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Abstract

In this paper, a new class of ordinary differential equations is designed for some
functions such as probability density function, cumulative distribution function,
survival function and hazard function of power function distribution, these functions
are used of the class under the study. The benefit of our work is that the equations
,which are generated from some probability distributions, are used to model and find
the solutions of problems in our lives, and that the solutions of these equations are
a solution to these problems, as the solutions of the equations under the study are the
closest and the most reliable to reality. The existence and uniqueness of solutions the
obtained equations in the current study are discussed. The exact solutions of these
obtained differential equations are calculated using some methods. In addition, the
approximate solutions are determined by the Variation Iteration Method (VIM) and
Runge-Kutta of 4™ Order (RK4) method. The chosen approximate methods VIM and
RK4 are used in our study because they are reliable, famous, and more suitable for
solving such generated equations. Finally, some examples are given to illustrate the
behavior of the exact and the approximate solutions of the differential equations
with the scale parameters of power function distribution.

keywords: Power function distribution, Ordinary differential equations, Variation
iteration method, Runge-Kutta of 4™ Order, Survival function, Hazard function.
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1. Introduction

The power function distribution is a flexible lifetime model which is the special case of the
beta distribution. Sinha et.al.[1] proposed a power function distribution. Also, the power
function distribution was derived from the Pareto distribution using the inverse
transformation[2].

On the other hand, the ordinary differential equations that are obtained for the probability
distributions play an important role in many applied fields in engineering, physics, chemistry,
computer science, economy and other sciences [4-6]. Some authors such as Okagbue, et al.
[7-16] created ordinary differential equations that are obtained from some distributions such
the Burr XII and the Pareto distributions, exponential and truncated distributions exponential,
exponentiated generalized exponential distribution, Fréchet distribution, half-normal
distribution, Harris exponential distribution extended the Kumaraswamy distribution,
distributions of linear failure rate and generalized linear failure rate, the Logistic and the log-
Logistic distributions and three-parameters Weibull distribution. RK4 and VIM are reliable
approximate methods to solve ODE. A system of non-linear ordinary differential equations
was solved by Variation Iteration method (VIM) in [17], [18] and the system of ordinary
differential equations was solved using RK4 [19].

In this work, a new class of ordinary differential equations of first and second order is
designed by using some functions such as a probability density function, cumulative
distribution function, survival function and hazard function of the power function distribution.
Also, the exact solutions of these differential equations are calculated by homogeneous,
separable, Bernoulli methods, using analytic and numerical methods. In addition, approximate
solutions are found analytically by the method of Variation Iteration (VIM) and numerically
by Runge-Kutta of 4™ order (RK4) method. Finally, the values of exact and approximate
solutions are computed according to different values of the parameter 6.

The remainder of present paper is organized as below: In section 2, ordinary differential
equations obtained for power function distribution are created. In section 3, the existence and
uniqueness of ordinary differential equations that obtained for power function distribution are
proved and discussed. In section 4, the formed ordinary differential equations are exactly
solved by the homogeneous, separable, and Bernoulli methods, and analytically by (VIM)
and numerically by (RK4). The results are clearly discussed by using some tables and figures
in section 5. The important results under study are explained and the conclusions are given
in section 6.

2. Ordinary Differential Equations Obtained from Power Function Distribution
A random variable X € [0,1] has a power function distribution denoted by (x~PFD(0)), and
its probability density function is given as follows:

flx)=0x%1, 0<x<1,0>006=%1 (1)

The mean, variance, cumulative distribution function (CDF), survival function and

hazard function of X are derived by Butt, N.S et. al. [3] as follows, respectively,:
0

E(x) = 911’ (2)
Var(x) = m, 3)
F(x) = x%, (4)
S(x)9= 1—xb (5)

h(x) = 2 (6)
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In this section, equations (1) and (4-6) are derived to design a new class of ordinary
differential equations.

2.1 Probability Density Function

By differentiating the equation (1) under the condition 6 # 1, we get

1) ==f(x), x € (01], (7)
After simplification, we obtain
xf')—(@-Df(x)=0 . (8)

From the equation (1), the initial condition at x, € (0,1] of ordinary differential equation (7)
can be written as
fxg) = 0(x0)°" . 9)
Again, by differentiating the equation (7) and simplification under the condition 6 # 2, we
obtain
xf"(x)—(@—-2)f'(x) =0, x € (0,1] (10)
To find initial condition for equation (10), we use the substituting equation (9) and by x, in
equation (7), we get:

! 6-
f'(x0) = == £ (o) (11)

2.2 Cumulative Distribution Function (CDF)
By differentiating both sides of equation (4), then we have

F'(x) = 672 (12)
After simplification to obtain;

xF'(x) = 0F(x), x € (0,1] (13)
Furthermore, the initial condition at x, € (0,1] of ordinary differential equation (8) is

F(xo) = (xo)g (14)

We differentiate equation (12) to obtain the differential equation of the second-order, this
becomes as:

xF"(x) — (6 —-1F'(x) =0, (15)
with the following conditions

F(xo) = (x0)? - (16)
F'(x0) = 6(x0)° ™" . A7)

2.3 Survival Function (SF)
In the same technique that is used in 2.1 and 2.2, the obtained ordinary differential equation
from survival function can be written as follows:

xS'(x) —6S(x)+6 =0 . (18)
With the initial condition at x, € (0,1]
SO = 1 - xoe . (19)

2.4 Hazard Function (HF)
From equation (6), we have

o) =) + ) (20)
After simplification, we obtain;
xh'(x) = (0 — Dh(x) + xh?(x), x € (0,1) (21)

The ordinary differential equation of the first order (ODE) for the hazard function can be
defined as follows

xh'(x) — xh?(x) — (6 — 1)h(x) =0 (22)
From equation (6) the initial condition at x, € (0,1) may be written as follows

0 x091
hy = 1_‘;09 (23)
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3. The Existence and Uniqueness

In present section, Picard-Lindel6f Theorem is used to prove the existence and uniqueness
for equations (8), (13), (18) and (22). This is done by Martha L. Abell, James P. Braselton
[20, page26] as follows;
The condition necessary for the existence of the equation (8) is 0 < x <1 and 6 > 0 such
that 6 + 1

Let (x) = y,weobtain y' =
y' = gey) =2y and 32
and uniqueness of the solution are exist through any point (x,, y) with xo # 0.
In the same method and by the existence and uniqueness theorem, the necessary condition for
the existence and uniqueness of the solution in equations (12) and (18) are x > 0 and 6 > 0.
While the necessary condition for the existence and uniqueness of the solution in equation
(20)are 0 <x <1land 6 > 0.
4.  Solutions of Ordinary Differential Equations Obtained for Power Function
Distribution

In the current section, some exact methods, namely homogeneous, separable, Bernoulli
and approximate methods (VIM and RK4) are presented to determine the solution of the
ordinary differential equations which are referred to section 2.
4.1 The Exact Solution

In this subsection, the homogeneous, separable, and Bernoulli methods are used to solve
equations (8), (13), (18) and (22)
4.1.1 Solve the equations in homogeneous method

In the current subsection, the exact solutions of equation (8) and equation (12) have been
computed using the homogeneous method.
To solve equation (8) in a way homogeneous. We use the notation 8= (8 — 1) and the
transformation f(x) = vx to get

©-1
—y . y(x) = yo

_ -1
T ox

are both continuous when x # 0 ,thus the existence

v+ x% = 0v (24)
By integrating both sides and separating the variables, we have
v=hbx?"1 | (25)

where, b is a constant.
The last step is to restore the original variables by reversing the substitution.

f)=b ") .(x). (26)
This implies to

f(x)=hbx?1 . (27)
The initial state in equation (9) gives

f(x)=6x°1,

By the same method to solve equation (12) with the initial condition in (14) as below:
Firstly, we use the transformation F(x) = vx, then we have

F’(x)=v+x3—z : (28)
From equation (13), we have

F’(x)=9%x)= v (29)
Combining the equation (28) and the equation (29) to obtain

v+ xZ—z =0v. (30)
Rewriting equation (30) in the following form

%=(9—1)‘1—x. (31)
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By integrating both sides and separating the variables, we have

v=bx?1, (32)
where, b is a constant. The last step is to restore the original variables by reversing the
substitution.

F(x) = b x?. (33)
The initial state in equation (14) gives
F(x) = x9.

4.1.2 Solving the equations by the separable method
In this subsection, the notations S(x) = u and S'(x) = Z—Z are used, so that the equation

(18) becomes
xZ—Z—Hu+9=O (34)

Consequently, we have
du 2]

D = —dx (35)
By taking an indefinite integration for both sides, we get
u=ax%+1 (36)
where, a is a constant. Replacing u by S(x), we get
S(x) =ax? +1 (37)
The initial condition in equation (19) gives us
S(x)=1-—x°
4.1.3 Solve the equations by the Bernoulli method

To solve the equation (22) by Bernoulli method, we use the notation 8= (8 — 1) and

transformation u(x) = (h(x))_l, we get
u’+gu=—1 : (38)

8
X

Assume that P(x) = and Q(x) = —1, hence

[ = el P@ax = 47 (39)
But,

Lu=[10Q(x)dx.

Therefore,

- __x -0
u=—z=+cx ", (40)

where c is a constant. Transforming u(x) by (h(x))_1 and replacing 8 by —1 , we obtain
(2]
h(x) =

x(0cx=9-1) "
The initial condition in the equation (23) gives us
0 x9—1
h(x) = P
4.2 Approximate Solutions
In this section, the variational iteration method (VIM) and Runge-Kutta 4th order method
(RK4) are used to solve equations (8), (12), (18) and (22)
4.2.1 The Variation Iteration Method (VIM)
Consider the following differential equation, [21],[22]
Ly + Ny = k(x) (42)
Where, L and N are linear and nonlinear operators respectively k(x) is the source
inhomogeneous term. The variation iteration method (VIM) is defined in the following form

Yiar(0) = () + [ A (Ly + Ny — k(x) ), (43)
and the solution is
y(x) = limyLe yi(x),

(41)
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where A is a Lagrange multiplier, in this paper we put A = —1.

In this section, the equation (8) is solved by VIM. Moreover, we rewrite the equation (8)
according to equation (42), we have

Du=(6-1)0x%2 . (44)
Where u= f(x) and D is a derivative operator. Ly = Du, Ny = 0,k(x) = (6 — 1) x72, if
we take the initial state at x, ,then the variation iterative can be written as

Uper1 (%) = (%) + fx’; A (Dug(t) — (0 — 1) t°2)dt, k = 0 (45)
where A is a Lagrange multiplier, in this paper we put A = —1 and putting in with initial
condition (10): u(xy) = 6(x)? "

u; (%) = up(x) + f;‘oz (Duy(t) — (60 — 1)6 t972)dt , (k=0)

u, (%) = uy (x) + f;‘oz (Duy(t) — (6 — 10 t972)dt , (k=1)
Uz (%) = uy (x) + f;‘oz (Duy(t) — (60 — 16 t972)dt, (k=2)

Consequently, the solutions are given by

u(x) = limy_ oo ug () (46)
Rewriting the ordinary differential equation (12) according to equation (42), we have
Dy — exe—l (47)

Where, y=F(x), and D is a derivative operator. If the initial state at x, is taken then the
variation iterative can be written as

Vier1 (0) = yic(0) + [ A (Dyi(®) — 0t Ddek 20, (48)

where A is a Lagrange multiplier, in this paper we put A = —1 and putting in with initial
condition (14) that means k=0;

y1(0) = yo () + [ 2 (Dyo(8) — 6 t°7Mdt

Y2 (1) = 3 () + j 2 (Dyi(8) — 6 91yt

X0

Y5 (0) = y,(0) + j 2 (Dy,(6) — 6 2 V)de

X0

Consequently, the solutions are given by

y(x) = limy_,e0 yic (%) (49)
4.2.2 The Runge-Kutta of 4™ Order (RK4) Method

The RK4 method is a numerical technique which is used to solve the ordinary differential
equation of the form

Z—z =f(x¥),y(0) = yo (50)
So, first order ordinary differential equations can be solved by using the Runge-Kutta 4th
order method [23].

The RK4 is one of the most accurate iteration numerical methods that has the general form;

h
Yis1 =Yi + g(k1 + 2k; + 2k3 + ky) (51)
Where

ki = f(xiy:)
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h h
ke, :f(xi+§7yi+§kl)

h h
ks =f(xi+5 i+ 5k2)
ke =f(xi +hy; + hk3) _ _ _ _ _
Moreover, we rewrite the ordinary differential equations (18) and (22) in the form of equation
(51) ,respectively. We have for the equation (18);

’ 0(y—-1
y' = (52)
Vier = Vi + 5 (Ky + 2K, + 2K5 + Ky) , i=0,1,2,...
When i=0
0(yo—1)
ki =f(x0,¥0) = ——
Xo

h
h ) 9()’0"‘7"1_1)

h
k2=f<x0+§,y0+§k1 7

x0+7
h
h h 0(yo +5k; —1)
k3=f<x0+—,y0+—k2)=
2 2 h
xO +7
0(yy+ hk; —1)
ky=f(xo+ h,yo+ hks) = Yo+ h
When i=1
0(y1—1)
ky = f(xy,y10) = —=
X1
h
h h 0(y1+75ki—1)
ko= f(mtg .0 +50) =
2 2 h
xl +7
h
h h 0(y1+t7k,—1)
ks=f(ntsm+5k) =
2 2 h
x1+7
0(y, + hk; —1)
k, = h, hky) =
4= f(x1+hy + hks) Gt h
For Eq. (22),
2, (p—
u = w (53)
Uit1 = UY; + %(Kl + 2K2 + 2K3 + K4) y i=0,1,2,
When i=0
XoUp? + (8 — Du
ky = f(xo,up) = L ( o
Xo
h h 2 h
h h (%"‘7)(“0"‘7’(1) + (6 — 1) (uo +§k1)
kz =f<x0+—,u0+— 1):
2 2 h
xo +7
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h h h
h h (o +7)(u0 +§k2)2 + (6 — D)(uo +7k2)
k3=f<x0+§,u0+— 2)_

? x0+%
xo + h)(ug + hk3)? + (8 — 1) (uy + hk
k4:f(xo+h,u0+hk3):( o + 1) (uo 3) + ( )(uo 3)
Xg+h
When i=1
2+(0-1
ky = Flo,w) = X1Uq ( Juq
X1
h h h
h h Cer + ) (ug +5k1)? + (0 = D (g +5kq)
k2:f<x1+_,u1+— 1):
2 2 A
x1+7
h h, 2 h
h h (X1+7)(u1+7k2) +(9—1)(u1+7k2)
k3=f(x1+—,u1+— 2):
2 2 7
X1+7
xy + R)(uy + hk3)? + (6 — 1) (uy + hk
k4=f(x1+h,u1+hk3)=(1 )(1 3x)+}f )(1 3)
1

where, y = S(x) and u = h(x)
5. Results and Discussions
In our study, the ODEs from power function distribution are obtained and solved using VIM.
In this section, some results under study are discussed. The Table 1 summarizes the values of
approximate and exact solutions of the equation (8) by using VIM of the cases § = 2,3 and 4
with values x= 0.1, 0.2, 0.3, 0.5, 0.7 and 0.9. The solutions have been calculated with different
values of parameters. The calculated values show the following results:
(i) There is a convergence in the solutions when x is smaller than 0.3, whenever the value
of x increases, the error grows.
(i)  As the values of 0 increase, the error increases when x > 0.3. In any case, the error
between the approximate and exact solutions depends upon the parameter 6.
Figure 1 illustrates the relationship between the approximate and exact with the parameter 6
in the equation (8). The parameter 6 plays an important role in determining the error between
the approximate and exact solutions for the equation (8) which increases when the 6 increases
with x > 0.3 . It can be seen that the effectiveness of 6 on the error is clear whenever the
value of 6 has large and vice versa when it is small.
Table 2 summarizes the values of approximate and exact solutions of the equation (13) by
using VIM of the cases 6 = 2,3 and 4 with values x= 0.1, 0.2, 0.3, 0.5, 0.7 and 0.9. The
calculated values show the following results:
(1) There is a convergence in the solutions when x has small values close to 0.1, while the
error grows as the value of x increases.
(i) The larger values of 6 have less the errors that occur when x < 0.5, and the errors
increases as 6 increases when x > 0.5. In any case, the error between the approximate and the
exact solutions depends upon the parameter 6.
Figure 2 illustrates the relationship between the approximate and the exact solutions with the
parameter ¢ in the equation (13). In Figure 2, the curve with different values of 0 is plotted.
We can see that the highest curve of equation (13) with the greatest error and the value of
parameter 6 appears when x > 0.5.

On the other hand, the RK4 results under the study are discussed in this section. Table 3
presents the approximate and the exact solutions of the differential equation (18) are
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computed by using RK4 method of the cases # = 2,3 and 4 in the values of x= 0.1, 0.2, ...,
0.9. The computed values indicate that when the value of x increases, the error increases, and
when the values of 0 increase, the error increases when x > 0.5.

Figure 3 illustrates the relationship between the RK4 and the exact with the parameter 0 in the
equation (18), so we can see the equation (18) is a decreasing function, and the greater the
error is the greater the value of the parameter 6.

Table 4 presents the approximate and the exact solutions of the equation (22) are computed by
using the RK4 method of the cases 6 = 2,3 and 4 in the values of x= 0.1, 0.2, ..., 0.9. The
calculated values show the following results: The error increases with an increasing in values
of x and the values of 0. The best results are obtained when values of x and 6 are small.

Figure 4 shows the relationship between the approximate and the exact solutions with the
parameter

0 in the equation (22) which is an increasing function, and the greater the error is the greater
value of 6. All results of programs are done by Matlab R2016b.

Table 1- Exact and VIM solutions of eq. (8) when 6 = 2,3 and 4 of x= 0.1, 0.2, 0.3, 0.5, 0.7

and 0.9.

g ;>t (1) x € (0,1] VIM Exact Error Time
0.1 0.2 0.2 0 00:00:00
0.2 0.399 0.4 0.001 00:00:03
5 0.3 0.5979 0.6 0.0021 00:00:02
0.5 0.9959 1 0.0041 00:00:02
0.7 1.3938 14 0.0062 00:00:02
0.9 1.7918 1.8 0.0082 00:00:03
0.1 0.03 0.03 0 00:00:06
0.2 0.1187 0.12 0.0013 00:00:06
3 0.3 0.2653 0.27 0.0047 00:00:03
05 0.7325 0.75 0.0175 00:00:03
0.7 1.4317 1.47 0.0383 00:00:04
0.9 2.3627 2.43 0.0673 00:00:03
0.1 0.004 0.004 0 00:00:07
0.2 0.0311 0.032 0.0009 00:00:03
4 0.3 0.1027 0.1080 0.0053 00:00:03
05 0.4647 0.5000 0.0353 00:00:03
0.7 1.2605 1.3720 0.1115 00:00:03
0.9 2.6607 2.9160 0.2553 00:00:03
0.1 1.0000e-08 1.0000e-08 0.0000 00:00:08
0.2 3.2716e-06 5.1200e-06 1.8484e-06 00:00:02
10 0.3 7.9933e-05 1.9683e-04 1.1690e-04 00:00:02
05 0.0046 0.0195 0.0150 00:00:02
0.7 0.0695 0.4035 0.3341 00:00:02
0.9 0.5479 3.8742 3.3263 00:00:02
0.1 1.5000e-13 1.5000e-13 0.0000 00:00:10
0.2 7.1515e-10 2.4576e-09 1.7424e-09 00:00:02
15 0.3 6.1919e-08 7.1745e-07 6.5553e-07 00:00:02
0.5 1.7911e-05 9.1553e-04 8.9762e-04 00:00:02
0.7 8.4487e-04 0.1017 0.1009 00:00:02
0.9 0.0163 3.4315 3.4153 00:00:02
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Table 2-Exact and VIM solutions of Eq. (13) when 6 = 2,3 and 4 and x=0.1, 0.2, 0.3, 0.5, 0.7
and 0.9.

6>0 x € (0,1] VIM Exact Error Time
0.1 0.01 0.01 0 00:00:07
0.2 0.0396 0.04 0.0004 00:00:03
5 0.3 0.0884 0.09 0.0016 00:00:03
0.5 0.2442 0.25 0.0058 00:00:03
0.7 0.4772 0.49 0.0128 00:00:03
0.9 0.7876 0.81 0.0224 00:00:00
0.1 0.001 0.001 0 00:00:16
0.2 0.0078 0.008 0.0002 00:00:03
3 0.3 0.0257 0.027 0.0013 00:00:03
0.5 0.1162 0.125 0.0088 00:00:03
0.7 0.3151 0.343 0.0279 00:00:03
0.9 0.6652 0.729 0.0638 00:00:03
0.1 0.0001 0.0001 0 00:00:09
0.2 0.0015 0.0016 0.0001 00:00:03
4 0.3 0.0073 0.0081 0.0008 00:00:03
0.5 0.0529 0.0625 0.0096 00:00:04
0.7 0.1973 0.2401 0.0428 00:00:04
0.9 0.5294 0.6561 0.1267 00:00:04

Table 3-Exact and RK4 solutions of Eq. (18) 6 = 2,3 and 4 of x=0.1, 0.2, ..., 0.9.

6>0 x € (0,1] RK4 Exact Error Time
0.1 0.99 0.99 0 00:00:00
0.2 0.9606 0.96 0.0006 00:00:00
0.3 0.9114 0.91 0.0014 00:00:00
0.4 0.8425 0.84 0.0025 00:00:00
2 0.5 0.7539 0.75 0.0039 00:00:00
0.6 0.6457 0.64 0.0057 00:00:00
0.7 0.5177 0.51 0.0077 00:00:00
0.8 0.3701 0.36 0.0101 00:00:00
0.9 0.2028 0.19 0.0128 00:00:00
0.1 0.999 0.999 0 00:00:00
0.2 0.9925 0.992 0.0005 00:00:00
0.3 0.9749 0.973 0.0019 00:00:00
0.4 0.9406 0.936 0.0046 00:00:00
3 0.5 0.8841 0.875 0.0091 00:00:00
0.6 0.7998 0.784 0.0158 00:00:00
0.7 0.6821 0.657 0.0251 00:00:00
0.8 0.5255 0.488 0.0375 00:00:00
0.9 0.3244 0.271 0.0534 00:00:00
0.1 0.9999 0.9999 0 00:00:00
0.2 0.9986 0.9984 0.0002 00:00:00
0.3 0.9933 0.9919 0.0014 00:00:00
0.4 0.979 0.9744 0.0046 00:00:00
4 0.5 0.9489 0.9375 0.0114 00:00:00
0.6 0.8941 0.8704 0.0237 00:00:00
0.7 0.8038 0.7599 0.0439 00:00:00
0.8 0.6654 0.5904 0.075 00:00:00
0.9 0.4641 0.3439 0.1202 00:00:00
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Table 4-Exact and RK4 solutions of Eq. (22) 6 =2,3 and 4 of x=0.1, 0.2, ...
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z ;>t (1) X € (0,1) RK4 Exact Error Time
0.1 0.2020 0.2020 0 00:00:00
0.2 0.4166 0.4167 0.0001 00:00:00
0.3 0.6592 0.6593 0.0001 00:00:00
0.4 0.9522 0.9524 0.0002 00:00:00
2 0.5 1.3330 1.3333 0.0004 00:00:00
0.6 1.8743 1.8750 0.0007 00:00:00
0.7 2.7434 2.7451 0.0017 00:00:00
0.8 4.4379 4.4444 0.0065 00:00:00
0.9 9.3889 9.4737 0.0848 00:00:00
0.1 0.0300 0.0300 0 00:00:00
0.2 0.1193 0.1210 0.0017 00:00:00
0.3 0.2730 0.2775 0.0045 00:00:00
0.4 0.5040 0.5128 0.0088 00:00:00
3 0.5 0.8412 0.8571 0.0159 00:00:00
0.6 1.3488 1.3776 0.0287 00:00:00
0.7 2.1815 2.2374 0.0560 00:00:00
0.8 3.8004 3.9344 0.1341 00:00:00
0.9 8.3822 8.9668 0.5846 00:00:00
0.1 0.0040 0.0040 0 00:00:00
0.2 0.0300 0.0321 0.0020 00:00:00
0.3 0.1011 0.1089 0.0077 00:00:00
0.4 0.2432 0.2627 0.0195 00:00:00
4 0.5 0.4918 0.5333 0.0415 00:00:00
0.6 0.9095 0.9926 0.0832 00:00:00
0.7 1.6335 1.8055 0.1720 00:00:00
0.8 3.0523 3.4688 0.4165 00:00:00
0.9 6.8383 8.4792 1.6409 00:00:00
pdf vs. x when theta=2 and N=50 pdf vs. x when theta=3 and N=0H(
2 3
Approximate Approximate
1.5 Exact ) Exact
e =
= =1
0.5
0 0
02 0.4 0.6 0.8 02 0.4 0.6 0.8
X X
pdf vs. x when theta=4 and N=0H(
3
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Exact
2
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Figure 1-Exact and VIM solutions of EQ.(8) with different values of & when N=no.of

iterations for VIM
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cdf vs. x when theta=2 and N=50
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Figure 2-Exact and VIM solutions of Eq. (13) with different values of 8 when N=no.of

iterations for VIM

SF vs. x when theta=2 by RkM4th

Approximate
Exact

0.2

0.4 0.6
x

0.8

SF vs. x when theta=4 by REKM4th

1
0.8
206
o
0.4

0.2

Appraximate
Exact

02

0.4
X

0.6 0.8

SF vs. % when theta=3 by RKM4th
1

Approximate
Exact

02

0.4 0.6 0.8

Figure 3- Exact and RK4 solutions with different values of parameter 6 of Eqg. (18) when

N=no.of iterations

for RK4
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HE vs. x when theta=2 by BkM4th HI vs. x when theta=3 by BKM4th
10 10

Approximate

Appraximate

— Exact — Exact

02 04 06 08 02 04 0.6 08
X X
HF vs. x when theta=4 by RKM4th
10
Approximate
— E=xact
C
o
0

0.2 0.4 0.6 0.8

X

Figure 4- Exact and RK4 solutions with different values of parameter 6 of Eqg. (22) when
N=no.of iterations for RK4

6. Conclusions

Our statistical tools are extended to design the ordinary differential equations from the
probability distributions. Some probability functions such as a probability density function,
cumulative distribution function, survival function and hazard function of power function
distribution are used for this propose. In fact, there are some methods to find the exact
solutions to these equations. However, in this work, the methods VIM analytic and RK4
numerical methods are chosen to obtain the approximate results analytically and numerically.
In general, the present approximate results have an error that is almost small, the best results
are obtained for all equations (8), (13), (18) and (22) when the values of x and 6 are small
that means the convergence of solutions of the mentioned equations under the study is clear
when 6 < 2 and x < 0.3.
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