obtain
la| |< q,w>| =Bl |<p,w>|=0.Thus, A(p +q, w, |a| + |B]) = A(d, w, | BI)
But A(p, w, |a]) = A(v, w, |8]) by our assumption, hence we have

A +a,w, |al +[B]) = Alp, w, a]) A A(a, w, |B]).

lal+18l s
lal+ [Bl+I<p+aw>]  IBl+I<qw>|
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(A2) To show that A(u, v, |aB]) = A(p, p, |a|?) A A(g, g, | B]?);

(1) if @=0 or B=0, then af=0, which implies that A(p, 9, |aB])=1, A(p, p, |a|?)=1

or A(q, g, |81%)=1. Hence, A(p, g, |aBl) = A(p, p, lal?) A A(d, g, |B1?).

(2) If @ =0 and a=0, then a=0, which implies that A(p, g, |aB|)=1, A(p, p, |a|?)=1

and A(q, g, |81?)=1. Hence, A(p, g, |aBl) = A(p, p, lal?) A A(q, g, IB]?).

(3) If @ #0 and g #0, then |a| #0, |B]| #0 so |aB| #0. Without loss of generality, assume

2 2 2 2
that A(p, p, |C¥|2) > A(q, q’ |,B|2) S0 |al| > 18] or |al”+|<p,p>| < [B1*+|<q,q>|

- <pp> _ I<q.q>| |<pp>ll<qr;0>dlz+|<|£f;|>|: |BlZJ-rKIZ'lZ1>9|>|I<qq>||w|2 l<q,q>|? -
: < d 4 4 < . d 4 < d
BRIz = Bl » which implies that —on 7 < =172 = e S s =
Tl Hence, A(p, g, laff]) = A(g, g, |BI2), but

A(p, p. lal?) = A(q, g, |81?) by our assumption, thus A(p, g, laB]) = A(p, p, la|?) A Aa, g, |B1?).
(A3) To show that A(p, g, @) = A(q, p, @) we know that |a|=|&| for all @ € C. Now

AP, g @)= =9 _=__18__-aq,p,a).

lal+I<p.a>| ~ |@l+|<q, p>|

(A4) To show that A(sp, g, a) = A(p, q, E) for all s+0 eK.

(1) When a #0 € C and p, g are linearly independent, here we have two cases. Case one, if <p,
g>=0,

a

'“' =L Also, A(p, g, - = =Bl =1 Thus A(sp,

E Zl<p.a>]

@l __ lal
jal+l<sp.a>]  lal+Islpa>]

then A(sp, q, @) =

N

g, t) = A, q, %). Case two, if <p, q>#0, then
<sp, g>=s<p, g>=+0 if s#0. Now,

lal _ la| _ Isl AQ, q

lal+<ap.q>| lal+Isll<p.g>| —+|<p q>|

A(Sp, q, @) = ).
(2) When @=0 and u, v are linearly independent then here we have
A(sp, 9, @) =0= A, g, 7).

(A5) Now, A(p, p, «) =0 for all « € C — R follows immediately from our definition.
(A6) We prove that when e[O oo) A(p, p, @) = 1 if and only if p=0. Now,

—1 if and only if |< p,p >|=0, if and only if p=0.

Is]

A(p, p, @) =1if and only if

la |+|<
(A7) To show that A(p, g, ): R —>I |s a continuous function, let ( a,) be a sequence in R such that

|a’n| || .
= = A(p, g, ). This means
<] @ri<nas] - AP 4 )

that lim,,_,., A(p, q, @) = A(p, q, ). Hence, A(p, 9, ): R >l isa
continuous function.
(A8) Finally, we will show that lim,_,., A(p, g, )=1. Now,

_ . jal =
limg 0 A(p, q, @) =limg m -

a, = a € R. Now, lim,,,, A(p, q, a,) =limy,_

— i 1
= Mg 00 JI<pa>]

lal

Hence, (U, A, ®) is a fuzzy inner product space.
Example 3.3
Let (U, <., .>) be inner product space and a @ b=aAb for all a, b €l. Define
1 ifa<|<pq>|
Alp, g a)=40 ifa> |<pq>]
0 ifae C—R
Then, (U, A, ®) is a fuzzy inner product space.
Proof
We will show that all conditions of definition 3.1 are satisfied.
(AL) First, we will show that A(p + g, w, |a| + |8]) = A(p, w, |a]) A A(g, w, |B]).
D fa<|<pw>landpB <|< q,w >| then |a| < |<p,w>|and |B| < |< qw >|.
Thus, [lal + [Bll < [I<p,w >|+[<qw >[]=|<p+qw>|
So, A(p+q,w, |a] +[B])=1, A(p, w, |a|)=1, and A(q, w, |8])=1, that is
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Alp +a,w, |af +|B]) = A(p, w, |al) A A(g, w, |B]) holds.

@ fa>|<pw>land B > [< q,w >|, then|a| > |<p,w >|and |B] > |I< q,w >|.

Thus, [la| +|Bl] > [I<p,w >| +|< qw >[]] = |<p + q,w >|. So,

Al +q,w, |a| +|B])=0, A(p, w, |a])=0 and A(g, w, |B])=0, that is

A(p +a,w, |af +|B]) = A(p, w, |al) A A(g, w, |B]) holds.

B fa<s|<pw>anda > |< q,w>|then|a| < |<p,w>|and |B] > |< q,w >|.

This implies that A(p, w, |a[)=1, A(q, w, |8])=0, so A(p, w, |a|) A A(g, w, |B])=1A0=0.

But A(p +a,w, |a| +1B]) = 0. Thus A(p + g, w, |a| + B]) = A(p, w, |al) A A(G, w, |B])

holds.

(4) The case a > |<p,w >|and B < |< q,w >| is similar to the case (3) and hence is omitted.
(A2) To show that A(p, g, laB]) = A(a, p, lal?) A A(q, g, |B1?).

D) If |a]?> < |<p,p>]and |B]? < |< q,q >|, then

lal? IB1” < I<p,p >| I< q,q >|=Ipll* llqlI*= |< p,q >|? or

laB|? < |< p,q >|? which implies that |af| < |< p,q >|. Thus, A(p, q, |eBl) =1, A(p, p, la|?)=1
and A(q, g, |81%)=1, that is A(p, q, [aB]) = A(p, p, |a|*) A A(g, a, |8]?) holds.

@) If |a|?> > |< p,p >|and |B]? > |< q,q >|, then

lal? |al> > |[<p,p >] < q,q >I=Ipll* llqll*= < p,q >|?, or

laB|? > |< p,q >|? which implies that || > |< p,q >|. Thus, A(p, q, laB]) =0, A(p, p, |a|*)=0
and A(q, g, |81%)=0, that is A(p, q, |aB]) = A(p, p, |a|*) A A(q, a. |8]?) holds.

(3) If |a|> < |< p,p >| and |B]* > |< q,q >|, then A(p, p, |«|*)=1 and

A(a, d, 1817)=0, s0 Ap, p, ||*) A A(, g, |81?)=1A0=0. But

A(p, g, laBl) = 0, thatis A(p, q, laBl) = A(p, p, la|?) A A(g, g, |B1?).

(4) The case |a|? > |< p,p >| and |B]? < |< q,q >| is similar to case (3) and hence

is omitted.

(A3) A(p, g, @) = A(q, p, @) follows immediately from our definition.

(A4) A(sp, g, @) = A(p, q, %) for all s+0 eK follows from the property

|<sp,q>I=IslI<p,q>I
(A5) A(p, p, @) =0 for all @ € C — R follows immediately from our definition.
(A6) We prove that a €[0, ), A(p, p, @) = 1 if and only if p=0. Now, if p=0, then |< p,p >|=0 and
a < |<p,p>| implies A(p, p, t) = 1. Butif A(p, p, t) =1,
then |< p,p >| = a =0, which implies that |< p, p >|=0 so p=0.
(A7) A(p, 9, ): R =1 is a continuous function, which is clear.
(A8) Itis clear that lim,_,., A(p, q, ®)=1.
Hence (U, A, A) is a fuzzy inner product space.
The next result shows that every fuzzy inner product space is a fuzzy normed space.
Theorem 3.4
If (U, A, ®) is afuzzy inner product space where a @ b=aAb for all a, b €I, when we define
_{Al(p,p,a?) if a € (0,00)
NA(p’“)'{ 1 ifa<o0
then (U, Ny, ®) is a fuzzy normed space.
Proof
To check that all the conditions of definition 2.4 are satisfied.
(1) It is clear that 0< N,4(p, a)<1.
(2) Also, N4(p, @)=1 if and only if p=0.
2
(3) Now, N,(sp, @) = A(sp, sp, @2) = A(p, p, l%) = Ny(p, %) for all s#0 eK.
(4) We will show that Ny(p + g, @ + ) = N4(p, @) A Nu(Q, B).
We consider the following cases:
(1) When a <0 and g <0, then (a + £)<0
(2) When (a + 8)=0, a =0and g <0 or (a + 8)=0, « <0 and g >0.
(3) When (a + 8)=0, @ =0and B >0.
For cases (1) and (2), the result is obvious. Now,
Na(p+0,a+B)=A(p+0a,p+a(a+p)?)=Alp+0q,p+0q, a®+p*+ap +fa)
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> A(p, p, @) AA(G, 6, BZ) AAp, , aB) AA(d, P, Ba)
= A(pv pr aZ) A A(qv qr BZ) = NA(pv a) A NA(qv B)
(N5) is clear.
Hence, (U, N, ®) is a fuzzy normed space.
Theorem 3.5
If (U, 4,, ®) and (U, 4,, ®) are two fuzzy inner product spaces, where a @ g=min{a, £}, where all
a, B €l, then (U, A, ®) is also a fuzzy inner product space when we define A(p, 9, ) = 4,(p, 9, @) ®
A,(p, g, @) for all u, v eU.
Proof
We will show that all conditions of definition 3.1 are satisfied.
(Al) First, we will show that A(p + g, w, |a| + |B8]) = A(p, w, |a|) A A, w, |B]).
Al +a,w, |a| +|B]) = A1(p +q, W, |af +[B]) AAx(p +a, W, [a] +]B])
= Al(p1 W, |a|) A Al(q1 W, |ﬁ|) A AZ(p’ W, |a|) A AZ(q’ W, |B|)
= [Al(pv W, Ial) A AZ(pi w, |(Z|)] A [Al(q’ W, |B|) A AZ(qv w, |ﬁ|)]
=A@, w, [a]) A A, w, |B]).
(A2) To show that A(p, g, |aBl) = A(p, p, la|?) A A(g, g, |B1?). Now,
A(pv Q, |aﬁl) = Al (pv Q, |aﬁl) A AZ(pi Q, |(Xﬂ|)
= Al(p1 p, |(X|2) A Al(q! Q. |ﬁ|2) A AZ(pi P, |(X|2) A AZ(q’ Q, |ﬁ|2)
= [Al(p! P |a|2) AAZ(p! P |a|2)] A [Al(qi Q, |B|2) A AZ(qi o |.8|2)]
=A(p, p, lal*) AA, g, |B17).
(A3) To show that A(p, g, a) = A(g, p, &). We know that
A(pv q! (Z) = Al(pv q! (Z) /\AZ(p’ q’ (X) = Al(q1 pv (Y) A AZ(qv pv (7) = A(qv p’ (7)
(A4) To show that A(sp, g, @) = A(p, q, %) for all s#=0 eK. Now, A(sp, g, « ) = A1(Sp, 4, a) A A,(sp,
0. @) = A1(P. 0,75 A AP, 6 1) = A, 4. 7).
(A5) To show that A(p, p, ) =0 forall « € C — R. Let
A(p, p, @) =A;(p, p, a) A A,(p, p, )=0 A0=0 forall « € C — R.
(AB) To prove that when a €[0, «), A(p, p, «) = 1 if and only if p=0, then
A(p, p, ) = 1 if and only if A;(p, p, @) A A,(p, p, a )=1, if and only if A;(p, p, @)=1 and A,(p, p,
a)=1, if and only if p=0.
(A7) Itis clear that A(p, g, ): R =1 is a continuous function since
A1(p, 9,): R -l is a continuous function and A4,(p, g, ): R -1 is a continuous function.
(A8) Itis clear that lim,_,. A(p, q, @)=1, since lim,_,, A, (p, q, «)=1 and
lim,_ . A1(p, q, ®)=1. Hence, (U, A, A) is a fuzzy inner product space.
The proof of the next result is similar to the proof of Theorem 3.5 and hence is omitted.
Corollary 3.6
If (U, 4, ®), (U, 45, Q), ..., (U, 4, ®) are fuzzy inner product spaces where a @ g=min{a, £},
where a, S €l, then (U, A, ®) is also a fuzzy inner product space when we define A(p, g, @) = A, (p,
g, ) ® A,(p, 0, @) P... ® A,(p, q, @) for all p, g €U.
The proof of the next result is similar to the proof of Theorem 2.5 and hence is deleted.
Theorem 3.7
If (U, Ay, ®) and (V, Ay, Q) are two fuzzy inner product spaces where a« @ f=min{«a, £}, where a,
B €l, then (W, A, ®) is also a fuzzy inner product space when we define
VQ/;UXV and Al(p1, q1), (P2, 42), @) = Ay(p1, P2, @) @ Ay(q1, q2, @) for all p;, p, €U and g4, g2
EV.
The proof of the next result is similar to the proof of Theorem 3.7 and hence is omitted.
Corollary 3.8
If (U1, 41, ®), (U,, A3, ®), ..., (U,, A, ®) are fuzzy inner product spaces where a @ S=min{«a,
B}, where a, S €l, then (U, A, ®) is also a fuzzy inner product space when we define U=U; x U, X
. X Uy and A[(p1, P2,---Pn)s (1, G25---qn) V) = A1(P1, 4, @) ®
Az(p2, G2, @) Q... @ Ap(pn, vp, @) forall , p; € Uj and q; € V; forj=1,2, ....n.
The proof of the next result is straightforward and hence is deleted.
Proposition 3.9
If (U, A, ®) is a fuzzy inner product space, then
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(D) Aw,p+q,lal+[B)) = Aw,p, |a]) ® Alw, q, |B]).
(2) A(sp, q, a) = A(p, sq, a) for all s+0 € K.
(3) A(p, g, @) < A(p, 0, @) and A(p, g, @) < A(0, q, «) forall a € (0, o).
Lemma 3.10
The fuzzy norm N, is a non decreasing function.
Proof
We will show that if a < 8 then N4 (p, a) < N4(p, B). Now suppose that this fails.
That is, Ny(p, @) > Ny(p, B) for some 0< t<s. Then, Ny(p, @) @ N4(0, B — a) < Ny(p, B) < N4(p,
a), but Ny(0, B — a)=1. Thus, N,(p, @) < N4(p, a), which is a contradiction.
Lemma 3.11
The fuzzy inner product is a non decreasing function.
Proof
We will show that if @ < 8 then A(p, g, @) < A(p, q, 8). Now, suppose that this fails. That is, A(p, g,
a) > A(p, g, B) forsome 0< a < a. Then,
AP, 0, a) ® A(0, 0, B — a) < A(p, 0, B) < A(p, 0, @), but A(0, g, B — a)=1.
Thus, A(p, g, @ ) < A(p, g, @), which is a contradiction.
Theorem 3.12
Let (U, N, ®) be a fuzzy normed space. Define
0 ifp=qanda,f €C

A(p,q,a+[3)={ 1 ifp=qanda,p € (0,)

N, la) @ N(q,|B]) ifa,B €C
Then, (U, A, ®) is a fuzzy inner product space.
Proof
We will show that all conditions of definition 3.1 are satisfied.
(A1) To show that A(p + a, w, || + [B]) = A(p, W, |a]) ® A(g, w, |B])
Ap+aw, lal+1B)=A(+d,w, |a| +|8]+0)=N(p+q, |a| +[8]) & N(w, 0)
= N(p + q, a| +[B]) = N(p, la]) ® N(a, |B1)= [N(p, |a]) ® N(w, 0)] & [N(a, IB]) & N(w, 0)]=
Alp, W, al) ® Ag, w, |B1).
(A2) To show that A(p, g, [aB]) = A(p, p, a|*) ® A(a, g, |8]?). Now,
A(p, g, laB )= N(p, laB]) ® N(q, |aB]), but by lemma 2.10, |aB| > |a|, implies
N(p, [B1) > N(p, |al), also N(q, [aB]) > N(q, |8]). Thus, A(p, g, |aB]) > N(p, |a]) & N(q, |B]) =A(p,
p. lal?) ® A(a, g, |1B1?).
(A3) To show that A(p, q, @) = A(q, p, &). Let A(p, g, a)= N(p,
%= A@. p. @).
(A4) To show that A(sp, 0. t) = A(p, .7 for all s#0 €K. Let A(sp, 4, @)= N(sp, |al) ® N(g, 0)=

lal
2

lal
2

) ® N(a. 2 = N@@, Z) @ N,

N, 12D ® N(g, 0)= A(p, 9, 5).
(A5) A(p, p, «) =0 for all « € C — R follows immediately from our definition.
(AB) Now to show that for all @ €[0, ), A(p, p, ) = 1 if and only if p=0. We know that A(p, p, a)=
1for all « >1if and only if N(p, vVa)=1, if and only if p=0.
(A7) itis clear that A(p, g, ): R =1 is a continuous function, since N(p, .) is a continuous function.
(A8) Finally, to show that lim;_,., A(p, q, «)=1. Let
limg_q A(u, v,t)= limg_q N(p, [@]) &® lim,_4 N(q, |a])= 1®1 =1. Hence, (U, A, Q) is a fuzzy
inner product space.
The proof of the next result is similar to the proof of Theorem 3.12 and hence is omitted.
Theorem 3.13
Let (U, Ny, ®) and (V, Ny, ®) be two fuzzy normed spaces. Define

0 ifp=qanda,f €C
A(p,q,a+ﬁ)={ 1 ifp=qanda,f € (0,0)

Ny, |t]) @ Ny(q,Is]) ifa,p €C

and W=UxV. Then, (W, A, ®) is a fuzzy inner product space.
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Definitions 3.14

Let (U, A, ®) be a fuzzy inner product space.

(1) The vector peU is said to be fuzzy orthogonal to the vector geU and is denoted by p LF q if A(p,
g, «)=1 for some a €(0, o).

(2) The vector p€eU is said to be fuzzy orthogonal to subset D of U if p LF d for

every d+0 € D.

(3) D € U is known as a fuzzy orthogonal set if d LF d, for

every d, d,; € D.

(4) If D is a subset of U, then the fuzzy orthogonal complement of D is known as Dle{p eU:p LFd
for every d € D}.

The proof of the next result is straightforward and hence is omitted.

Lemma 3.15

If D is a subspace of the fuzzy inner product space (U, A, &), then Dfisa subspace of U.

Definition 3.16

The fuzzy inner product space (U, A, ®) is known as fuzzy complete if every Cauchy sequence (u,)
in U fuzzy converges to ueU.

Theorem 3.17

If (U, A, ®) is fuzzy inner product space and D is a fuzzy complete subspace of U, then for any ueU,
we can find a unique deD with 8=supg,epNa(U—dg, @)=N,(u—d, t) for some a €(0, o).

Proof

First, we show the existence of such deD. Using the definition of supremum, we can find (d,) €D

with 6,, — 8 where 6,=N,(u— d,,, %). We will show that (d,,) is Cauchy. Put u,=(d,, —u), so we have
Ny (ttn, 5)= 6. NOW, Uy, —up=dy, — d,, and when n, m > N€ N, we obtain

NA(dn - dm’ a): NA(un — Ums 0()Z NA(un ) %) ® NA(um ) %) 2 9n ® em-

Now, choose re(0, o) with 8,, ® 6,, > (1—r). This implies that

Ny(d,, — dp,, @) > (1—r) for each n, m > N. Hence, (d,,) is Cauchy in D, but D is fuzzy complete, so
we can find d €D with d,, »d and N,(u—d, t) > 6. Now

No(u=d, @)= No(u— dy + dyp, =d, @) = Ny (U= dp, 3) ® Na(dy —d, %) = 6, ® 1. By taking limit to
both sides, asn — o, (6, ® 1)— (8 ® 1)=6, hence,

Ny (u—d, a)= 6, which implies that N,(u—d, a)= 6.

Finally we show that such d is unique. Assume that d, d,, € D satisfies both

Ny(u—d, @)= 6 and N,y(u— dy, @)= 6. Now,

Ny (d— do, @)= Np(d— dy + dp — do, @) = No(d— dp , ) @ Na(dy — do . 3).

By taking limit to both sides as n — oo, we have N,(d— d,, a)=1, so d=d,.

Theorem 3.18

Let (U, A, ®) be fuzzy inner product space and if, in Theorem 3.17, D is a fuzzy complete subspace
of Y, then for fixed ueU, the vector z=u—d is fuzzy orthogonal to Y.

Proof

If z is not fuzzy orthogonal to Y, then we can find ye Y with A(z, y, a) #1. It is clear that y+0, since
otherwise A(z, y, a)=1. Let y be chosen so that 8 @ N,(y, ) = 6. Now, Ny(z, @) = Ny(u—d, a) =6
and Ny(z—y, 2a) = Ny(z, @) @ Ny(y, @) =0 @ Ny(y, @) = 6. But this is impossible because we
have z—y = u—d—y = u—y; where y,;=(d + y) €Y, so that N,(z—Yy, 2 a)< 6 by the definition of 8.
Hence, z must be fuzzy orthogonal to Y.

Theorem 3.19

If (U, A, ®) is fuzzy complete fuzzy inner product space and D is a fuzzy closed subspace of U. Then
U=D @ D+".

Proof

By using U is fuzzy complete and D is fuzzy closed, and we have that D is fuzzy complete, then using
Theorem 3.18 and Theorem 3.17, for every ueU we can find deD with u=d + z, where z€ D To
prove that u has one representation, let u=d + z and u=d; + z,,
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where d, d, €D and z, z, € D". Then, d—dy=z—z,, but d—d, € D whenever z—z, € D*". This

implies that d—d, € (D N DLF)z {0}. Thus, d = d,. Similarly z = z,.

Theorem 3.20

If (U, A, ®) is fuzzy complete fuzzy inner product space and D is a fuzzy closed subspace of U, then

D=p"L",

Proof

If d € D, this implies that d L D", which implies that d € DL"L". Thus, D € DL"L". On the other

hand, assume that u € D"+ and u=d + z, by Theorem 3.19, where d € D € D+"+". But, D+"" is a

subspace of U and ue DL™L". By our assumption, we also have z= u—d € DL"L", so z is fuzzy

orthogonal to D", Now, we have z 1Fz, thus z=0, thence u = d, that is ueD. Therefore, D+"1" cD.
— pLFLF

Hence, D=D .

Conclusions

In the present paper, we tried to present a definition of fuzzy inner product space, in order to define

next fuzzy complete fuzzy inner product spaces, known as fuzzy Hilbert spaces, which will be

reasonable enough to be extended. For the extension of fuzzy complete fuzzy inner product spaces,

this notion can be very helpful to us and other
authors to introduce easier proofs to some results in the ordinary case.
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