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Abstract

The paper is concerned with the state and proof of the solvability theorem of
unique state vector solution (SVS) of triple nonlinear hyperbolic boundary value
problem (TNLHBVP), via utilizing the Galerkin method (GAM) with the Aubin
theorem (AUTH), when the boundary control vector (BCV) is known. Solvability
theorem of a boundary optimal control vector (BOCV) with equality and inequality
state vector constraints (EINESVC) is proved. We studied the solvability theorem of
a unique solution for the adjoint triple boundary value problem (ATHBVP)
associated with TNLHBVP. The directional derivation (DRD) of the
Hamiltonian (DRDH) is deduced. Finally, the necessary theorem (necessary
conditions "NCOs") and the sufficient theorem (sufficient conditions" SCOs"),
together denoted as NSCOs, for the optimality (OP) of the state constrained problem
(SCP) are stated and proved.

Key words: Boundary optimal control vector, necessary condition, sufficient
condition, directional derivative.
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1. Introduction
The problems of optimal control (OCPs) have a major significant and vital role in numerous fields,
such as biology [1], electric power [2], robotics [3], economic [4], and many other different fields.
This significance has motivated many investigators to be concerned with studding the OCPs for
mathematical modules dominated by the three types of nonlinear PDEs; elliptic [5], hyperbolic [6] and
parabolic [7], whilst many others [8-10] are concerned with studying the boundary OCPs (BOCPs).
In the latest years, numerous investigations were conducted about the BOCP dominated by the

couple nonlinear BVPs (CNBVPs) of these three types, respectively, as indicated in [11-13].
Furthermore, many other investigations were performed about the BOCPs dominated by the nonlinear
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triple PDEs (TNBVPs) of elliptic and parabolic types [14-15]. All these investigations took our
attention to think about generalizing the work in [12] for the BOCP dominated by CNBVPs into
BOCP dominated by NTBVPs of a hyperbolic type (NTHBVPS). This includes the investigation of the
solvability theorem for the SVS, the solvability theorem of a BOCV with the EINESVC, the
derivation for the DRDH, and the demonstration theorems for both the NCOs and the SCOs of
optimality.

This work starts with investigating the solvability theorem of the SVS of the NTHBVPS using the
GAM when the BCV is given. Next, the solvability theorem of a BOCV dominated by the considered
NTHBVPS with the EINESVC is demonstrated. The solvability theorem of the SVS of the Triple
adjoint BVPs (ATHBVP) associated with the NTHBVPS is demonstrated. The DRDH is derived and,
finally, the theorems of both the NCOs and SCOs of optimality of the SCP are demonstrated.

2. Description of the problem: Let Q = Q x I, with Q is open and bounded in R3, with "Lipschitz
boundary"T'=0Q, I =[0,T], (withT < o) and £ =T X I. Then the NTHBVPS are given by:

Yite — Zgj:m%i(aij %)) +B1 Y1 —Bay2— Bsys = hi(y1),in Q @

Yate — Z?j:laixi(ﬁij %) + B2 Y2+ Bay1+ Beys = ha(y2) ,in Q (2)
Yaee = Zhjm1 oy (g 520) + Baya = Bo Y2 + Bs y1 = ha(y) ,in Q 3
g%; =uy(x,t),on X (4)
%/)1/2(9(: 0) =y7(x), and y;.(x,0) = y{ (x) ,on Q ®)
avg =u,(x,t),on X (6)
%/3213(96, 0)=y7(x),  andy,;(x,0)=y;(x) ,onQ ()
a0, =uz(x,t),on X (®)
y3(x,0) =y3(x),  andys(x,0) = y3(x) ,onQ 9)

where 7 = (y1,2,y3) € (H(Q))° = HL(Q) is the SVS, i = (uy,up,u3) € (12(%))’ = L2(Z) is the
BCV, (hy,hy h3) € (LZ(Q))3 = L%(Q) is a given "vector" function with h;(y;) = h;(x,t,v;),
ai;j = a;j(x,t) Bij =Py(x,0),B=B0t) , vij=viy(x0), Bi=Pi(x,t) ECP(Q), VI<i<
6, and each of v, v , v, is a normal unit vector to X.

The admissible set of the BCV is

Wy={iel, =L*E)|ielUaeinL); (@) =0,,@) <0} ,U cR>

The objective function (OBF) (where [ = 0) and the EINESVC (wherel = 1,2) are

L@) = 2?=1UQ pu(y)dxdt + [ qi1 (w;)da], (10)
where ¥ = (y4,¥,,y3) is the SVS of (1-9), which corresponds to the BCV i , p; (v;) = pii(x, t, yi),
and q; (w;) = qi;(x, t,u;), forl =0,1,2and i = 1,2,3, are given.

The BOCV is to find @ € W), such that J, (@) = "“"‘A]0 @) .

UeW

LetV =V xVxV={Bie (H (@)’ = HY(Q)}, 7 = (v1,v2,v3). We symbolize by (v_1.v_2) €
and Ivl_O the inner product (IP) and the norm (NR) in L"2 (), by (u,u) I" and lul_I" IP and the NR
in L"2 (2), by (v_1,v_2) 1 and Ivl_1, the IP and the NR in H*1 (Q), by (v v~ )_Qand Iv~1_0 the
IP and the NR in L2 (Q), by (v ",v 7 )_T and IvI_T the IP and the NR ini L"2 (Z), by (v v~
) 1=y (i=1)73i(v_i,v_i)_1 and Iv " 1_172=Y (i=1)"3:dv_i I_1~2 the IP and the NR in V 7, and
finally V “"* is the dual of V~.

The weak form (WKF) of problem (1-9) when y € H1(Q) is given almost everywhere (a.e.) on I
(Yv1,v5,v3 €V, y1(,0), 20, 0),¥3(.,t) €V ) by

V1o v1) + a1 (6, y1,v1) + By, v1)a — (Bayz, vi)a — (Bsys, v1)a = (hy, v1)a + (ug, vi)r,  (119)

v v1)a = 01(0),v1)q and (¥,v1)q = 1:(0),v1) o (11b)
(V2eer V2) + a2 (8,y2,02) + (B2y2,v2)a + (Bay1,v2)a + (Bey3 v2)a = (ha, v2) + (Uz, v2)r  (12a)
(3, v2)a = (2(0),)q , and  (¥3,v2)q = (72:(0),v2) (12b)

(V3ee,v3) + az(t,y3,v3) + (B33, v3)0 — (BeV3, V3)a + (Bsy1,v3)a = (h3,v3)q + (us, v3)r, (13a)
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(v3,v3)q = (¥3(0),v3)q and ()’?}évsgﬂ = (¥3:(0),v3)q e o (13b)
Y1 0V y, 0V
where a;(t,y;,v1) = [, XFj= al-ja—xja—x;dx, a,(t,y,, 1) = ng?Flﬁ’ua—,ja—,jd’f and
0y, 0V,

as(t,ys,v3) = [, ?j:lyija_xia_xj x.
Assumptions : ""Assum." (A)
(i) h; on Q@ x Ris of a Carathéodory type "CTHDT", and

lhi(x, t,y)| < ¥;(x,t) + ¢;|y;| , where y; € R, ¢; > 0 and y;(x,t) € L?(Q,R), foreach i = 1,2,3
(ii) h;, have a Lipschitz property (LIP) with respect to (w.r.t.) y;, foreachi = 1,2,3, i.e.

|hi(x, t,y:) — hi(x, 6, y)| < Lily; — i, where(x,t) € Q ,y;,y; ER and L; > 0.
(i) s(t,y,V) = ay(t,y1,v1) + (B1y1,v1)a + a2 (t, 2, v2) + (B2Y2,V2)a + a3(t, y3,v3) +
(B3Y3,v3)q

tt,y,v) = s(t, ¥, V) — (Bay2, v1)a — Bs¥3,v1)a + (Bay1,v2)a + (Be¥3, v2)q

—(Bsy3,v3)a + (Bsy1,v3)q, B

and |s(t,y,9)| < allyllilI9llh, s 5,5 = allyll3, s, 5, D] < b9l s.(t,9,9) = bllyll,

where a,a , b, b are positive real constants.
Theorem 2.1 (The AUTH theorem)[16]: Assume that X,, X , and X; are Banach spaces with
X, € X c X; , where the injections being continuous , X; is reflexive for i = 0,1, and the injection of
X, into X is compact. Let > 0 be a fixed finite number and let «, a;be two finite numbers such that

a; >1, i =0,1. We consider the following “Banach space” VY = {v € L*(0,T; Xy), v = % S

1
L*(0,T; Xl)} with the norm [|v||y = {||V||fa0(o,r;x0) + ||1'7||fo,1(0'T,.X1)}E ,VVEY.
Then, the injection c L% (0, T; X,) is continuous and compact from Y into L% (0, T; X,) .
Lemma 2.1[17]: Let V, H, V be three Hilbert spaces, where V is the dual of V. If a function u belongs
to L2(0,T; V) and its derivative % belongs to LZ(O, T; V) , then u is almost everywhere equal to a
function continuous from [0, T] into H and the following equality holds in the scalar distribution sense

on (0,T): %nun2 = 2(t,u) .
Proposition 2.1[12]: Suppose that Q is a measurable subset of R¢ (d = 2,3). Let I: Q X R*® —» R™ is
of a "Carathéodory type" that satisfies ||L(x,y)| < 6(x) + ¢(x)||ly||¢, for each (x,y) € A X R" ,

where y € I2(Q x R™), 8(x) € L'(Q X R), ¢ € Lr=a(Q x R), and a € [0,b] ,a € N , if b € [1, )
and ¢ =0, if b = co. Then, the functional L(y) = |, I(x,y(x))dx is continuous.

Theorem 2.2 [16]: Assume that Q is a measure space with finite measure. Let (h,,) be a sequence of
measurable functions on Q, then h,,(x) = h(x) a.e. on Q (with |h(x)| < o a.e.).

Theorem 2.3 (The TKL Theorem) [16]: Let X be a vector space, Z a vector space with norm, U a
nonempty convex subset of X, and K (with K° # @) a convex and positive cone in Z. Let the
functional Gy:U = R, G;:U->R™ m=>0, and G,:U = Z be (m+ 1) —locally continuous and
have (m + 1) —derivatives at u where m # 0, and let them be K-linear at the point u where m = 0,
the set of constraints is W = {u € U|G,(u) = 0,G,(u) € —K}. If G,y(u) has a minimum at u inW,
then there exists 1, € R, 1, € R™, 1, € Z*, with 1y > 0, A, = 0, ¥:%,|4;| = 1, such that u satisfies
vw € W in the following:

AoDGoy(u,w —u) + ATDG; (u,w — u) + (A, DG, (u,w —u)) = 0, and (1,,G,(w)) =0.

Main Results

3. Solvability of the SVS: In this section, we will test the existence of a unique vector solution for the
WKF(11-13) when the BCV is given.

Theorem 3.1: With assums. (A), for any given BCV i € L?(Q), the WKF(11-13) has a unique
solution ¥ = (y1,y2, y3) with y € L2(L,V) = (L*(1,V))* and ¥, = (V1¢, Y2, ¥3e) € L2 V7).
Proof: Let I_/;l =V, xV,xV, c Vv (for each n) be the set of piecewise affine function on Q. Let

{Vn}:zl be a sequence of subspaces of V, such that ¥ # = (v, v,,v3) € V, there exists a sequence
(B} With B, = (Wi, Von, Van) €V, ,¥n, and #, — ¥ strongly in V = #, — ¥ strongly in
(L12()°. Let {B; = (v1;,v5),v3;):j = 1,2,..., M(n)} be a finite basis of ¥, (where ; is piecewise
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affine function on Q) and let y,, = (Y11, V2n, V3n) b€ the Galerkin approximate solution (GAS) to the
exact solution y = (y4, ¥, ¥3) Sit.

Yin = 2= €ij () vi;(x) (14)
where c;;(t) is an unknown function of ¢, Vi =1,23,=1.2,..,n.
The WKEF ((11)-(13)) is approximated w.r.t. x by using the GAM, replacing y_int=z_in, Vi=1,2,3 in
the obtained equations, they become (V v; € 1) :

(Zine, V1) + @1(8, Y10, V1) + (B1Yin — BaYon — BsYan V1)a = (hy, v1)a + (Ug, v1)r, (15.9)
Ot v) = 01 v)  and iy, v1) = 1, v1) (15.b)
(Zone, V2) + @2 (6, Yon, v2) + (B2Yan + BaYin + BeYan, V2)a = (ha, v2)o + (U2, v2)r, (16.2)
W v2) = 3,v2)  and (V3. v2) = (¥2,v2), (16.b)
(Z3ne, v3) + +a3(t, Y3n, v3) + (B3Y3n — BeYan + BsYin V3)a = (hs, v3)q + (us, v3)r, (17.3)
Y3 v3) = (¥3,v3) and (¥3n, v3) = (¥3,v3) (17.b)

where y5, = y5,(x) = yin(x, 0) € V, (respectively z3, = vk, = y},(x) = yine (x,0) € L2(Q) ) is the
projection of y? onto V(the projection of y} = y;, onto L?(Q) ), Vi = 1,2,3 , i.e.

9, — P strongly in v, with [|5¢]l1 < bo and [|39]lo < by (18)
Vi — yi strongly in L2(Q) and [[33]lo < by (19)
By replacing (14) with i = 1,2,3 in (15-17), respectively, and then setting v; =v; , VIl =12,..,n,
then the obtained equations are equivalent to the following nonlinear system (NLS) of 15¢ order ODEs
with ICs (which has a unique solution), i.e.

A1C1(t) + B1C,(t) — EC,(t) — FCs(t) = by (20.a)
Ay Co(t) + BoCy(t) + GC3(t) + HCy(t) = by (21.a)
A3C5(t) + B3C3(t) + RC,(t) — WC,(t) = by (22.a)
AsC3(0) = b2 and  A3C5(0) = b (22.b)
where 4; = (ailj)nxn’ ag; = (vij,vida, Bi = (bilj)nxn’ bui=lai(t, vij,vir) + Bi(®)vijvi)al E =
(elj)nxna e;j = (Bav2jyvi) oy F = (flj)nxn v fij = Bsvzjvida, G = (glj)nxn v gy =

(Bav3j,V21)a » H = (hzj)nxn: hij = (Bev1j,v2)a » R= (sz)nxn v 1 = (BeV1j,V3)0, W =
(le)nxn y Wy = (.35172]' » V31) vbi% = (3’1’0 Vit Do biO = ( biol) v bi= (bidnx1 + by =Chy,vy) o +
(i, v, Ci(1) = (cj(Dnx1s CGi(Y) = (€ij(E)Inx1, Ci(0) = (€j(0))nx1 Ci(0) = (¢;j(0))px1 , V I =
1,2,3,....n ,i=1,2,3.

Then there is a sequence of unique solutions {y,} for the following approximation problems
corresponding to the sequence{ I7n}, , i.e. foreach ¥, = (V1p, Vop, V3n) C 17;, andn = 1,2, ...

YV1nter Vin) + @1 (6 Vi Vin) + (BiYin — BaYan — BsYan Vinda = (i (V1n), Vinda + (Uy, Vin)dr (239)
(yi)n' vln)Q = (yf'vln)n and (Y%n'vln)ﬂ = (}’11'77111) Qo (23b)
Vantt» Van) + @2 (6 Yon, Van) + (Badin + BoYon + BeYVan Vanda = (i (Vin), Vonda + (Uz, Vo), (24a)
(ygnJUZn)Q = (ySJUZn)Q and (YZln: vZn)Q = (YZIJUZn) Q (24b)
(Vanee Van) + @3(t, Y30, V3n) + (BsVin + B3Y3n — B6V2n Vanda = (R1(V1n), v3)a + (U3, V3)rs (25a)
V3 van)a = V3, v3n)a and (¥3,,v3n)a = (¥3,V3n) (25D)

Adding the obtained three equations after replacing v;, = yin:, for i = 1,2,3 in (23a,24a,253),
respectively, then applying Lemma 2.1 for the 1* term of the LHS, yield
S 1Fne N + SCE T, )] = Se(E T ) =

2((BaYan + BsYzn: Yint)a — (BaYin + BeY3n Yant)a + (BeYon — BsYin Yant)a + (hi (V1n), Yint)a

+ (U, Yindr + (ha(V2n), Yane)a + (u2:y2ntgr‘ + (h3(¥3n), Yane)a + (Us, Yane)r) (26)
Now, assum. (A-iii) can be applied for the 2" term in the LHS of (26) after taking the absolute value

for its both sides, then it becomes
%[”ynt ”(2) + a”)_;n”%] = b”}_}n”% + 2(|(ﬁ43’2n:ylnt)ﬂl + |(ﬁ5y3n:ylnt)ﬂl + |(u11ylnt)r‘| +
|(uz, Yone)rl

|Ch1 (V1n)s Yine)al + 1Bayin, Yone)al + 1(BsYan: Yane)al + 1(ha(V2n), Yant)al
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+I(h3(¥3n), Yandal + [(BeYon Yane)al + |(Bsyin Yane)al + [ (U3, ¥ane)rl) (27)
Integrating both sides (IBS)of (27) on [0, ¢], applying [|yinllo < [I¥inlls < I¥nlly . Yinello < IYnello,
llu;llr < |ldllr and the trace theorem (TTH), and applying assum. (A-i) for the RHS of the resulting
equation, give
Sy L1151 + @llFali31dt < o [ UFncll3 + 15117 dt + T3y fy Apalld + lhwillB)de

< c10 + Co Jy (IFnc I3 + alla 1) de (28)
where |B;] < ¢;, for i =4,5,6 , = 2max(By, s, Bs), ¢ = max(cy,cz,¢c3). €7 =2+ B+ c, with
lilly < by, lwllg < by, for each i = 1,23, ¢10 = TF_1(b; + by) , ¢o = max(e;,2) , cg=b+ B+
C.

Since |[¥2]l1 < by and ||yEllo < bg, With ¢y = b + by + ¢4, the inequality (28) becomes

5 ONF + @F(ONF < co + o fy UIFncllf + @llFall?) de

Applying the Belman-Gronwall inequality(BGI) gives

1FneOIIF + @llFn(ONIF < coe® = b?(c) = [IFn(OI§ < b?(c) and I3, (DI < b?(c), V ¢ € [0, T]

Easily, one can obtain that [|,,:(t)llg < b1(c) and [, ()l 2y < b(C) .

Then, the Alauglu’s theorem “ALGTH” can be utilized here, which leads to that there is a
subsequence of {¥, },en., let we say again "for simplicity” (¥, }neny St ¥ne — ¥ Weakly in L2(Q) and
y, — y weakly in L2(1,V), and since

L%2(1,V) c L?(Q) = L*(Q)" c L*(R,V*) (29)
hence, Theorem 2.1 can be utilized to get that ¥, — ¥ strongly in L2(Q).

Now, multiplying both sides "MBS" of (23a), (24a), (25a) by ¢;(t) € C?[0,T], Vi =1,2,3,
respectively, s.t. ¢;(T) = @;(T) =0 , ¢;(0) #0, ¢;(0) # 0, integrating on [0,T], and finally
integrating by parts twice (IBP) the 1% term in the LHS of each one of the obtained three equations,
yield

- OT%(}’ln;vln)ﬁél(t)dt + fOT[al (&, Y1 V1n) + (B1Yin — BaYan — BsYzn, Vinda 11 (B)dt

= [ [ G 1 Vi)t (s, vin)rles (Ode + Yy, v1)91(0), (30)
fOT(}hn;vln)q’;l(t)dt + fOT[al (, Y10 V1n) + (B1Yin — BaYan — BsYzn, Vinda 11 (B)dt

= Jy [t 01n), V1)t (s, vin)rlos (Ot + G, v12)91(0) + 38, V1)1 (0) (32)
- OT% (Van V2n) P2 (D) dt + fOT[ a2 (6, Yo Van) + (BaYin + B2Yan + BeYan Vandalp2(D)dt

= [y [(hoG2n) van)a + (12, V2)rl 02 (DAL + (3, v20) 0 0), (32)
fOT(yZn: Van) G (B)dt + fOT[ a2 (8, Yo, Van) + (BaYin + B2Yan + BeYan Van)al@2(t)dt

= [, (a2, vanda + (2, Vo)l @2 (DL + (W, V2)92(0) + (3, v20) 620 (33)
- OT%(ySnJUSn)qo,S (Odt + fOT[a3 (6, ¥3n,V3n) + (Bsyin + B3Y3n — BeYan Vandalps(t)dt

= fOT[(h3 3n), v3)a + (Us, Van)rl@s () dt + (Vin, v3n)03(0), (34)
fOT(}’3n' V3n) @1 (D)dt + fOT[ az(t, ¥3n, Van) + (BsYin + BaYan — BeYzn Vandal@s(t)dt

= [y [(hs (s, v3nda + (s, V3n)rl s (DAL + (an, V31)93(0) + (V3 v3n) 50 (35)
First, since

Vin@i(t) — v;9; (D)
Vi, — v; stronglyinV = Vin@i(t) — v (1)
| \vingi(0) = iy (0) - strongly in L2()

72 Vini(V) = ¢i() } strongly in L2(Q)
Vin — V; strongly in L*(Q) = Vin®i(t) — v (£) gy

} strongly in L2(I, V)

, foreachi = 1,2,3,

Vin®i(0) — ¢;(0)  strongly in L?(Q)

Second, Vi — v;: Weakly in L2(Q) and y;,, — y; weakly in L2(I, V) and strongly in L2(Q) .

Third, since 7, = vi,@; — v;@; =n; strongly in L2(Q) and n;,, is measurable w.r.t. (x,t), so
using assumption (A-i), applying proposition 2.1, the integral fQ hi(x,t, yin)nindxdt is continuous

W.I.t. (Yin Min), then
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fOT(hi(Yin)' un)G;(t)dt - fOT(hi(}’i).ui)fi(t)dt Vi=123 .
On the other hand, since y;,, — y; in L?(Z) from the TTH, then Vi = 1,2,3
T T
Jo @i vidroi(©)dt - [ (w;, v)re;(t)dt
From these convergences, (18) and (19), we can passage the limits in (30-35) to get

- ;%()’1'171)(/51 (t)dt + fOT[ a1(t,y1,v1) + (B1y1 — Bay2 — BsYs, v1)a le1 (D)dt

= fy [ ), v0)a+ (s, vorles (Ode + (01, v (0) (34)
fOT(}’1:V1)(P;1 (t)dt + fOT[a1(t' y1,v1) + (B1y1 — Bay2 — Bsy3 v1)a Je1 (D)dt

= foT[(h1 1), v)a+ (g, v)rleq (Odt + (v, v1) 91 (0) + (7, v1) 61 (0) (35)
- fOT% (y2, v2) P2 (B)dt + fOT[ a2 (8, Y2,V2) + (Bay1 + Baya + BeY3, V2)al@2 (t)dt

= [y [(ha (), v2)a + (2, v)rl@2 (D)t + (3,v2)9, 0), (36)
fOT(}’z'Vz) $,(D)dt + fOT[az (t,y2,v2) + (Bay1 + B2y2 + Bey3, v2)al@2 (D)dt

= foT[(hz (72), v2)a + (U2, v2)rl@2(O)dt + (3, v2)92(0) + (¥7, v2)62(0) @37)
- fOT% (v3, v3)@3(t)dt + fOT[ az(t,y3,v3) + (Bsy1 + B3y3 — BsYa, v3)alps(t)dt

= [y [(hs (), v3)a + (s, v3)rlps (D)t + (3, v3) 3 (0) (38)
fOT(y3,v3)(ﬁl (t)dt + foT[a’3 (t,¥3,v3) + (Bsy1 + B3ys — Bey2, V3)ales(D)dt

= fOT[(h3 73), v3)q + (uz, v3)rles(O)dt + (3, v3)93(0) + (¥3, v3)¢¥3(0) (39)

Casel: We choose ¢; € C?[0,T], s.t. ¢;(0) = ¢,(0) = ¢;(T) = ¢,(T) = 0, Vi = 1,2,3. in (35), (37),
(39), IBP twice the 15¢ terms in the LHS of each one of these three equation, to obtain

T T
Jo <V1eev1 > @1(O)dt + [ [ar(t,y1,v1) + (Bryr — Bay2 — Bsys vi)a Jei(D)dt

= [y [y 1), v)a + (g, v0)rlga (Dde (40)
foT < Yare, V2 > @2 (O)dt + fOT[ az(t,y2,v2) + (B2y2 + Bay1 + Bey3, V2)al@2(D)dt

= [y [(h2(72), v2)a + + (2, va)rlz (6)de (41)
fOT < ¥3ee, V3 > @3(0)dt + fOT[ az(t,y3,v3) + (B3yz — Beys + P51, V3)alps(t)de

= [, [(hs (), v3)a + (43, v3)rlgs(D)dt (42)

Which gives that y is a solution of ((11a) , (12a) , (13a)) a.e. on I.
Case2: By choosing ¢; € C%[0,T] ,s.t. ¢;(T) #0 & ¢;(0) # 0,Vi = 1,2,3. MBS of (11a) , (12a),
and (13a) by ¢, (t), @,(t) and @5(t), respectively, and integrating on [0, T] then IBP the 15¢ term in
the LHS of each one of these equations, then subtracting each one of these obtained equations from
those correspond in (34) , (36) and (38) respectively, we obtain

(yll,vl)qol(O) = (yit(O)Jvi)¢i(0)1 Vi= 1'2'3
Case3: By choosing ¢; € C%[0,T], s.t. ¢;(0) = @;(T) = ¢@,(T) =0, ¢,(0) #0 ,Vi=1,23. MBS
of (11a), (12a), and (13a) by ¢, (t), ¢, (t) and @5 (t), respectively, and integrating on [0, T], then IBP
twice the 15¢ term in the LHS of each one of these equations, then subtracting each one of these
obtained equations from those correspond in (35) , (37), and (39), respectively, we have

(¥, v:)#,(0) = (v:(0),v),(0), Vi = 1,2,3.
From Case2 and 3, one obtains the initial conditions (11b), (12b) & (13b).

To prove that y,, — ¥ strongly in LZ(I, V), we begin with integrating (26) on [0,T],to get
13 (DIE = UFne ONF + ST Fins ) (T) = $CE Fis F) (0) = J3 St Ty P}t
= [, [(43a) + (43b)]dt

(43) (43a) = 2((Bay2n + BsYsn Yint)a — BaYin + BeYsn, Yont)a + (BeYan — BsYin: Yant)a
(43b) = 2((hy V1n), Y1ine)a + (Ui, Yine)r + (A2 (V2n), Yone)a + Wa, Yane)r + (h3(V3n), Yane)a +

(U3, Y3ne)r)
The same steps utilized to obtain (26 & 43) can be also utilize here with y, y, instead of y,,, V,,;, i.e.
17:(DNIG = 17O + s 7, 7)(T) — s(t,5,7)(0) — fOT se(t,y,y)dt = fOT[(44a) + (44D) ldt (44)
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(44a) = 2((Bayz + Bsyz, yi)a — (Bay1 + BeYs: Yar)a + (BeY2 — BsY1, Y3t)a

g_Mb) = 2((hi (1), ¥10)a + (i, y1dr + (ha (02), Y20)a + (U, Y20)r + (hs(73), ¥ae)a + (U3, Yae)r)
ince

”ynt(T) - }_’)t(T)“%) - ”ynt(o) - }-’)t(o)”(z) + S(tvj-}n - 37:3_;71 - }_/))(T) - S(t'j}n - 3—}:3—;71 - )—;)(O) -
[y 56,3 = 3,3 — F)dt = (45a) — (45b) — (45¢) (45)
where
(45a)= |Fne (MG = 1Fne (O)IG + 5 P P ) (T) = 5t I, ) (0) — fOT st (t, Yo, Yn)dt
(450)= (Ve (1), ¢ (T)) = (¥ (0),7:(0)) + (&, Y, V(T — 5(t, ¥, ) (0) — fOT s¢(t, Yo, Y)dt
(45¢) = (J¢(T), Yne (T) = J(T)) = (§£(0), Y (0) — ¥(0)) + s(&, 9, ¥ — () = 5(t, ¥, Y —
¥)(0)
— [y 5e(t,3, 9 — $)dt

Since y, — y strongly in L2(Q), y, — y weakly in L2(I,V) and y,, — ¥, weakly in L%(Q), then
from (43b) and the Assum. (A-i), the following is obtained
fOT(43b)dt =2 foT(Uh (V1n) Y1inda + (i (V2n), Yanda + (i (V3n), ¥anda + (Us, Yindr +
(uz, Yandr +

(s, Yam)r)dt — 2 [§ (1), y1)a + (hi(72), ¥2)a + (R (), ¥3)a) +
(ug,y1)r)dt

+ o (g, y2)r + (g, y2)r) dt = [ (44b)dt

(43c)

Also, since ¥, — ¥ strongly in L2(Q) and y,,, — ¥, weakly in L?(Q), and from (43c), we obtain
(45) = [, [(432) + (43b)]dt — [ [(44a) + (44b) ldt .

The same manner utilized to obtain (19) can be utilized also to obtain

Ve (T) = ¥(T) strongly in L(Q)2. (46)
On the other hand, since y,, — ¥ weakly in L?(I, V), then we use (19 & 46) to get

(45b) > [/ [(44a) + (44b) 1dt

All the terms in (45c) imply to zero, as well as the 1 two terms in the LHS of (45), hence (45) gives
ally, =yl < fOTst(t,izn - ¥,V —Y)dt >0 as n— o, so we get that 3, — y strongly in
L*(LV).

Uniqueness of the solution: Let § = (yy,y,,v,) and ¥ = (7, 7, 7,) be two solutions of the WKF
(11-13). By subtracting each equation from the other, setting v; = (y; — y;),, for each i = 1,2,3, then

adding the obtained equalities, using Lemma 2.1 for the 1% term in the L.H.S and assum. (A- ii) for the
term in the RHS, it becomes

= N > =3 N > > N > N = 2
G-l +st5-55-9| <565 -5.5 -7 + LA G-I, + |G —y)t||0)
where L = max(Lq, Ly, L3)

IBS from 0 to ¢, considering the ICs, then utilizing the Assum. (A-iii) , we obtain

2. - =, — - =, - = 2
25 T =9:@lly+alo =Dl <Ls @6 - Dl e+ |G -5), | 1ae

where L,=b+L,Ls= max(%4 ,L).
After utilizing the BGI on the above inequality, it becomes

5 2 2 - 22 5 2
1G-»®, +allG-y®=0.vtel=|T-NO,,, =0

Thus the solution is unique.
Lemma 3.1: In addition to assum. (A), if the BCV is bounded, then the operator i — y; from L%(Z)

into L® (I, L? (Q)), into LZ(1,V), or into L?(Q) is continuous.

Proof:Letu” = (u_l,u2,u3),u ~=@W_1,u_2,u_3)€ L"2(2).Set (6u
u’,then fore >0,u”_e=u"+¢&(6u)” € L"2 (2), Applying Theorem 3.1,
v Ly2y3andy  e=y _(u_e)=

N

-

)—>=u_
y =y u" =
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(v_1e,y_2¢,y_3¢€) are the SVS (corresponding tou” and u”_e resp.) which satisfy the WKF (10 —
11), setting (8y) ~_c = (6y_le, [6y] 2¢e, [65y] 3¢) =

y~_e—y , then (10 — 11), give (§V1ete, V1) + a1 (t, 816, v1) +

(B16Y1e — B46Y2e — B56Y3e, V1) =

((hy(y1 + 8y16) — hi(71) , V1) + (€6uq, v)r (47a)
6y1£(x,0) =0and §y16:(x,0) =0 (47D0)
(6Y2ett, V2) + @z (£, 8Y2¢,V2) + (B26Y2¢ + Bab0YVic + B6OY3e,V2)a =
(hy(¥2 + 0y2:) — ha(12),v2)q + (e8uy, Vo)1 (48a)
6y.6(x,0) = 0 and y,.:(x,0) =0, (48Db)
(6Y3eter v3) + a3(t, 8Y3e,v3) + (B36Y3e — P60YV3e + Ps0Yie, V3)a =
(h3(y3 + 6Y3e) — h3(¥3),v3)q + (0us, v3)r (49a)
5y36(0) = 0 and 5y3€t(0) = 0 ,V U3 € V3 (49b)

By replacing v; = 8y;.; for i =1,2,3 in (47a), (48a) & (49a), respectively, and adding these three

equations, utilizing the same steps utilized to get (27), a similar equation can be obtained but with @6
instead of y,,. By utilizing assum. (A-iii) for the second term in the LHS of (26) and taking absolute
value for both sides, then utilizing assum. (A-i) for the RHS of the obtained equation, we obtain

— 2 = 2
L I8yec Ol + allsyell, | <

— 2
b||8y£||1 + 2(|(ﬁ48y2£ + ﬁ55}/35, Sylet)ﬂl + |(.846y15 + .8663’38' 63’2£t)9| +

|(B60Y2e — Bs0V1e, 6Y3e)al + L11(8Y1e, 0V1ee)al + 1(e6Us, 8V1ee)r| + L2l (8Y2e) 6Y2ee)al +

|(e6uz, 8Y2ec)r| + L3l (8Y3e, 8Y3er)al + [(€6us, 8yser)r
IBS of the above equality on [0, t], the definitions of the norms and the relations between them, and

then using the TTH, we get
185 OIl; + all8y.@l; < b [i1185e ], de +ba [y l6vell, + [18yeell,) dt + € fy |5l de
te [H8vellnde + by [ 8ell; + 18yl dt
< 5 (bl8yecl, + balldvell, ) de + |3l + [ all3ve I, +
ba8ecl) dt

— 2 — 2 — 2
< el|su()|| + bg [, ([8veel, + alldyel| ) dt
Whel’e |ﬁl| < Ci fOI’ i= 4,5,6, bl = ZmaX(C4, C5,C6), bz = ZmaX(Ll, Lz,Lg), b3 = b + bl' b4 =&+
by, bs = by + by, by = by + b, bg = max(b;, =) .
Applying the BGI, with L? = gePs, gives
— 2 2 S 2 _ — 2 S 2,2 _
[6ve: @, + allsy:|, < L?[|su®)ly, veeT = [[6y)|, < L*[|su@®)|; 1> == vtel=
163ell oy 12cay) = LlIBully - 18%ell 2,y = LISull and [l6yell, < Lou],

Form these three inequalities ,we obtain the continuity of the operator u +— y.

4. Solvability of BOCV: This section is concerned with the proof of the solvability theorem of BOCV
which satisfies the EINESVC. The following assumption and lemma will be useful.

Assums. (B): Consider p;; and q; (vl =10,1,2 and Vi =1,2,3) are of CTHDT on (Q X R) and
on(Z x R), respectively, and satisfy the following, i.e.

lp(x, t, v, w)l < PyCx, ) + ey |qu(e t, w)l < Qux, t) + dyy(wy)?,

where y;, u; € Rwith P; € L1(Q) ,Q;; € L1 (D).

Lemma 4.1: With assums. (B) and VI = 0,1,2, the functional i +— J;(&) is continuous on L2(X).
Proof: The result is obtained through employing assums.(B) in proposition 2.1.

Theorem 4.1: In addition to the assums.(A&B), if the set U is convex and compact, WA +Q, gq1; 1S
independent of u; for each i = 1,2, and p,; and p,; are convex w.r.t u; for fixed (x, t,y;) , then there
exists a BOCV.

Proof: Since W, # @, then there is & € W, and a minimum sequence {4} with @, € W, , Yk, such

that 1im o (@) = 4 fqA]O(ﬁ). By utilizing the hypotheses on U and the theorem 2.2, U, is weakly

n
ue
compact. Then {u; } has a subsequence, let us denote it again {1} for simplicity , for which u;, — u
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weakly in U, and ||t |ls < ¢, Vk . From theorem 3.1, for each i, the WKF of the TNLHBVP has a
unique SVS y, = ¥z, and the norms ||yl 2y, IVkell 2y are bounded. Then by ALGTH, there
exists a subsequence of {y, } and {y.}, let us denote them again {y; } and {yy;}, s.t. ¥y, — y weakly
inL2(I,V),and ¥, — ¥, weakly in L2(Q).

Then by utilizing theorem 2.1, there is a subsequence of {y;}, let us denote it again {y;}, s.t. y, —y
strongly in L%(Q).

Now, since for each k, y, satisfies the WKF (11a),(12a) - (13a), then MBS of each of these equation
by @;(t), Vi = 1,2,3, respectively, (with ¢; € C2[0,T], s.t. ¢;(T) = ¢;(T) = 0, ¢;(0) = 0, p;(0) #
0,Vvi=123),IBS from0to T, and finally IBP for these first terms, become

fOT% (V1ke, V1) @1 (D)dt + fOT[ a1 (t, Y1k, 1) + (Biyak — BaYak — BsYsk, v1)ale1 (8)]td

= [T (M 011, v (DAt + [ (g, 1)1 (6 dt + (14 (0), 1) 0901 (0)
(49)

d
IOTE Y2kt V2) @2 (t)dt + fOT[ a2 (8, Va1, V2) + (BaYik + B2Yzk + BeYaw V2)al @2 (8)]dt

= [} (ha (720, ) @92 (Dt + [ iz, )02 (1) dt + (721c(0), v2)002(0)
(50)

fOT%(%kt: v3)@3(t)dt + fOT[ az(t, Y3k, v3) + (BsYik + B3Ysk — BeYar V3)alps(D)]td

= Jy (ha (1), v3)a@3 ()t + [ (310, v3)r @3 (8) dt + (731(0), v3)0 3 (0)

(51)

In this point, we can utilize the same manner utilized in the proof of theorem 3.1 to passage the limits
in the LHS of (49), (50), and (51), so it remains to passage the limits in the right hand RHS of these
equations, which will be done as follows:

Let v_ieC[Q ] and w_i=v_i ¢_i (1), Vi=1,2,3. Then w_ieC[Q ]cL"o (I,U)cL"2 (Q). Set h _il
(y_1k )=h_il (y_ik ) w_i, then h _il:QxR—R is of CTHDT. Now, utilizing proposition 2.1 to give
that the integral | Q* & [h_il (y_ik ) w_i ] dxdt is continuous w.r.t. y ik. But y ik o(—)y_i
strongly in L2 (Q), therefore

fQ hil(ylk)wi dxdt - fQ hil(yi)wi dxdt ,V?]i € C[Q], for i = 1,2,3 (523)
This result also holds for every v; € V ,Vi = 1,2,3, since C(Q) is dense in V.

On the other hand, since w;, — w; weakly in L?(Z), then

fE Wikuidth - fZ wilu; thdt, Vui € C(ﬁ)] ,for i= 1,2,3 (52b)
Hence, y is the SVS of the WKF (11a,12a&13a) Vv; € V,a.e.on I.

Finally, to passage the limits in the ICs easily, one can utilize the same steps which are utilized in
the proof of theorem 3.1 to get that y satisfies ICs (11b,12b&13b). Hence, y is the SVS of the WKF
of the NLHBVP.

On the other hand, since J; (iiy) = Y3, fQ p1i (Vi) dxdt is continuous w.r.t. y;, (for = 1,2,3 ), then
by Lemma 4.1, fQ p1;: (Vi) dxdt is continuous w.r.t.y;,, but y, —y strongly in L2(Q), then from
proposition 2.1:

J1@) = llijrc}o]l(ﬁk) = 0.

Again, since Vi =1,2,3and VI = 0,2, p;; (i) IS continuous w.r.t. y;, then from the proof of Lemma
4.1, one gets

fQ P (Vir) dxdt — fQ pu(y;) dxdt

(53)

Now, from assums. (B), q;;(u;) is a weakly lower semi continuous w.r.t. u;, Vi = 1,2,3,and [ = 0,2.
Then from (53), one has

Jopu®s) dxdt + [; qi(w) do < limyo inf [ gy (u)do + [, pu(y;) dxdt =
limye,o inf [5(qy; (Ui )do + limy_, fQ(Pu’(Yi) — pu(Vix))dxdt +limy o fQ Pri (Vi) dxdt

= limy_,q, inf [ g3 (wye) do + limy_,, inf fQ pui (Vi) dxdt
ie. (W) < Ilim inf];(uy), (foreachl =0,2)
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But J, (i) < 0 (since J, () < 0, Vk), which means i € W, and

Jo(@) < lim infJo (@) = lim Jo (@) = infc, Jo(Tx).

Hence, 7 isa BCV.

Assums. (C): If hyy,, Dy and qpw, » (VI =0,1,2and Vi = 1,2), are of CTHDT on @ X (R), @ X
(R), and Z x (R), respectively, such that

|hiy, (6 y)| < L

|P1y, (ot v u)| < K (e t) + mylyil s | @, (6 6 v w) | < Lig(x, ) 4yl

where (x,t) € Q , y;,u; € R, Kj;(x,t) € L2(Q) Ly(x,t) € L2(%),, L;,my,ny; = 0.

Theorem 4. : By neglecting the indicator [ in p;; , q;;, and J;and considering the CFu F,(¢) in (10),
with the assums. (A), (B), and (C), the following ATHBVP Z = (z,, z,, z3) of the NTHBVPs (1-9) are
given by:

Zyge — Z%J:laixi (aq4 %) + B121 + Bazz + Bszz = z1hqy, (V1) + P1y, (1), INQ (54a)
Z%: 0, ons3 zGT)=2z,T)=0 onQ, (54b)
Zott — Z?,j:laixi (Bij g_izi) + B2z — Paz1 — Pez3 = z3h3y, (¥2) + P2y, (¥2),INQ (55a)
% =0, onZ z(T)=2,0xT)=0 onQ (55b)
Z3tr — Z?,j:laixi vij Zixj,) + B323 — Bz + BsZz = Z3hyy, (¥3) +D2y,(3),INQ (56a)
Zﬁ =0 on3 z(T)=2xT)=0 onQ (56b)

where each of v,, vg, and v, is a unit vector normal outer on the boundary X
and the "Hamiltonian" is defined by:
H(x,t,yi 2o ) = Nimg (b () + pi ) + q: ()
where J (1) = ¥7_, Jopiy)dxdt + [; q;(u))dydt.
Then for # € U, the DRD of G is given by
- U+edu)-J (U
Dy, — ) = limeog EPID 15,0, 51 do,
where Hy = (21 + Guu,) 22 + Qau, 23 + qay,) is the DRDH and Su = (Suy, Suy, Sus)".
Proof: At first, let the WKF of the ATHBVP be given as Vv; € V, by
(Z146, V1) +ay (8,21, 1) + (B121 + Bazz + Bsz3, V1) = (Z1hyy,, V1) + (P1y, V1)a ,a.e.0n I (57a)

(z1(T),v1)q = (21:(T),v1)q = 0, (57b)
(Z26, V2) + a3 (L, 22, 2) + (B22y — Bazy — PoZ3,V2)o = (ZthyZ'Vz)Q + (pZyz'UZ)Q' ae.on | (58a)
(22(T),v2) = (22¢(T), v2)q = 0, (58b)
(z31,v3) + a3(t, 23, v3) + (B323 — Bez1 + Psz2,V3)q = (Z3h3y3'v3)0 + (p3y3'173)ﬂ; ae.on [ (59a)
(z3(T),v3)q = (23:(T),v3)q = 0 (59b)

From the given hypotheses and utilizing the same manner which is applied in the proof of theorem3.1,
it can be proved that the WKF (57a, 58a & 59a) has a unique solution Z = (z;,2,,2,) € L?(Q). By
replacing v; = 8y;. in(57a), (58a), and in (59a) for i=1,2,3 resp., then IBS on [0,T], yield to

[ 0O’TE 8y lez 1tt) dt+] 0MTiT o 1 (t,z 1,8y le) +(B 1z 1+p 4z 2+B 5z 3.8y le) Qldt=

X _
fo [(Z1h1y1'53’1s)9 + (plyl: 5y1£)9_]dt (60)
T T
Jo (626, Zaee) dt + [ [ @z (t, 22, 8Y2e) + (B2Z2 — Baz1 — Be73, 8Y2e)aldt =
T
fo [(22h2y2'6y2£)ﬂ + (P2y2'53’2£)ﬂ]dt (61)
T T
Jo (636, Zzee) dt + [ [a3(t, 23, 8y3¢) + (B3z3 — Bez1 + P52z, 8y3e)aldt =
T
fo [(Z3h3y3'6y3s)n + (P3y3'53’3s)ﬂ]dt (62)

Now, let %,% € L2(Z), Su =u —u for € >0, U, = U + edu € L2(Z), then by theorem 3.1, their
corresponding SVS are y = yy;, and y, = yy,. By putting 5Y. = (8Y10, 6Y2:) = ¥ — ¥ and setting
u; =z; fori =1,2,3 in(47a), (48a), and (49a), respectively, IBS on [0, T], then the IBP is twice the
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first term in the LHS of each equation. By finding the DRD of h; for i = 1,2,3 in the RHS of each
equality (which exist from the assumptions(C)), then from the result of Lemma 3.1 and the
"Minkowiski inequality", we obtain

T T
Jo (6y16, 1) At + [ [ a1 (t, 8Y1e,21) + (B16YV1e — BabY2e — BsOY3e Z1)qldt =

[y (hay, 616, 20)adt + [, (£8uy, 21)rdt + 014 () (63)
[y (8Y2es Zae dt + [ [ @2 (t, B28Y2e + BabV1e + Po8Ysc, 25)]dt =
Iy Chay, 826, 2)0dt + [ (81z, 25)pdt + 015 (e) (64)
fOT(5}’3e: Z3ge) dt + fOT[a3 (t, B36Y3e — P66Y3e + Ps0Y1e 23)]dE =
[ (hay, 836, 23)qdt + [} (£8us, 25)pdt + Oy3(e) (65)

where 04;(¢) — 0, as e — 0, withOy;(e) = ||6y;.llo, foreach i = 1,2,3

Then we subtract (63), (64), and (65) from (60), (61), and (62), respectively, and add each
corresponding pair to obtain

£ fy Xia(Ous, z)r dt + 01(e) = fi T3y (piy, Oic) dt (66)
where 0;(€) = 041(€) + 01,(¢) + 053(g) — 0, as & — 0, with 0 (¢) = ||@g||Q

On the other hand, from the assumptions on p;, q; (i = 1,2,3), the definition of the DRD, and the
result of Lemma 3.1, and then by using "Minkowiski inequality", one gets

Jo(ie) — Jo() = Zi3=1(fQ Piy;6Yiedxdt + € fz iy, 6u; dydt) + 0,(¢) (67)
where 0,(¢) = ||§£||Q +ée||6u||, 0,(e) > 0, ase — 0

Z
Now, using (66) in (67) gives
Jo@e) —Jo(@) = 52?:1 fz(zi + qiu;)0u; dxdt + 03(e)
where 05(e) = 01(e) + 05(e) — 0, as e — 0, with 05(e) = 26|, + e[[6u]

Z

Finally, the result is obtained after dividing both sides of this equality by &, then taking the limit
e—0,i.e.
DJ(,% — i) = [ Hy.6u do.
5. NCOs and SCOs for optimality: In this section, the NCOs and the SCOs theorems for OP under

prescribed assumptions are found and proved as follows.
Theorem 5.1: (NCOs for Optimality)

a) With assums. (A), (B) , and (C), if U. is convex, i € W, is a BOCV, then there exist multipliers
2
MER,I=0,12withAd, = 0,1, =0, ¥ |4 = 1, such that the following Kuhn-Tucker-Lagrange
1=0
(TKL) conditions hold

2 - — g

SADL (U, u—d)=0,vuel |, (68a)
=0

A,J,() = 0 , (Transversality condition ) (68b)
(b) The inequality (68a) is equivalent to

Hy(x, t,y,2,1).4(t) = mmH (0 t,9,2,1).1(t) ae.onQ (69)

where Hy (x t,y,Z,U) is deflned as in theorem 3 above,
with g; = Z Aiqiiand z; = Z Azyi, (fori = 1,2).

Proof: a) From Lemma 4.1, the functional J; (&) (for = 0,1,2) is continuous and, from theorem 4.2, the

functional DJ, (for 1 =0,1,2 ) is continuous w.r.t. & —% and linear in & —. Then, DJ, is
M —differential for every M. Hence, by utilizing theorem 2.3, there exist multipliers 4, e R, [ = 0,1,2
2

withi, = 0,4, =0, X |4;] = 1, such that (68a-b) hold. By utilizing theorem 4.2, (42a) gives
=0

2 2
Y [ ¥ Az + quw,)Suidydt = 0, which can be rewritten as
1202 =1
G + d). i — d)dydt > 0,vu € U, (70)
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where Z + Gy = (21 + Quuy Z2 + Qouy 23 + Q30,), With q; = X0 A qu 20 = Yiso Ar 2y, Vi =
1,2,3.
Now, let {ﬁk} be a dense sequence in U and q < Q be a measurable set with "Lebesgue measure p"

such that %(x,t) = {uk(x’ Do ifkneq

i t) , if (h)€q
Therefore, (70) becomes
J,G + Gw). (@~ Wydydt = 0, (70a)
or
(Z+Gy)-@—1i)=0,aeo0nZ, (7ob)

which gives that (70b) holds on X /S,such that (S,) =0 , Vk, i.e. (70b) holds on X/U Sy with
1(Ux Sk) = 0 . But {Ti, } is dense in U, therefore there exists % € U such that

(Z+Gy).(@—1)=0 ,ae.onX, VieU,

i.e. (70a) gives (70). The converse is clear.

Theorem 5.2: (SCOs for Op)

In Addition to the assums. (A), (B), and (C), suppose that l7c is convex, with 170 convex, and that h;,
p1; (hq;) are affine wrt. y; (V(x,t) € Q) and u; (V(x,t) € X).Suppose that py;, p,; are convex
w.rt. y; (V(x,t) € Q) and qq;, q; are convex w.r.t. u;(V(x,t) € ¥), Vi = 1,2,3. Then, the NCOs of
theorem5.1 with A, > 0 are also sufficient.

Proof: Assume that the TKL conditions hold by i € W,. Let J (i) = Y?_, A,J;(%), then from theorem
= — 2
4.2, D](ﬂ,u —Uu)= ZEOAZ f22?=1(zli + qliui) Sui dxdt = 0.

Consider hy(x,t,y1) = hy1(x, t)y; + hy2(x, t) = hy1y1 + hy, and

hy(x, t,y2,uz) = h2_1>(x, t)y2 + haa(x,t) = hy1y, + hyy
Let 1_1;: (u1,up,uz) and & = (g, Uy, U3) be two given BCV, then y = (Vyu1, Yuz) Yuz) = V1, Y2, ¥3)
and y = Vg1, Va2, Vaz) = (W1, ¥2, ¥3) are their corresponding SVS. By MBS of (1-9) by y € [0,1]
once, and once again by y; = (1 — y) after replacing % and ¥ by @ and ¥, respectively, in (1-9), then
finally adding each resulting pair of equations together, we obtain:

~ a ay ~ ~ ~

Vige — Z%j=1$ (Ofu y1) + B1¥1 — BaY2 — BsV3 = hi1(F1) + hez (71a)
Zf =1, on X (71b)
$1(x,0) = y; (x) F1e(x,0) = yi (%) (71c)
Voee — Dij= 1ax (Bij ayz) + BaV1 + B2z + B6V3 = ha1(F2) + hy (72a)
6372 o~

ong L2 ON 2 (72b)
72(x,0) =y, (x) th(x 0) = y; (x) (72c)
V3o — 2ij= 1ax (vij ay3) + BsP1 — BeV2 + B3Y3 = h31(J3) + hs; (73a)
6373 o~

on, ~ s ON 2 (73b)
¥3(x,0) = y3(x), F3¢(x,0) = y3(x) (73c)

Equations (71), (72), and (73) show that if the BCV is & = (ily, @i, {l3) With & = y7i + y,1, then its
corresponding SVS is § = (31, ¥, ¥3) With J; = yin, = Yigu+yap = ¥Yi +v1¥i, Vi = 1,2,3. Thus
the operator u +— y; is convex linear (CL) w.r.t. (y, 1), V(x,t) € Q.

On the other hand, the function J, (&) is CL w.r.t (¥,u), V(x,t) € Q (since the sum of two affine
functions is affine and the operator 1 +— y; is CL). The functions J,(1) , J,(&) are convex w.r.t.
(y,1) , for each (x,t) € Q (from the assumptions on the functions p;; , q;; and since the sum of two
integrals of convex function is also convex).

Hence J (1) is convex w.r.t. (v, %), V(x,t) € Q in the convex set U, and has a continuous DRD that
satisfies

DJ(4,, @ — ) = 0 = J(#) and has a minimum at i = J(@) < J(&), v € U, or
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Yoo M@ < TioM)i(), VE € U
Let% € W, , but A, > 0, then from (68b), this inequality gives
Aolo@) < AoJo() ,VEEU = Jo(@) < Jo(it), Vi € U= 1 isaBOCV.

Conclusions: The solvability theorem for the SVS of the TNLHBVP when the BCV is given, utilizing
the GAM with the AUTH, is proved successfully. The solvability theorem (existence theorem) of a
BOCV governed by the TNLHBVP with EINESVC is proved. The solvability solution of the
ATHBVP associated with the TNLHBVP is studied. The DRDH is derived. The theorems of the
NCOs and the SCOs for the optimality of the constrained problem are generalized and proved.
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