
Ali and Al-Hawasy                                   Iraqi Journal of Science, 2021, Vol. 62, No. 6, pp: 2009-2021 

                DOI: 10.24996/ijs.2021.62.6.27 

_______________________________________ 
*Email:  jhawassy17@uomustansiriyah.edu.iq 

2009 

Boundary Optimal Control for Triple Nonlinear Hyperbolic Boundary 

Value Problem with State Constraints 

 
Lamyaa H Ali, Jamil A. Al-Hawasy*

 
 

Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq 

   

                                  Received: 30/11/2020                              Accepted: 24/1/2021  

 
Abstract  

     The paper is concerned with the state and proof of the solvability theorem of 

unique state vector solution (SVS) of triple nonlinear hyperbolic boundary value 

problem (TNLHBVP), via utilizing the Galerkin method (GAM) with the Aubin 

theorem (AUTH), when the boundary control vector (BCV) is known. Solvability 

theorem of a boundary optimal control vector (BOCV) with equality and inequality 

state vector constraints (EINESVC) is proved. We studied the solvability theorem of 

a unique solution for the adjoint triple boundary value problem (ATHBVP) 

associated with TNLHBVP. The directional derivation (DRD) of the 

"Hamiltonian"(DRDH) is deduced. Finally, the necessary theorem (necessary 

conditions "NCOs") and the sufficient theorem (sufficient conditions" SCOs"), 

together denoted as NSCOs, for the optimality (OP) of the state constrained problem 

(SCP) are stated and proved.  

 

Key words: Boundary optimal control vector, necessary condition, sufficient 

condition, directional derivative. 

 

لمدالة  القيم الحدودية الزائدية غير الخطية الثلاثية مع قيهد الحالة سيطرة حدودية مثلى  
  

 *الههاسيجميل امير علي ، لمياء حدين علي  
العخاق ،قدم الخياضيات , كلية العهم , الجامعة السدتشرخية , بغجاد  

 الخلاصة 
نص وبخهان مبخهشة قابلية الحل الهحيج لستجه الحالة  لسدالة القيم الحجودية الدائجية غيخ يهتم هحا البحث       

, تم " الديطخة الحجودية معلهما الخطية الثلاثية باستخجام طخيقة كالخكن مع مبخهشة ابين عشجما يكهن متجه
قابلية الحل لسدالة تست دراسة لديطخة امثلية حجودية مع قيهد التداوي والتباين . قابلية الحل  بخهان مبخهشة

د الاشتقاق الاتجاهي القيم الحجودية السراحبة لسدالة القيم الحجودية الدائجية غيخ الخطية الثلاثية .تم ايجا
 تم كتابة نص وبخهان مبخهشتي الذخوط الزخورية والكافية للسدالة .اخيخا . لهسالتهنيان

1. Introduction 

  The problems of optimal control (OCPs) have a major significant and vital role in numerous fields, 

such as biology [1], electric power [2], robotics [3], economic [4], and many other different fields. 

This significance has motivated many investigators to be concerned with studding the OCPs for 

mathematical modules dominated by the three types of nonlinear PDEs; elliptic [5], hyperbolic [6] and 

parabolic [7], whilst many others [8-10] are concerned with studying the boundary OCPs (BOCPs). 

     In the latest years, numerous investigations were conducted about the BOCP dominated by the 

couple nonlinear BVPs (CNBVPs) of these three types, respectively, as indicated in [11-13]. 

Furthermore, many other investigations were performed about the BOCPs dominated by the nonlinear 

ISSN: 0067-2904 

 



Ali and Al-Hawasy                                   Iraqi Journal of Science, 2021, Vol. 62, No. 6, pp: 2009-2021 

                 

2010 

triple PDEs (TNBVPs) of elliptic and parabolic types [14-15]. All these investigations took our 

attention to think about generalizing the work in [12] for the BOCP dominated by CNBVPs into 

BOCP dominated by NTBVPs of a hyperbolic type (NTHBVPs). This includes the investigation of the 

solvability theorem for the SVS, the solvability theorem of a BOCV with the EINESVC, the 

derivation for the DRDH, and the demonstration theorems for both the NCOs and the SCOs of 

optimality.    

     This work starts with investigating the solvability theorem of the SVS of the NTHBVPS using the 

GAM when the BCV is given. Next, the solvability theorem of a BOCV dominated by the considered 

NTHBVPS with the EINESVC is demonstrated. The solvability theorem of the SVS of the Triple 

adjoint BVPs (ATHBVP) associated with the NTHBVPS is demonstrated. The DRDH is derived and, 

finally, the theorems of both the NCOs and SCOs of optimality of the SCP are demonstrated. 

      

2. Description of the problem: Let      , with   is open and bounded in   , with""Lipschitz 

"boundary"      ,         , (with    ) and      . Then the NTHBVPS are given by: 

     ∑
 

   
     

   

   

 
                               , in                                                    (1) 

     ∑
 

   
     

   

   

 
                               , in                                                     (2) 

     ∑
 

   
     

   

   

 
                               , in                                   (3) 

   

   
        , on                                                                                                                                 (4)   

          
     ,        and            

     , on                                                                             (5) 
   

   
         , on                                                                                                                                (6) 

          
     ,        and            

      , on                                                                           (7) 
   

   
         , on                                                                                                                                (8) 

          
     ,        and            

      , on                                                                           (9) 

where  ⃗             (     )
 

       is the SVS,  ⃗⃗             (     )
 

       is the 

BCV,            (     )
 

       is a given "vector" function with                  , 

             ,            ,          ,             ,                 ,       

   and each of    ,    ,    is a normal unit vector to  . 

The admissible set of the BCV is                                                                                                       

 ⃗⃗⃗⃗  { ⃗⃗   ⃗⃗⃗       | ⃗⃗   ⃗⃗⃗              ⃗⃗         ⃗⃗    }  ,  ⃗⃗⃗    .  

The objective function (OBF) (where    ) and the EINESVC   (where       ) are  

    ⃗⃗  ∑  ∫            
 

 
 
    ∫           

 

 
,                                                                                  (10) 

where  ⃗             is the SVS of (1-9), which corresponds to the BCV  ⃗⃗ ,                    , 

and                    , for         and        , are  given .   

The BOCV is to find  ⃗⃗   ⃗⃗⃗⃗  such that     ( ⃗⃗̃)      ⃗⃗ 
 ⃗⃗⃗  ⃗⃗⃗⃗ 

       . 

Let  ⃗⃗        , ⃗  ⃗  (     )
 

      -,  ⃗            . We symbolize by  (v_1,v_2 )_Ω 

and ‖v‖_0  the inner product (IP) and the norm (NR) in L^2 (Ω),  by (u,u)_Γ and ‖u‖_Γ IP and the NR 

in L^2 (Σ), by (v_1,v_2 )_1 and ‖v‖_1, the IP and the NR in H^1 (Ω),  by  (v ⃗,v ⃗ )_Ω and ‖v ⃗ ‖_0 the 

IP and the NR in L^2 (Ω),  by (v ⃗,v ⃗ )_Γ and ‖v‖_Γ the IP and the NR in i  L^2 (Σ), by (v ⃗,v ⃗ 
)_1=∑_(i=1)^3▒(v_i,v_i )_1  and ‖v ⃗ ‖_1^2=∑_(i=1)^3▒‖v_i ‖_1^2   the IP and the NR in V ⃗, and 

finally  V ⃗^* is the dual  of V ⃗.      
The weak form (WKF) of problem (1-9) when  ⃗        is given almost everywhere (a.e.) on   

(            ,                            ) by    

〈       〉                                                                 
,    (11a) 

   
                      and      

                      ,                                                       (11b)  

〈       〉                                                                     (12a) 

    
                   , and      

                                                                              (12b) 

〈       〉                                                                 ,   (13a) 
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                    and      

                                                                               (13b) 

where               ∫ ∑    
   

   

 
     

 

 

   

   
  ,              ∫ ∑    

   

   

 
     

   

   
  

 

 
 

 and  

            ∫ ∑    
   

   

 
     

   

   
  

 

 
 

. 

Assumptions : "Assum." (A)  

(i)    on     is of  a  Carathéodory type "CTHDT" , and  

    |          |            |  | , where     ,      and                , for each         

(ii)   , have a Lipschitz property (LIP) with respect to (w.r.t.)    , for each         , i.e. 

     |                   ̅  |    |    ̅ |, where        ,     ̅        and          
(iii)      ⃗  ⃗                                                             
           

           ⃗  ⃗        ⃗  ⃗                                               

                                             ,  

and  |     ⃗  ⃗ |   ‖ ⃗‖ ‖ ⃗‖ ,      ⃗  ⃗   ̅‖ ⃗‖ 
 , |      ⃗  ⃗ |   ‖ ⃗‖ ,       ⃗  ⃗   ̅‖ ⃗‖ 

 , 

     where   , ̅ ,  ,  ̅ are positive real constants. 

Theorem 2.1 (The AUTH theorem)[16]: Assume that   ,   , and    are Banach spaces with  

        , where the injections being continuous ,    is reflexive for        and the injection of 

   into   is compact. Let    be a fixed finite number and let   ,   be two finite numbers such that 

     ,        We consider the following ”Banach space”    ,               ́  
  

  
 

           - with the norm ‖ ‖  {‖ ‖           
  ‖ ́‖           

 }
 
   ,      . 

Then, the injection              is continuous and compact from   into             . 

Lemma 2.1[17]: Let      ́ be three Hilbert spaces, where  ́ is the dual of  . If a function   belongs 

to           and its derivative  ́ belongs to   (     ́) , then   is almost everywhere equal to a 

function continuous from       into   and the following equality holds in the scalar distribution sense 

on      :    
 

  
‖ ‖   〈 ́  〉 . 

Proposition 2.1[12]: Suppose that   is a measurable subset of    (     ). Let           is 

of a "Carathéodory type" that satisfies ‖      ‖           ‖ ‖ , for each            , 

where           ,              ,    
 

           and         ,    , if          

and      , if    . Then, the functional      ∫  (      )  
 

 
 is continuous.  

Theorem 2.2 [16]: Assume that   is a measure space with finite measure. Let      be a sequence of 

measurable functions on    then            a.e. on   (with |    |    a.e.).  

Theorem 2.3 (The TKL  Theorem) [16]: Let   be a vector space,   a vector space with norm,   a 

nonempty convex subset of  , and   (with     ) a convex and positive cone in  . Let the 

functional        ,              , and        be       locally continuous and 

have       derivatives at   where    , and let them be  -linear at the point   where    , 

the set of constraints is   {   |                }. If        has a minimum at   in , 

then there exists     ,      ,      , with      ,      , ∑ |  |     
    such that    satisfies 

     in the following:  

               
            〈             〉    , and  〈        〉    . 

Main Results  
3. Solvability of the SVS: In this section, we will test the existence of a unique vector solution for the 

WKF(11−13)  when the BCV is given. 

Theorem 3.1: With assums. (A), for any given BCV    ⃗⃗       , the WKF(11−13)   has a unique 

solution   ⃗             with  ⃗                     and   ⃗                            

Proof: Let  ⃗⃗             ⃗⃗ (for each  ) be the set of piecewise affine function on  . Let 

{ ⃗⃗ }
   

 
 be a sequence of subspaces of  ⃗⃗, such that    ⃗               ⃗⃗, there exists a sequence 

{ ⃗ } with  ⃗                 ⃗⃗      , and   ⃗    ⃗ strongly in  ⃗⃗     ⃗    ⃗  strongly in 

(     )
 
. Let { ⃗  (           )             } be a finite basis of   ⃗⃗  (where  ⃗  is piecewise 



Ali and Al-Hawasy                                   Iraqi Journal of Science, 2021, Vol. 62, No. 6, pp: 2009-2021 

                 

2012 

affine function on  ) and let  ⃗                be the Galerkin approximate solution (GAS) to the 

exact solution  ⃗             s.t.   

    ∑       
 
                                                                       (14) 

where        is an unknown function of   ,           ,         .  

The WKF ((11)-(13)) is approximated w.r.t. x by using the GAM, replacing  y_int=z_in ,  i=1,2,3 in 

the obtained equations, they become (       ) :  

〈       〉                                                         
,                  15.a) 

     
         

          and     
         

        ,                                                             (15.b) 

 〈       〉                                                         ,               (16.a)  

    
         

         and     
         

     ,                                                                             16.b)  
〈       〉                                                          ,             (17.a)  

    
         

         and     
         

                                                                       17.b) 

where    
      

                 (respectively     
     

     
                     ) is the 

projection of   
  onto  (the projection of   

      onto       ),          , i.e.  

   
    

  strongly in    , with ‖ ⃗ 
 ‖      and ‖ ⃗ 

 ‖                                                             (18) 

   
    

  strongly in        and  ‖ ⃗ 
 ‖                                                                                     (19) 

By replacing (14) with          in (15−17), respectively, and then setting         ,               
then the obtained equations are equivalent to the following nonlinear system (NLS) of     order ODEs 

with ICs (which has a unique solution),   i.e. 

    
                                                                                         (20.a) 

          
  and     ̅      

                                           (20.b) 

    
                                                                  (21.a) 

          
  and     ̅      

                                 (21.b)  

    
                                                                   (22.a) 

          
    and      ̅      

                                           (22.b) 

where    (    )   
,                 ,    = (    )   

,      =   (         ) 
                 ,   = 

(   )   
,                  ,    = (   )   

 ,                  , G = (   )   
 ,      

              , H = (   )   
,                    , R (   )   

 ,                  , W = 

(   )   
 ,      (      ,    ) ,    

       
         ,   

   = (     
 ) ,   =            ,      =             

        ,   
      =     

        ,   (t) =            ,   ̅(0) =    ̅           (0) =              ,     = 

1,2,3,…,n  ,  = 1,2,3.  

Then there is a sequence of unique solutions  { ⃗ }  for the following approximation problems 

corresponding to the sequence{  ⃗⃗ }, , i.e. for each  ⃗                  ⃗⃗ , and         

〈         〉                                                                  
               (23a) 

    
           

           and       
           

          ,                                                         (23b)  
〈         〉                                                                  ,             (24a) 

     
           

         and       
           

           ,                                                        (24b) 
〈         〉                                                                 ,              (25a) 

     
           

         and      
            

                                                                   (25b) 

Adding the obtained three equations after replacing          , for         in (23a,24a,25a), 

respectively, then applying Lemma 2.1 for the 1
st
 term of the LHS, yield 

 

  
 ‖ ⃗     ‖ 

       ⃗   ⃗          ⃗   ⃗    

                                                                              

                                                                                        (26) 

Now, assum. (A-iii) can be applied for the 2
nd

 term in the LHS of (26) after taking the absolute value 

for its both sides, then it becomes  
 

  
 ‖ ⃗   ‖ 

   ̅‖ ⃗ ‖ 
    ‖ ⃗ ‖ 

    |             |  |             |  |          |  

|          |    
                                       

|               |  |             |  |             |  |               | 
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 |               |  |             |  |             |  |          |)                               (27) 

Integrating both sides (IBS)of (27) on      , applying ‖   ‖  ‖   ‖  ‖ ⃗ ‖  ,  ‖    ‖  ‖ ⃗  ‖ , 

‖  ‖  ‖ ⃗⃗‖  and the trace theorem (TTH),  and applying assum. (A-i) for the RHS of the resulting 

equation, give    

∫  

  
 ‖ ⃗     ‖ 

  

 
  ̅‖ ⃗ ‖ 

        ∫  ‖ ⃗  ‖ 
  ‖ ⃗ ‖ 

  
 

 
   ∑ ∫  ‖  ‖ 

  ‖  ‖ 
    

 

 
 
     

                                                        ∫  ‖ ⃗  ‖ 
   ̅‖ ⃗  ‖ 

  
 

 
                                                  (28) 

where |  |    , for         ,                  ,                 .             , with 

‖  ‖ 
   ̅  , ‖  ‖ 

   ̌ , for each         ,     ∑   ̅   ̌  
 
    ,            

  

 ̅
  ,         

  .   

Since  ‖ ⃗ 
 ‖      and ‖ ⃗ 

 ‖     , with                , the inequality (28) becomes   

‖ ⃗     ‖ 
   ̅‖ ⃗    ‖ 

        ∫  ‖ ⃗  ‖ 
   ̅‖ ⃗ ‖ 

  
 

 
    

Applying the Belman-Gronwall inequality(BGI) gives  

‖ ⃗     ‖ 
   ̅‖ ⃗    ‖ 

     
           ‖ ⃗     ‖ 

        and ‖ ⃗    ‖ 
       ,           

Easily, one can obtain that ‖ ⃗     ‖            and    ‖ ⃗    ‖             .    

Then, the Alauglu’s theorem “ALGTH” can be utilized here, which leads to that there is a 

subsequence of { ⃗ }   , let we say again "for simplicity" { ⃗ }    s.t   ⃗     ⃗ weakly in       and 

 ⃗    ⃗ weakly in         , and since  

                                                                                                                       (29)      

hence, Theorem 2.1 can be utilized to get that   ⃗    ⃗ strongly in      .  

Now, multiplying both sides "MBS" of (23a), (24a), (25a) by              ,           
respectively, s.t.        ́       ,        ,  ́      , integrating on      , and finally 

integrating by parts twice (IBP) the 1
st
 term in the LHS of each one of the obtained three equations, 

yield    

 ∫
 

  
           ́      ∫  

 

 

 

 
                                                  

 ∫                                        
           

 

 
,                                                      (30)      

∫            ́
́       ∫  

 

 
                                                

 

 
  

 ∫                                       
           

 

 
     

        ́                            (31) 

 ∫
 

  
           ́      ∫  

 

 

 

 
                                                 

 ∫                                  
 

 
     

           ,                                                     (32) 

∫             ́
́       ∫  

 

 
                                               

 

 
  

 ∫                                  
 

 
     

                
        ́                         (33)   

 ∫
 

  
           ́      ∫  

 

 

 

 
                                                 

 ∫                                      
           

 

 
,                                                       (34)      

∫            ́
́       ∫  

 

 
                                               

 

 
  

 ∫                                       
           

 

 
     

        ́                         (35) 

First, since 

 

                            
 
   

                          

{
  
 

  
 
{

                

    ́        ́    
}                       

                                        

{

     ́      ́    

    ́́        ́́    
}                     

     ́      ́                            

  ,  for each        , 

Second,          weakly in       and         weakly in         and strongly in       . 

Third, since                      strongly  in       and      is measurable w.r.t.      , so 

using assumption (A-i), applying proposition 2.1, the integral ∫                   
 

 
 is continuous 

w.r.t.          , then 
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 ∫                     
 

 
 ∫                   

 

 
 ,           .                               

On the other hand, since        in       from the TTH,  then             

∫                 
 

 
 ∫                

 

 
  

 From these convergences, (18) and (19), we can passage the limits in (30-35) to get  

 ∫
 

  
         ́      ∫  

 

 

 

 
                                            

 ∫                                   
          

 

 
                                                               (34)      

∫          ́
́       ∫  

 

 
                                          

 

 
  

 ∫                                   
          

 

 
    

       ́                                       (35) 

 ∫
 

  
         ́      ∫  

 

 

 

 
                                           

 ∫                               
 

 
    

          ,                                                             (36) 

∫           ́
́       ∫  

 

 
                                         

 

 
  

  ∫                               
 

 
    

              
       ́                                     (37) 

 ∫
 

  
         ́      ∫  

 

 

 

 
                                           

 ∫                                   
          

 

 
                                                               (38)      

∫          ́
́       ∫  

 

 
                                         

 

 
  

  ∫                                   
          

 

 
    

       ́                                     (39) 

Case1: We choose           , s.t.         ́             ́      ,         . in (35), (37), 

(39), IBP twice the     terms in the LHS of each one of these three equation, to obtain 

∫                  ∫  
 

 

 

 
                                 

          

   ∫                                
 

 
                                                                                        (40) 

∫                  ∫  
 

 
                                         

 

 
  

   ∫                                 
 

 
                                                                                     (41) 

∫                  ∫  
 

 
                                         

 

 
  

   ∫                                
 

 
                                                                                     (42) 

Which gives that  ⃗ is a solution of ((11a) , (12a) , (13a))  a.e. on  .  

Case2: By choosing             , s.t.           &                  . MBS of (11a) , (12a), 

and (13a) by      ,       and        respectively, and integrating on       then IBP the     term in 

the LHS of each one of these equations, then subtracting each one of these obtained equations from 

those correspond in (34) , (36) and (38) respectively, we obtain 

  (  
    )                      ,             

Case3: By choosing           , s.t.                ́       ,   ́                  . MBS 

of (11a), (12a), and (13a) by      ,       and        respectively, and integrating on      , then IBP 

twice the     term in the LHS of each one of these equations, then subtracting each one of these 

obtained equations from those correspond in (35) , (37), and (39), respectively, we have 

 (  
    )  ́                 ́    ,         . 

From Case2 and 3, one obtains the initial conditions (11b), (12b) & (13b). 

To prove that  ⃗    ⃗ strongly in        , we begin with integrating (26) on ],0[ T , to get 

‖ ⃗     ‖ 
  ‖ ⃗     ‖ 

       ⃗   ⃗           ⃗   ⃗      ∫       ⃗   ⃗    
 

 
  

 ∫                
 

 
                                                                                                                           

(43)                                                                      

                                                                                

                                             

The same steps utilized to obtain (26 & 43) can be also utilize here with  ⃗  ⃗  instead of  ⃗   ⃗    i.e.  

‖ ⃗    ‖ 
  ‖ ⃗    ‖ 

       ⃗  ⃗          ⃗  ⃗     ∫       ⃗  ⃗   
 

 
 ∫                 

 

 
             (44) 
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Since  

‖ ⃗       ⃗    ‖ 
  ‖ ⃗       ⃗    ‖ 

       ⃗   ⃗  ⃗   ⃗          ⃗   ⃗  ⃗   ⃗       

∫       ⃗   ⃗  ⃗   ⃗   
 

 
                                                                                       (45) 

where 

     = ‖ ⃗     ‖ 
  ‖ ⃗     ‖ 

       ⃗   ⃗           ⃗   ⃗      ∫       ⃗   ⃗    
 

 
  

     =( ⃗       ⃗    )  ( ⃗       ⃗    )       ⃗   ⃗          ⃗   ⃗     ∫       ⃗   ⃗   
 

 
     

(     ( ⃗      ⃗       ⃗    )  ( ⃗      ⃗       ⃗    )       ⃗  ⃗   ⃗          ⃗  ⃗  

 ⃗       

                 ∫       ⃗  ⃗   ⃗   
 

 
 

Since  ⃗    ⃗ strongly in      ,  ⃗    ⃗  weakly in          and  ⃗     ⃗  weakly in      , then 

from       and the Assum. (A-i), the following is obtained   

∫        
 

 
  ∫                                                         

 

 

            

                                      ∫                                         
 

 
 

                  

                                                          ∫                     
 

 
   ∫        

 

 
                              

(43c) 

  

Also, since  ⃗    ⃗ strongly in       and  ⃗     ⃗  weakly in      , and from (43c),  we obtain 

      ∫                
 

 
 ∫                 

 

 
 .  

The same manner utilized to obtain (19) can be utilized also to obtain  

 ⃗       ⃗     strongly in      .                                                                                                    (46) 

On the other hand, since  ⃗    ⃗ weakly in        , then we use (19 & 46) to get 

       ∫                 
 

 
  

All the terms in (45c) imply to zero, as well as the 1
st
 two terms in the LHS of (45), hence (45) gives  

 ̅‖ ⃗   ⃗‖ 
  ∫       ⃗   ⃗  ⃗   ⃗   

 

 
    as    , so we get that   ⃗    ⃗ strongly in 

       . 

Uniqueness of the solution: Let  ⃗             and  ⃗̅    ̅   ̅   ̅   be two solutions of the WKF 

(11-13). By subtracting each equation from the other, setting         ̅   , for each          then 

adding the obtained equalities, using Lemma 2.1 for the 1
st
 term in the L.H.S and assum. (A- ii) for the 

term in the RHS, it becomes 

 

  
*‖  ⃗   ⃗̅  ‖ 

 
      ⃗   ⃗̅  ⃗   ⃗̅ +    (   ⃗   ⃗̅  ⃗   ⃗̅)    ‖( ⃗   ⃗̅)‖

 

 
 ‖( ⃗   ⃗̅)

 
‖

 

 
    

where                   

IBS from   to  , considering the ICs, then utilizing the Assum. (A-iii) , we obtain 

∫
 

  
  ‖  ⃗   ⃗̅     ‖ 

  

 
  ̅‖  ⃗   ⃗̅ ‖

 

 
   ∫   ̅ ‖  ⃗   ⃗̅ ‖

 

  

 
   ‖( ⃗   ⃗̅)

 
‖

 

 
     

where            ,          
  

 ̅
    .    

After utilizing the  BGI on the above inequality, it becomes  

‖  ⃗   ⃗̅     ‖ 

 
  ̅‖( ⃗   ⃗̅)‖

 

 
       ,     .   ‖  ⃗   ⃗̅    ‖

       
     

Thus the solution is unique.  

Lemma 3.1: In addition to assum. (A), if the BCV is bounded, then the operator  ⃗⃗   ⃗ ⃗⃗⃗ from       

into   (       )  into          or into       is continuous.  

             ⃗                   ̅  ⃗     ̅     ̅     ̅                       ⃗    ̅  ⃗  
  ⃗                 ⃗     ⃗        ⃗                                 ⃗    ⃗   ⃗  
                    ⃗     ⃗    ⃗     
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                                                  ⃗        ⃗                                    
                 ⃗                            
   ⃗     ⃗                   〈         〉                
                             

                                                                                                                   (47a) 

            and                                                                                                              (47b)       

〈         〉                                             
                                                                                                             (48a) 

            and            ,                                                                                                   (48b) 

〈         〉                                                        

                                                                                                                    (49a) 

             and                ,                                                                                   (49b) 

By replacing           for         in (47a), (48a) & (49a), respectively, and adding these three 

equations, utilizing the same steps utilized to get (27), a similar equation  can be obtained but with   ⃗⃗⃗⃗
 ⃗ 

instead of  ⃗ . By utilizing assum. (A-iii) for the second term in the LHS of (26) and taking absolute 

value for both sides, then utilizing assum. (A-i) for the RHS of the obtained equation, we obtain  

 

  
*‖  ⃗⃗⃗⃗⃗

     ‖ 

 
  ̅‖  ⃗⃗⃗⃗

 ⃗‖ 

 
+  

 ‖  ⃗⃗⃗⃗
 ⃗‖ 

 
   |                      |  |                      |    

|                     |    |             |  |             |    |             |  
|             |    |             |  |             |  
IBS of the above equality on      , the definitions of the norms and the relations between them, and 

then using the TTH, we get  

‖  ⃗⃗⃗⃗⃗
     ‖ 

 
  ̅‖  ⃗⃗⃗⃗

 ⃗   ‖ 

 
  ∫ ‖  ⃗⃗⃗⃗

 ⃗‖ 

  

 
     ∫  ‖  ⃗⃗⃗⃗

 ⃗‖ 

 
 ‖  ⃗⃗⃗⃗⃗

  ‖ 

 
 

 

 
     ∫ ‖  ⃗⃗⃗⃗⃗‖

 

  

 
    

                                                    ∫ ‖  ⃗⃗⃗⃗⃗
  ‖ 

  

 
       ∫  ‖  ⃗⃗⃗⃗

 ⃗‖ 

 
 ‖  ⃗⃗⃗⃗⃗

  ‖ 

 
 

 

 
   

                                          ∫ ( ‖  ⃗⃗⃗⃗⃗
  ‖ 

 
   ‖  ⃗⃗⃗⃗

 ⃗‖ 

 
)

 

 
    ‖  ⃗⃗⃗⃗⃗   ‖

 

 
 ∫    ‖  ⃗⃗⃗⃗

 ⃗‖ 

 
 

 

 

  ‖  ⃗⃗⃗⃗⃗
  ‖ 

 
     

                                           ‖  ⃗⃗⃗⃗⃗   ‖
 

 
    ∫  ‖  ⃗⃗⃗⃗⃗

  ‖ 

 
  ̅‖  ⃗⃗⃗⃗

 ⃗‖ 

 
 

 

 
    

where |  |     for        ,                   ,                   ,        ,      

  ,           ,        ,             
  

 ̅
  .    

Applying the BGI, with        ,  gives  

‖  ⃗⃗⃗⃗⃗
     ‖ 

 
  ̅‖  ⃗⃗⃗⃗

 ⃗   ‖ 

 
   ‖  ⃗⃗⃗⃗⃗   ‖

 

 
 ,       ̅   ‖  ⃗⃗⃗⃗

 ⃗   ‖ 

 
   ‖  ⃗⃗⃗⃗⃗   ‖

 

 
 ,    

  

 ̅
,      ̅  

‖  ⃗⃗⃗⃗
 ⃗‖  (       )

  ‖  ⃗⃗⃗⃗⃗‖
 
 ,  ‖  ⃗⃗⃗⃗

 ⃗‖       
  ‖  ⃗⃗⃗⃗⃗‖

 
 and  ‖  ⃗⃗⃗⃗

 ⃗‖ 
  ‖  ⃗⃗⃗⃗⃗‖

 
   

Form these three inequalities ,we obtain the continuity of the operator  ⃗⃗   ⃗.  

4. Solvability of BOCV: This section is concerned with the proof of the solvability theorem of BOCV 

which satisfies the EINESVC. The following assumption and lemma will be useful. 

Assums. (B): Consider     and      (         and           ) are of CTHDT on       and 

on       respectively, and satisfy the following, i.e. 

|            |                
 ,|           |                  

 ,  

where         with           ,         . 

Lemma 4.1: With assums. (B) and              the functional  ⃗⃗      ⃗⃗  is continuous on       . 

Proof: The result is obtained through employing assums.(B) in proposition 2.1.  

Theorem  4.1: In addition to the assums.(A&B), if the set  ⃗⃗⃗ is convex and compact,  ⃗⃗⃗⃗    ,     is 

independent of    for each       , and     and     are convex w.r.t    for fixed          , then there 

exists a BOCV. 

Proof: Since   ⃗⃗⃗⃗   , then there is  ⃗⃗̅   ⃗⃗⃗⃗  and a minimum sequence { ⃗⃗ } with  ⃗⃗   ⃗⃗⃗⃗     , such 

that     ⃗⃗     ( ⃗⃗̅)
 ⃗⃗⃗̅  ⃗⃗⃗ 

       
   
     . By utilizing the hypotheses on  ⃗⃗⃗ and the theorem 2.2,   ⃗⃗⃗  is weakly 

compact. Then { ⃗⃗ } has a subsequence, let us denote it  again { ⃗⃗ }  for simplicity , for which   ⃗⃗   ⃗⃗ 
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weakly in  ⃗⃗⃗  and ‖ ⃗⃗ ‖        .  From theorem 3.1, for each  ⃗⃗ , the WKF of the TNLHBVP has a 

unique SVS  ⃗   ⃗ ⃗⃗⃗ 
  and the norms ‖ ⃗ ‖       , ‖ ⃗  ‖       are bounded. Then by  ALGTH,  there 

exists a subsequence of { ⃗ } and { ⃗  }  let us denote them  again { ⃗ } and { ⃗  }   s.t.    ⃗   ⃗ weakly 

in        , and        ⃗    ⃗  weakly in      .  

Then by utilizing theorem 2.1, there is a subsequence of { ⃗ }  let us denote it again { ⃗ }  s.t.  ⃗   ⃗   

strongly in      .  

Now, since for each  ,  ⃗  satisfies the WKF (11a),(12a) - (13a), then MBS of each of these equation 

by       ,         , respectively, (with           , s.t.        ́      ,          ́     
  ,         ), IBS from   to   , and finally IBP for these first terms, become  

∫
 

  
                 ∫  

 

 
                                          

 

 
     

  ∫                      ∫                                    
 

 

 

 
                                       

(49) 

∫
 

  
                 ∫  

 

 
                                             

 

 
  

  ∫                      ∫                   
 

 

 

 
                                                       

(50) 

∫
 

  
                 ∫  

 

 
                                          

 

 
     

  ∫                      ∫                                    
 

 

 

 
                                      

(51) 

In this point, we can utilize the same manner utilized in the proof of theorem 3.1 to passage the limits 

in the LHS of (49), (50), and (51), so it remains to passage the limits in the right hand RHS of these 

equations, which will be done as follows: 

 Let v_i C[Ω   ] and w_i=v_i φ_i (t),  i=1,2,3.  Then w_i C     ] L^∞ (I,U) L^2 ( )   et h  _i1 
(y_1  ) h_i1 (y_i  ) w_i, then h  _i1:Q×R→R is of CTHDT. Now, utilizing proposition 2.1 to give 

that the integral ∫_Q^ ▒ h_i1 (y_ik ) w_i   dxdt is continuous w r t  y_i   But y_i  □( )y_i 

strongly in L^2 (Q),  therefore   

∫           
 

 
     ∫          

 

 
     ,       ̅ , for                                                      (52a) 

This result also holds for every                  since    ̅  is dense in  .  

On the other hand, since          weakly in        then  

∫           ∫     
 

 

 

 
     ,        ̅   , for                                                                   (52b) 

Hence,  ⃗  is the SVS of  the WKF (11a,12a&13a)      , a.e. on      
     Finally, to passage the limits in the ICs easily, one can utilize the same steps which are utilized in 

the proof of theorem 3.1 to get that  ⃗   satisfies ICs (11b,12b&13b). Hence,   ⃗    is the SVS of the WKF 

of the NLHBVP. 

On the other hand, since      ⃗⃗   ∑ ∫         
 

 
     

    is continuous w.r.t.     (for        ), then 

by Lemma 4.1, ∫         
 

 
     is continuous w.r.t.   , but  ⃗   ⃗  strongly in      , then from 

proposition 2.1:     

    ⃗⃗      
   

    ⃗⃗    . 

Again, since           and       ,          is continuous w.r.t.    , then from the proof of Lemma 

4.1, one gets  

∫         
 

 
     ∫        

 

 
                                                                                                              

(53)  

Now, from assums. (B),         is a weakly lower semi continuous w.r.t.   ,           and      . 

Then from (53), one has  

 ∫        
 

 
     ∫        

 

 
            ∫           

 

  
 ∫        

 

 
      

           ∫            
 

 
       ∫                       

 

 
 

       ∫         
 

 
     

           ∫         
 

 
              ∫         

 

 
      

i.e.     ⃗⃗     
   

       ⃗⃗  ,   (for each      ) 
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But      ⃗⃗    (since     ⃗⃗        ), which means  ⃗⃗   ⃗⃗⃗⃗  and 

     ⃗⃗     
   

       ⃗⃗      
   

    ⃗⃗       ⃗⃗⃗̅  ⃗⃗⃗ 
  ( ⃗⃗̅ )  

 Hence,  ⃗⃗ is a BCV. 

Assums. (C): If     
,      

  and      
 , (         and       ), are of CTHDT on      ,   

     and        respectively, such that  

|    
        |   ́  

|     
           |              |  | , |     

           |              |  |    

where         ,         ,                              ,   ́           . 

Theorem 4. : By neglecting the indicator   in     ,      and   and considering the CFu     ⃗  in (10), 

with the assums. (A), (B), and (C), the following ATHBVP  ⃗             of the NTHBVPs (1-9) are 

given by:  

     ∑
 

   
      

   

   

 
                            

         
    , in                          (54a) 

   

   
   ,      on   ,                          on    ,                                                                  (54b) 

     ∑
 

   
     

   

   

 
                            

         
    , in                           (55a) 

   

   
  ,       on   ,                         on                                                                       (55b) 

     ∑
 

   
     

   

   

 
                            

         
   , in                              (56a) 

   

   
        on   ,                           on                                          (56b) 

where each of   ,   , and     is a unit vector normal outer on the boundary   

and the "Hamiltonian" is defined by:  

                 ∑                         
 
    

where    ⃗⃗  ∑ ∫           
 

 
 ∫           

 

 
 
   . 

Then for   ⃗⃗́   ⃗⃗⃗, the DRD of   is given by  

  ( ⃗⃗   ⃗⃗̅   ⃗⃗)        

 ( ⃗⃗⃗    ⃗⃗⃗⃗⃗⃗ )    ⃗⃗⃗ 

 
    ∫   ⃗⃗⃗      ⃗  ⃗  ⃗⃗    ⃗⃗

 

 
  , 

where   ⃗⃗⃗          
        

        
   is the DRDH  and   ⃗⃗⃗⃗⃗               

 . 

Proof: At first, let the WKF of the ATHBVP be given as      , by  
 〈       〉                                         

           
      

 , a.e. on      (57a) 

                          ,                                                                                                          (57b)   

〈      〉                                   (      
   ) 

 (    
   ) 

  a.e. on            (58a) 

                          ,                                                                                                          (58b) 

〈      〉                                   (      
   ) 

 (    
   ) 

  a.e. on            (59a) 

                                                                                                                                    (59b)   

From the given hypotheses and utilizing the same manner which is applied in the proof of theorem3.1, 

it can be proved that the WKF (57a, 58a & 59a) has a unique solution  ⃗                  . By 

replacing             in (57a), (58a), and in (59a) for i=1,2,3 resp., then IBS on [0,T], yield to   

 ∫_0^T▒〈δy_1ε,z_1tt 〉  dt+∫_0^T▒  α_1 (t,z_1,δy_1ε )_ +(β_1 z_1+β_4 z_2+β_5 z_3,δy_1ε )_Ω]dt    

       ∫  
 

 
(      

     ) 
 (    

     ) 
                                                                              (60) 

∫ 〈         〉
 

 
   ∫  

 

 
                                           

∫  
 

 
(      

     ) 
 (    

     ) 
                                                                                         (61) 

∫ 〈         〉
 

 
   ∫  

 

 
                                           

∫  
 

 
(      

     ) 
 (    

     ) 
                                                                                         (62) 

Now, let  ⃗⃗  ⃗⃗̅       ,   ⃗⃗⃗⃗⃗   ⃗⃗̅   ⃗⃗ for    ,   ⃗⃗   ⃗⃗     ⃗⃗⃗⃗⃗       , then by theorem 3.1, their 

corresponding SVS are  ⃗   ⃗ ⃗⃗⃗   and  ⃗   ⃗ ⃗⃗⃗ 
. By putting   ⃗⃗⃗⃗

 ⃗                ⃗   ⃗ and setting   

      for           in (47a) , (48a), and (49a), respectively, IBS on      , then the IBP is twice the 
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first term in the LHS of each equation. By finding the DRD of     for         in the RHS of each 

equality (which exist from the assumptions(C)), then from the result of Lemma 3.1 and the 

"Minkowiski inequality", we obtain 

∫ 〈         〉
 

 
   ∫  

 

 
                                               

 ∫  
 

 
    

            ∫  
 

 
                                                                                            (63) 

∫ 〈         〉
 

 
   ∫  

 

 
                                   

 ∫  
 

 
    

            ∫  
 

 
                                                                                           (64) 

∫ 〈         〉
 

 
   ∫  

 

 
                                   

 ∫  
 

 
    

            ∫  
 

 
                                                                                          (65) 

where          ,  as    , with       ‖    ‖ , for each          

Then we subtract (63), (64), and (65) from (60), (61), and (62), respectively, and add each 

corresponding pair to obtain  

 ∫ ∑          
 
           

 

 
 ∫  ∑ (    

     )
 
   

 

 
                                                                   (66) 

where                              ,  as    , with       ‖  ⃗⃗⃗⃗
 ⃗‖ 

 

On the other hand, from the assumptions on    ,    (       ), the  definition of the DRD, and the 

result of Lemma 3.1, and then by using "Minkowiski inequality", one gets   

    ⃗⃗       ⃗⃗  ∑  ∫     
        

 

 
 
     ∫     

   
 

 
                                                       (67) 

where       ‖  ⃗⃗⃗⃗
 ⃗‖ 

  ‖  ⃗⃗⃗⃗⃗‖
 
,        ,  as      

Now, using (66) in (67) gives  

    ⃗⃗       ⃗⃗   ∑ ∫         
    

 

 
 
                         

where                     ,  as    , with        ‖  ⃗⃗⃗⃗
 ⃗‖ 

  ‖  ⃗⃗⃗⃗⃗‖
 
 

Finally, the result is obtained after dividing both sides of this equality by  , then taking the limit 

   , i.e. 

   ( ⃗⃗  ⃗⃗̅   ⃗⃗)  ∫   ⃗⃗⃗    ⃗⃗⃗⃗⃗ 

 
   . 

5. NCOs and SCOs for optimality: In this section, the NCOs and the SCOs theorems for OP under 

prescribed assumptions are found and proved as follows. 

Theorem 5.1: (NCOs for Optimality)  

a) With assums. (A), (B) , and (C), if  ⃗⃗⃗  is convex,  ⃗⃗   ⃗⃗⃗⃗  is a BOCV, then there exist multipliers 

     ,         with     ,     , ∑
 

   
|  |     such that the following Kuhn-Tucker-Lagrange 

(TKL) conditions hold 

∑
 

   
     ( ⃗⃗   ⃗⃗̅   ⃗⃗)    ,   ⃗⃗̅   ⃗⃗⃗    ,                                                                                              (68a) 

      ⃗⃗      , (Transversality condition )                                                                                       (68b) 

(b) The inequality (68a) is equivalent to       

  ⃗⃗⃗      ⃗  ⃗  ⃗⃗   ⃗⃗      ⃗⃗⃗      ⃗  ⃗  ⃗⃗   ⃗⃗̅
 ⃗⃗⃗̅  ⃗⃗⃗
        a.e. on                                                               (69) 

where   ⃗⃗⃗      ⃗  ⃗  ⃗⃗  is defined as in theorem 3 above, 

with    ∑
 

   
      and    ∑

 

   
      , (for      ). 

Proof: a) From Lemma 4.1, the functional     ⃗⃗  (for        ) is continuous and, from theorem 4.2, the 

functional     (for         ) is continuous w.r.t.  ⃗⃗̅   ⃗⃗ and linear in  ⃗⃗̅   ⃗⃗. Then,     is 

  differential for every  . Hence, by utilizing theorem 2.3, there exist multipliers      ,         

with     ,      , ∑
 

   
|  |   , such that  (68a-b) hold. By utilizing theorem 4.2, (42a) gives 

∑
 

   
∫ ∑

 

   

 

 
  (         

)          , which can be rewritten as  

∫   ⃗   ⃗ ⃗⃗⃗  
 

 
  ⃗⃗̅   ⃗⃗       ,   ⃗⃗̅   ⃗⃗⃗ ,                                                                                            (70) 
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where   ⃗   ⃗ ⃗⃗⃗          
        

        
 , with     ∑   

 
       ,    ∑   

 
       ,    

      .  

Now, let { ⃗⃗̅ } be a dense sequence in  ⃗⃗⃗ and     be a measurable set with "Lebesgue measure  " 

such that   ⃗⃗̅      {
 ⃗⃗                          

 ⃗⃗                             
    

Therefore, (70) becomes  

∫   ⃗   ⃗ ⃗⃗⃗  
 

 
  ⃗⃗̅   ⃗⃗       ,                                                                                                         (70a) 

or 

   ⃗   ⃗ ⃗⃗⃗    ⃗⃗̅   ⃗⃗    , a.e. on  ,                                                                                                   (70b) 

which gives that (70b) holds on     ⁄ such that        ,   , i.e. (70b) holds on  ⋃    ⁄  with 

  ⋃        . But { ⃗⃗̅ } is dense in  ⃗⃗⃗, therefore there exists  ⃗⃗̅   ⃗⃗⃗ such that 

   ⃗   ⃗ ⃗⃗⃗    ⃗⃗̅   ⃗⃗     , a.e. on  ,   ⃗⃗̅   ⃗⃗⃗, 

i.e. (70a) gives (70). The converse is clear. 

Theorem 5.2: (SCOs for Op) 

In Addition to the assums. (A), (B), and (C), suppose that  ⃗⃗⃗  is convex, with  ⃗⃗⃗  convex, and that   , 

    (     are affine w.r.t.               and                                    are convex 

w.r.t.    (        ) and          are convex w.r.t.   (         ,         . Then, the NCOs of 

theorem5.1 with      are also sufficient.   

Proof: Assume that the TKL conditions hold by  ⃗⃗   ⃗⃗⃗⃗ . Let    ⃗⃗  ∑       ⃗⃗  
   , then from theorem 

4.2,    ( ⃗⃗  ⃗⃗̅   ⃗⃗)  ∑
 

   
  ∫ ∑            

 
      

 

 
       . 

Consider                                          and  

                                                     

Let  ⃗⃗             and  ⃗⃗̅    ̅   ̅   ̅   be two given BCV, then  ⃗                           

and  ⃗̅    ̅ ̅   ̅ ̅   ̅ ̅     ̅   ̅   ̅   are their corresponding SVS. By MBS  of (1-9) by         

once, and once again by           after replacing  ⃗⃗  and  ⃗ by  ⃗⃗̅ and   ̅⃗⃗⃗ ⃗ respectively, in (1-9), then 

finally  adding each resulting pair of equations together, we obtain:  

  ̃    ∑
 

   
    

  ̃ 

   

 
          ̃     ̃     ̃       ̃                                                   (71a) 

 
  ̃ 

   
  ̃ ,  on                                                                                                                                  (71b) 

 ̃         
    ,    ̃          

                                                                                                 (71c) 

 ̃    ∑
 

   
    

  ̃ 

   

 
          ̃     ̃     ̃       ̃                                                     (72a) 

  ̃ 

     
  ̃ ,  on                                                                                                                                  (72b) 

 ̃         
    ,  ̃          

                                                                                                 (72c) 

 ̃   
 ∑

 

   
    

  ̃ 

   

 
          ̃     ̃     ̃       ̃                                                      (73a) 

  ̃ 

     
  ̃ ,  on                                                                                                                                  (73b) 

 ̃         
    ,  ̃          

                                                                                                 (73c) 

Equations (71), (72), and (73) show that if the BCV is  ⃗⃗̃    ̃   ̃   ̃   with  ⃗⃗̃    ⃗⃗     ⃗⃗̅   then its 

corresponding SVS is  ⃗̃    ̃   ̃   ̃   with  ̃     ̃ 
           ̅          ̅ ,          . Thus 

the operator  ⃗⃗   ⃗ ⃗⃗⃗ is "convex  linear (CL) w.r.t.   ⃗  ⃗⃗ ,         .  

On the other hand, the function     ⃗⃗  is CL w.r.t ( ⃗  ⃗⃗ ,          (since the sum of two affine 

functions is affine and the operator  ⃗⃗   ⃗ ⃗⃗⃗ is CL). The functions     ⃗⃗  ,     ⃗⃗  are convex w.r.t. 

( ⃗  ⃗⃗  , for each         (from the assumptions on the functions     ,      and since the sum of two  

integrals of convex function is also convex).   

Hence    ⃗⃗  is convex w.r.t. ( ⃗  ⃗⃗ ,          in the convex set  ⃗⃗⃗, and has a continuous DRD that 

satisfies  

  ( ⃗⃗   ⃗⃗̅   ⃗⃗)         ⃗⃗  and has a minimum at  ⃗⃗       ⃗⃗   ( ⃗⃗̅),   ⃗⃗̅   ⃗⃗⃗ , or  
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∑        ⃗⃗  ∑     ( ⃗⃗̅) 
   

 
   ,    ⃗⃗̅   ⃗⃗⃗                            

Let  ⃗⃗̅   ⃗⃗⃗⃗  , but      , then from (68b), this inequality gives  

      ⃗⃗      ( ⃗⃗̅)  ,   ⃗⃗̅   ⃗⃗⃗         ⃗⃗    ( ⃗⃗̅),     ⃗⃗̅   ⃗⃗⃗    ⃗⃗  is a BOCV. 

 

Conclusions: The solvability theorem for the SVS of the TNLHBVP when the BCV is given, utilizing 

the GAM with the AUTH, is proved successfully. The solvability theorem (existence theorem) of a 

BOCV governed by the TNLHBVP with EINESVC is proved. The solvability solution of the 

ATHBVP associated with the TNLHBVP is studied. The DRDH is derived. The theorems of the 

NCOs and the SCOs for the optimality of the constrained problem are generalized and proved.  
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