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Abstract
The main purpose of this paper is to introduce and prove some fixed point
theorems for two maps that

satisfy (¢—l//) -contractive conditions with rational expression in partially ordered

metric spaces, our results improve and unify a multitude of fixed point theorems and
generalize some recent results in ordered partially metric space.
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1. Introduction

Banach contraction principle [1] is the one of most important tools in the study of
nonlinear problems in analysis. Therefore, various generalization of Banach contraction
principle either by weakening the contractive properties of the map or by extending the
structure of the ambient space. For more details see [2] [3] [4] [5] [6].
Run and Reurings [7] developed the fixed point theory and obtained analogue of a Banach’s
theorem in  partially ordered metric space. After this paper Nieto
et al. [8]@ [9]@ [10]Eproved the existence and uniqueness of solution for the first ordinary
differential equation with the periodic boundary conditions, they present a new extension of
Banach contraction mapping theorem to partially ordered metric space that allows to be
discontinuous functions. A numerous papers have been published on partially ordered metric
space, see for instance, ( [11] [12] [13] [14] [15] [16] [17] [18]).
The purpose of this paper is to establish some common fixed point results satisfying a
contractive condition of rational type endowed with partially ordered metric space.
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2. Preliminaries
We generally follow the definitions and notations used in [19], [20] and [21].

Definition 1 [7]: The triple (M, d, <) is called a partially ordered metric space, if(M,<)is a
partially ordered set together With(M ,d) is a metric space.

Definition 2 [7]: If(M,d)is a complete metric space, then the triple(M,d,<)is called a
partially ordered complete metric space.

Definition 3 [19]: A pointme B, whereB is a nonempty subset of a metric space(M,d)is

called a common (Coincidence) fixed point of two self-mappings F andT if Fm=Tm=m(
Fm=Tm).

Definition 4 [19]: The two self-mappings F andT defined in a subset B of a metric space
(M, d)are called as follows:

(i) Commuting, if FTm=TFmforallme B.
(i) Compatible, if for any sequence{qn}withlim Fq, =limTqg, =u, for some u e Bthen

limd(FTq,,TFq,) =0.

(iii) Weakly compatible, if they commute at their coincidence points that means if Fm=Tm
then FTm=TFm.

Definition 5 [15]: Assume that F andT be two self-mappings defined in a partially ordered
set(M ,S). A mappingT is called a monotone F non-decreasing if Fm< FnimpliesTm<Tn,
forallmneM .

Definition 6 [15]: Assume that B be a nonempty subset of a partially ordered set(M,<).If
every two elements of B are comparable, then it is called well ordered set.

Definition 7 [15]: A partially ordered metric space(M,d,<)is called an ordered complete, if

for every convergent sequence {qn} fo < M, one of the following conditions holds

. If{qn} is an increasing sequence in M such thatq, — q impliesq, <q, for allne N that

is g =sup{q,} or

. If{qn} is an decreasing sequence in M such thatq, — ¢ impliesqg, >q, for allne N that

isq=inf{q,}.
Corollary 2.1 [19]: Let(M ,d,S) be a partially ordered complete metric space and suppose
that F andT are satisfied the following condition
q (Tm,Tn)s o d(Fm,Tm)d(Fn,Tn)

d(Fm, Fn)+d(Fm,Tn)+d(Fn,Tm)

For allm,ne M with Fm< Fnand for some«, 8 [0,1)With a+ <1,

Suppose that
() TM < FM such that (FM,d)is a complete subset of M

(i) T is monotone F non-decreasing.
(iii) The pair (T, F) is compatible where F and T are continuous.

Then F andT have a coincidence point that is there existsu € M such that Fu=Tu.

+ Ad(Fm, Fn). (1.2)
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The control function that alters distance between two points in a metric space is introduced by
Khan et al. [20], which are called an altering distance function.
Definition 8 [20]: A functiony :[0,00] —[0,0]is named an altering distance function if the

following conditions are satisfied:
(i) w is monotone increasing and continuous function

(i) w(t)=0ifand only ift =0.

In the following section, we will use the following class of functions.
We denote

¥ ={y:[0,00] —[0,00]: an altering distance functiong | and

O ={¢:[0,50] —[0,00]: ¢ is lower semicontinuous ¢(t) <y (t) and $(0) =0}.

Theorem 2.2 [21]: Let (M, d, <) be a partially ordered complete metric space. LetT :M — M

be a non-decreasing mapping, which satisfies the inequality

w(d(Tm, Tn)) <y (M, (m,n)) — (M (m,n)) +L min{d(m,Tn),d(n,Tm),d(m,Tm),d(n,Tn)}
For all distinct
points m,neM

d(m,Tm)d(n,Tn) d(mm .

d(m,n)

with m < n where

Md(m,n):max{
ped, e,

L>0and
In addition, suppose that
(i) T is continuous or

(i) 1f{q, | is a non-decreasing sequence in M such thatg, — g, theng =sup{dq,} .
If there exists g, € M such thatq, <Tq,, thenT has a fixed point.

3. Main result
Theorem 3.1: Let(M,d,<)be a partially ordered complete metric space and suppose that F

andT are continuous self-mappings onM, TM < FM andT is monotone F non-decreasing
mapping and satisfying the following condition

w(d(Tm, Tn)) <y (M, (m,n))—¢(M, (m,n))+LN, (m,n) (3.1)
For allm,ne M with Fm<Fnwhereg € ®, v ¥, L>0and
d(Fm, Tm)d(Fn,Tn) d(Em, Fn)}
d(Fm,Fn)+d(Fm,Tn)+d(Fn,Tm)
N, (m,n) =min{d(Fm,Tn),d(Fn,Tm),d(Fm,Tm),d(Fn,Tn)}
If there exists a point g, € M such that Fq, <Tq,and the mapping F andT are compatible,

then F and T have a coincidence point in M.
Proof. Let g, € M such that Fq, <Tq,. Since from hypotheses, we have TM < FM ,then we

can choose a pointg, € M such thatFg, =Tq,.ButTg, € FM, then there exists another point

Md(m,n):max{

g, € M such that Fg, =Tq, . By continuing the same way, we can define a sequence {qn} in
M suchthatFq,,, =Tq,, forallneN.

Again, since we have Fq, <Tq, = Fg,andT is monotone F non-decreasing mapping
then, we getTq, <Tq,. Similarly, we obtainTq, <Tq,, since Fg, < Faq,,then inductively, we

get
Tg, <Tqg, <Tq,......... ST, ST, peeeenee
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If d(Tq, ,,Tq,)=0for somen, € N thenTq, , =Tq, =Fq, ,then,q, ;is coincidence point.
Assume thatTq,,, #Tq, forallne N. Ifd(Tq,,;,Tq,) >0, then by condition (3.1), we have
l//(d (an+1!an)) S l//(Md (qn+1! qn)) - ¢(Md (qn+1l qn)) + LNd (qn+1! qn)

d(Fd,.,,T9,.,)d(Fq,,Tq,)
< (max s o ,d(Fq,,F
" {d(Fqn.Fqn+1)+d(Fqn+1,an)+d(Fqn,TqM> (P )
d(Fd,.,.Td,.,)d(Fg,,Tq,)
—¢(maX{ T — ,d(Fa,, Fq,. )})
d (Fqn1 Fqn+1) + d (Fqn+11an) + d (FqnianJrl) '
+Lmin{d(quanﬂ)’d(qul!an)’d(Fqn+1'an+l)'d(Fqn’an)}
d(Tq,.Tq,.,)d(Tq,,.Tq,)
=l//(max n n+ n n 'd(an_ ’an) )
{d(rqn17an)+d(rqn’an)+d(anl’an+l) '
_¢(max{ d(an!an+1)d (an—l’an) d(Tq Tq )})
d (an—l’an) + d (an ’an) + d (I-qn—l’an+l) " "

+L min {d (an—l’an+1)’ d (an ’an)! d (an ’an+1)’ d (an—l’an)}

< l//(maX {d (an—l’an)’ d (an—l’an)}) - ¢(max {d (an—l’an)! d (an—l’an)}) + L(O)
That is

v (d(Tq,,Tq,,,)) <w(d(Tq,,,Tq,)) - #(d(Tq, ,,Tq,)) (3.2)
Therefore, the sequence{d(Tq,,Tq,,,)}is a decreasing sequence of positive real numbers,
which is bounded below. So, there existsr > 0such thatlimd(Tq,,Tq,,,) =r .We claim that
r=0. Suppose thatr > 0. By taking the limit of the supremum in the relation (3.2) asn — o
, we get
y () <y (r)—¢(r)<w(r).
Which is a contradiction. Hence, we conclude thatr =0 that is

limd(Tq,,Tq,,,) =0 (3.3)

Now we prove that{Tq, ., } is Cauchy sequence in(M,d) . For that we suppose {Tq,,,}is not

Cauchy sequence. Then there exists¢ >0, such that for each positive integer k there exist
n(k) and m(k)such that n(k) > m(k) >k and

d (Mg TAgy) 2 € (3:4)
Further, we can choose n(k) is the smallest integer with n(k) > m(k) and satisfying
d Ty s Ty ya) < € (3.5)

Now, from (3.4) and (3.5), we have

e<d (Tqm(k) 'an(k)) <d (Tqm(k) 'an(k)—l) +d (an(k)—lian(k))
That is

£ <d(Tywy TUuy) <€ +d (T )10 Ty

Letting k — oo in the above inequality and using (3.3), we have

i!Lr[ld(-rqm(k)’an(k)) =¢&. (3.6)
Hence,
d (Tqm(k)—l’an(k)—l) <d (Tqm(k)—l’Tqm(k)) +d (Tqm(k) ’an(k)) +d (rqn(k) ’an(k)—l)
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and
d (T Tiy) < ATy s Tngey-1) + A (Tngey15 TAaiy-2) + A (Ty25 Tiy)
Letting k — oo in the above inequality and using (3.3) and (3.6), we have
l!i_[[‘od (Tqm(k)—lian(k)—l) =& (3.7)
Thus,
d (T2 Tlng) < AT 15 Thg-1) + 9 (T2 Ty )
and
d (Tqm(k)—l’an(k)—l) <d (Tqm(k)—l’an(k)) +d (an(k) 'an(k)—l)
Letting k — oo in the above inequality and using (3.3) and (3.7), we have
il(m d (T2 TAay) =€ - (3.8)
Hence,
ATy TOgey-1) < ATy Tay) + A (T ey s T iy2)
and
d (T Tho) < ATy Tago ) + 9 (T 15 TAy)
Letting k — oo in the above inequality and using (3.3) and (3.6), we have
lm d (T Ty a) =€ (3.9)
We apply the condition (3.1) tom =Tq,,,,andn=Tq,,,

d(Tqm(k)—l'Tqm(k))d (an(k)—l’an(k))
d (Tqm(k)—l’an(k)—l) +d (rqm(k)—l'an(k)) +d (an(k)—lqum(k))

M, (TG, T ) = MaX ,d(T qm(k)_l,an(k)_l)} (3.10)

and

Nd (Tqm(k) ’an(k)) =min {d (Tqm(k)—l’an(k))’ d (an(k)—l’Tqm(k))' d (Tqm(k)—l'Tqm(k) )’ d (an(k)—l’an(k) )}
(3.11)

Lettingk —o0in (3.10) and (3.11) using (3.3) (3.6) (3.8) and (3.9), we have

fim M, (TG Tdy)) = Max {0, &} = & (3.12)
lim N, (g, 4, Ty ) = min {¢,£,0,0}=0 (3.13)

Since n(k) > m(k) ,we have {q,, } <{d,, |- Now by applying (3.1) and using (3.10) (3.11),

we have

w(d (Tqm(k) ’an(k))) <y (M, (Tqm(k) ’an(k))) —¢(M, (Tqm(k) ’an(k))) + LN, (Tqm(k) ’an(k))
If we take the limit supremum in both sides of the above inequality, and use (3.7) (3.12)
(3.13) to the property of i and the continuity of ¢ , we obtain

w(e) <y(e)—ge)<y(e).

Which is a contradiction. Therefore, the sequence {an} is a Cauchy sequence inM . So by

the completeness of M, there exists a pointu e M such thatTg, — uasn — oo. By continuity

of T, we have.

limT (Tq,) =T (limTq,) =Tu.

ButFqg. ., =Tq,, then Fq,,, — u asn — oo and from the compatibility forT and F , we have
lim(T (Faq,), F(Tq,)) =0.

Further, by triangular inequality, we have

d(Tu, Fu) =d(Tu,T(Fq,)) +d (T (Fa,), F(Tq,)) +d(F(Tq,), Fu)
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By taking the limit asn — ooin both sides of the previous equation, then we get
d(Tu, Fu)=0. due to the continuity of T and F. Thus, Tu=Fu and u is a coincidence point

of Tand F in M .This completes the proof.
Corollary 3.1: Let(M,d, <) be a partially ordered complete metric space and suppose that F
andT are continuous self-mappings onM, TM < FM andT is monotone F non-decreasing
mapping and satisfying the following condition
‘//(d (Tm,Tn))Sw(Md (m,n))—¢(Md (m,n))
(3.14)
For allm,n e M with Fm< Fnwhere¢ € ®, v € ¥ and

d(Fm,Tm)d (Fn,Tn) d(Fm, En)L
d(Fm,Fn)+d(Fm,Tn)+d(Fn,Tm)
If there exist a point g, € M such that Fg, <Tq,and the mapping F andT are compatible,

then F andT have a coincidence point in M.
Proof. Take L =0in the Theorem (3.1).
Corollary 3.2: Let(M,d,<)be a partially ordered complete metric space and suppose that F

Md(m,n):max{

andT are continuous self-mappings onM, TM < FM andT is monotone F non-decreasing
mapping and satisfying the following condition

d(Tm,Tn) <M, (m,n)—¢(M, (m,n))+LN, (m,n) (3.15)
For allm,n e M with Fm< Fnwhere¢ € ®, L >0and
M, (m,n)= max{ d(Fm,Tm)d(Fn, Tn) ,d(Fm, Fn)}

d(Fm,Fn)+d(Fm,Tn)+d(Fn,Tm)

Ng (m,n) =min{d(Fm,Tn),d(Fn,Tm),d(Fm,Tm),d(Fn,Tn)}
If there exist a point g, € M such that Fg, <Tq,and the mapping F andT are compatible,

then F andT have a coincidence point in M.
Proof. Takey (t)=t in the Theorem (3.1).

Corollary 3.3: Let(M,d, <) be a partially ordered complete metric space and suppose that F

andT are continuous self-mappings onM, TM < FM andT is monotone F non-decreasing
mapping and satisfying the following condition
d(Tm,Tn) <kM, (m,n)+LN, (m,n) (3.16)
For allm,n e M with Fm< Fnwherek <1, L >0and
d(Fm,Tm)d (Fn,Tn) d(Fm, Fn)
d(Fm,Fn)+d(Fm,Tn)+d(Fn,Tm)
N, (m,n) =min{d(Fm,Tn),d(Fn,Tm),d(Fm,Tm),d(Fn,Tn)}
If there exist a point g, € M such that Fg, <Tq,and the mapping F andT are compatible,

then F andT have a coincidence point in M.
Proof. Take ¢(t) =(1—k)tin Corollary (3.2).

Theorem 3.2: Let(M ,d,<)be a partially ordered complete metric space and suppose that F

Md(m,n):max{

andT are self-mappings onM, TM < FM andT is monotone F non-decreasing mapping and
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satisfying condition (3.1). If there exist a point ¢, € M such that Fq, <Tq,and if{qn} Is a
non-decreasing sequence in M such thatg, — qtheng, <q, forallne N, thatisq= sup{qn} .

Then F andT have a coincidence pointM , whenever FM is a complete subset of M .
Further, if F andT are weakly compatible, then, F andT have a common fixed pointinM .
Proof. From proof of Theorem (3.1), we have that{Tq, } is a Cauchy sequence. AsFq,,, =Tq,,
so{Fq,}is a Cauchy sequence in(FM,d).Since FM is complete, there is Fu € FM such that

limTq, =limFq, = Fu. Notice that the sequences{Tq,}and{Fq,}are non-decreasing. Then

from our assumptions, we haveTq, < Fuand Fg, < Fufor allneN. Since Tis monotone F
non-decreasing, we get Tg, <Tufor allne N. Making n — « so we obtain Fu <Tu. Now if
Fu=Tu ,thenuis coincidence fixed point of F and T. Suppose that Fu <Tu, Construct a
sequence {u, }asu, =uand Fu,,, =Tu, for allneN. An argument is similar to that in the
proof of Theorem (3.1) vyields that{Fu }is a non-decreasing sequence and
limTu, =limFu, = Fvfor someveM . From our assumptions, it follows that sup Fu, <Fv

n—o0o nN—o0

andsupTu, < Fv. Notice that
Fg,<Fu<Fu <.------ <Fu <----<Fv.
Now if Fq, =Fu, for somen, € N then, we have

Fq, =Fu=Fu, =Tu, =Tu.
Hence, u is coincidence point of T and F inM .

Assume that Fq, = Fu, for allne N then from condition (3.17), we have
l//(d (Fqn+1’ I:un+1)) = W(d (an ’Tun ))

<y | max d(Fg,,Tq,)d(Fu,, Tu,) ,d(Fq,,Fu,)
d(Fq,,Fu,)+d(Fq,,Tu,)+d(Fu,,Tq,)

_¢£max{ d(Fqn’an)d(Fun'Tun) ,d(Fqn,FUn)}]
d(Fqn’ Fun)+d(Fqn7Tun)+d (Fun’an)

+Lmin{d(Fq,,Tu,),d(Fu,,Tq,),d(Fq,,Tq,),d(Fu,,Tu,)}
Taking limit supremum as n — oo 0n both sides of the above inequality, we get
v (d(Fu, Fv)) <y (d(Fu,Fv))-g¢(d(Fu,Fv)) <y (d(Fu,Fv))
Which is contradictions. Hence, Fu=Fv =Fu, =Tu and u is a coincidence point of T and F .

Now suppose that TandF are weakly compatible. Letw=Fz=Tz.Then
Tw=TFz = FTz=FwConsider,

d(Fz, Fw)+d(Fz,Tw) + d (Fw, Tz)’
_¢(max{ d(Fz,Tz)d (Fm,Tw) (e, FW)B
d(Fz, Fw)+d(Fz,Tw) +d(Fw,Tz)
+LN =min{d(Fz,Tw),d (Fw,Tz),d (Fz,Tz),d (Fw,Tw)}
<y (d(Tz,Tw))—¢(d (Tz,Tw)) <y (d (Tz,Tw))

3094



Hashim and Kazem Iragi Journal of Science, 2022, Vol. 63, No. 7, pp: 3088-3097

Then, v (d(Tz,Tw))=0. Therefore, Tz =Twsince Fw=Twand w=Tzthat is w is a common
fixed point of T and F . This completes the proof.

Corollary 3.4: Let(M,d, <) be a partially ordered complete metric space and suppose that F
andT are self-mappings onM, TM < FM andT is monotone F non-decreasing mapping and
satisfying condition (3.14). If there exists a point g, € M such that Fq, <Tg,and if{qn} Is a
non-decreasing sequence in M such thatg, — qimpliesq, <q, forallneN .

Then, F andT have a coincidence pointM whenever FM is a complete subset of M .
Further, if F andT are weakly compatible, then F andT have a common fixed point inM .
Proof. Take L =0in Theorem (3.2)

Corollary 3.5: Let(M,d,s) be a partially ordered complete metric space and suppose that F
andT are self-mappings on M such that TM < FM andT is monotone F non-decreasing
mapping and satisfying condition (3.15). If there exists a point g, € M such that Fq, <Tq,

and if{qn}is a non-decreasing sequence inM such thatq, — g implies that g, <q for all

neN.

Then, F andT have a coincidence pointM whenever FM is a complete subset of M .
Further, if F andT are weakly compatible, then F andT have a common fixed point inM .
Proof. Takey (t)=t in Theorem (3.2).

Corollary 3.6: Let(M,d,<)be a partially ordered complete metric space and suppose that F
andT are self-mappings onM, TM < FM andT is monotone F non-decreasing mapping and
satisfying condition (3.16). If there exists a point g, € M such that Fq, < Tq,and if{qn} is a
non-decreasing sequence in M such thatg, — q implies that g, <q forallneN.

Then, F andT have a coincidence pointM whenever FM is a complete subset of M .
Further, if F andT are weakly compatible, then F andT have a common fixed point inM .
Proof. Take ¢(t) =(1—k)t in Corollary (3.5).

Theorem 3.3: Adding definition (6) to the hypotheses of Theorem (3.2), we obtain that uis a
unigue common fixed point of T and F .

Proof. Suppose that the set of common fixed points of T and F is well ordered. We claim that
the common fixed point of Tand F is unique. Assume on the contrary thatTu = Fu=uand
Tv=Fv=v butu=Vv. Consider

v (d(uv))=y(d(TuTv))

<y| max d(Fu, Tu)d(Fv,Tv) d(Fu, Fv)
B d(Fu, Fv) +d(Fu,Tv) +d(Fv,Tu) ' ’

_¢[max{ d(Fu,Tu)d(Fv,Tv) ,d(Fu,Fv)}j
d(Fu, Fv)+d(Fu,Tv)+d(Fv,Tu)
+LN =min{d(Fu,Tv),d(Fv,Tu),d (Fu,Tu),d(Fv,Tv)}
< (d(u)-$(d () <v (3 (1)

This implies thatz//(d(u,v))zo. Hence, u=v. Conversely, if TandF have only one

common fixed point then the set of common fixed points of Tand F being a singleton is well
ordered.
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Remark:

1. Ifk=a+p wherea,f[0,1)andL =0, in Corollary (3.3) we obtain Corollary (3.6) in

[21]

2. If M is metric space, k=a+f Wherea,ﬁe[o,l), L=0andF =1 in Corollary (3.3) we

obtain Theorem (1) in [5]

Example 1: The following example supports our Theorem (3.1). Let

M ={(1,0),(0,2), 1,1)} = R*with the Euclidean distanced, and

<={(m,m):meM}U{(0,1),(11)}. We also considerT,F :M — M which is given by

T@€0)=(0),T(0,)=(0,),TLYH=(0),F10=@1, F(0,1)=(0,1),F@D=(11and take

RV [O, oo] —>[O, oo] such thaty (t) =4tand¢(t) =3t. First, T and F are trivial continuous and

T is monotone F non-decreasing. Letm,ne M withFm<Fnand then we have

m=(1,0),n=(11). Then,

d,(T(1,0),T(L1))=0

(3.17)

M, (L), (LD) :max{ d(F(,0),T(10)d(F(@1),T@1) ,
? d(F(,0),F(1D)+d(F(10),T@1))+d(F@LL,T@O))

d(F(0), F(l,l))}

= max {10} L (3.18)
2 2
N, ((1,0),(1,1)) =min {d(F(1,0),T(10)),d(F(11),T(L1),d(F(10),T(L1)d(FLL TAO)}
=min{1,1,1,1} =1. (3.19)

From (3.17), (3.18) and (3.19), we have
v (d,(T(1,0),T(11))=0
<y (Mg, (00), @ D)) -¢(My, (@.0). (1L 1))+ LN, (2.0). (1 D)
Thus condition (3.1) holds , sinceT and F are weakly compatible then T and F have one
common fixed point such thatT (0,1) = F(0,1) = (0,1) .
If (M,d) is a metric space the condition (3.1) is not applicable, take m = (1,0) andn = (0,1).

d,(T(1,0),T(0,1)=v2 (3.20)

M, ((1,0),(0,2)) :max{ d(F(1,0) T(10)d(F(0.1),T(0.1) ,d(F(0), F(O,l))}
? d(F(@,0),F(0,1))+d(F(10),T(0,1))+d(F(0,1),T(10))

=max{0,1} =1 (3.21)
Ny, ((1,0),(0,1)) = min {d (F@1,0),T(0)),d(F(0,1),T(0,1)),d(F(0),T(0,1),d(F(0,1),T(1, O))}
=min{0,1,0,1} =0 (3.22)

From (3.20), (3.21) and (3.22), we have,
v (d,(T(L0),T(0,)) =42

>y (M, ((10),(0.1)))—¢(M,, ((1.0),(0,1)) )+ LN, ((1,0),(0,1))
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