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Abstract

A food chain model in which the top predator growing logistically has been
proposed and studied. Two types of Holling’s functional responses type IV and type
Il have been used in the first trophic level and second trophic level respectively, in
addition to Leslie-Gower in the third level. The properties of the solution are
discussed. Since the boundary dynamics are affecting the dynamical behavior of the
whole dynamical system, the linearization technique is used to study the stability of
the subsystem of the proposed model. The persistence conditions of the obtained
subsystem of the food chain are established. Finally, the model is simulated
numerically to understand the global dynamics of the food chain under study.
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1. Introduction

In ecological modeling, many researchers and scientists supported this field of study with
brand new ideas. May [1] with Hasting and Powell [2] put a new base to propose and describe
the new generation of complex ecological models. The complex behaviors of various
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ecological models involving different factors namely, predation, switching, and competition,
is the most challenging task in such studies and thus it receives good attention from many
scientists [3-10]. The functional response defined by Lotka and Volterra [11] for a predator-
prey model is linear and unbounded while studying the complexity in model ecosystems
needs reasonable functional responses that should be nonlinear and bounded [12]. In 1959
Holling [13] used a type Il functional response. Collings [14] proposed a new function and
called it Holling type 1V response. This response function describes a situation in which the
predator’s per capita rate of predation decreases at sufficiently high prey densities. Moreover,
both Holling type 1V [5-7] and Leslie-Gower [15,16] functional responses are relatively less
studied in population ecology. In their experiments about the kinetics of phenol oxidation
Sokol and Howell [17] suggested a simplified Holling type IV function and found that it is
simpler and better than the original function of Holling type IV. In this paper, the three
species food chain model proposed by Alaoui [16] is modified so that it contains three
different types of functional responses.

2. The Mathematical Model

Consider a three-species food chain model consisting of the prey that denoted to their density
at time t by x(t), the intermediate predator that denoted to their density at time t by y(t), and
the top predator, which denoted to their density at time t by z(t). It is assumed that the
intermediate predator preys at the lower level according to Holling type IV response, and the
top predator preys upon the intermediate predator at the second level according to Holling
type Il and growing according to modified Leslie-Gower response. The dynamics of the
above food chain model can be represented by the following

dx 2 WoXy

—=ax—bx* ———=F,(x,y,z

dt hy+x2 1(x,y,2),

dy wiXxy wWLyz

_— =—— — =F(xv,z

dt hi+x2 hy+y 2( 'Y ); (1)
dz 2 wsz?

—=cC — =F(xv,z

dt 3 hs+y 3( :3’; )1

with x(0) = 0,y(0) = 0,z(0) = 0. Obviously, system (1) is continuous and have continuous
partial derivatives on the positive octant R3 = {(x,y,z) € x(0) = 0,y(0) = 0,z(0) = 0}, and
hence the solution of the system (1) exists and is unique. Here the positive constants
a,b,d, h;; j=0123 and w,; k=023, can be described as: a is the growth rate of the

prey X, b represents the intraspecific competition of prey x, w, ’s are the maximum values

attainable by each per capita rate, h; measures the extent to which the environment provides
protection to the prey x and y respectively, d represent the death rate of the intermediate

predator. While h, is the value of y at which the per capita removal rate of y becomes % the

constant c; represents the growth rate of z by sexual reproduction, however h; represents the
residual loss in z population due to serve scarcity of its favorite food y. Moreover, it is easy
to verify that model (1) is uniformly bounded.
3. Analysis of the subsystem
To study the dynamical behavior of the model (1), it is important to study their subsystem in
the xy —plane. Many characteristics of the model (1) (such as persistence) depend on the
dynamical behavior of their subsystem in the xy —plane, see [17,19]. Now in the absence of
the top predator z, the system (1) reduces to the following subsystem.

dx 2 WoXy

— =ax — bx* ——=,

dt hq+x2

dy wiXy

at hy+x2 —ay.
Now, it is easy to verify that the next condition shows that the system (2) is a persistence
Kolmogorov system

)
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s d (3)

hq+x2
In addition to the above it is observed that, the Kolomogrov model (2) has the following
nonnegative equilibrium points. The equilibrium points e;, = (0,0) and e;; = (%, 0) always
exist. However, the positive equilibrium point, say e;, = (x,%) in the Int(R2) of the
xy —plane can be determined by solving the first two equations of the model (2), such that

dx? —w;x + dh, =0, 4)
which gives
g=lgintdh (52)
2d 2d

and then it is obtain that
5= (a—bx)(hy+x2)

(5b)

Clearly, ¥ > 0 provided that x < % . Therefore, there are many cases about the existence of
the positive equilibrium point, these are given below.

Case 1. If w2 —4d?h, < 0, then there is no positive roots for Eq.(4). This implies that the
specialist predator goes extinct too, and the system (2) have just two equilibrium points
e = (0,0)and e;; = (3, 0).

Case 2. If wZ — 4d?h, = 0, then there is one positive root for Eq.(4), that is given by x = %,

and then substitute x in the first equation of the system (2) gives the positive equilibriu
point, say e;, = (X, ¥) where

Wo

__wi, - _ (a-bx)(hy+x?)
- 2d ’ - Wo ' (6&)
This exists provided that
< (6b)
Case 3. If w? — 4d?h; > 0, then there are two solutions
%, = % ‘/wl_zz_:dz‘hl’)_]1 _ (a—bfl‘:/(h1+f%). (7a)
0
— wq \1W12—4d2h1 — (a—bfz)(h1+f§)
2= T V2T T w (70)
0

Therefore, if x; < % or x, < % , then model (2) has two positive equilibrium points that are
represented by e;3; = (i1, ¥,) and e14 = (X3, y2).

In addition to that, the system (2) has a unique positive equilibrium if x, < % < X1, SO In
addition to e;o = (0,0) and e;; = (%, 0), the model has three equilibrium points.

In this paper, it is assumed that the system (2) has at most three equilibrium points e;,,
e;; and the positive equilibrium point e;, = (x,y). Further, the stability analysis of the
Kolmogorov model (2) is carried out and according to the following Jacobian’s matrices of
e1o , €11 and ey, ,respectively the following results are obtained:

a O
V(ei) = 0 —d]'
[_p
hq+1
V(e = 0 wy 1_
| hi+1
= 2x(a—bx) _ WoX
v _ x( b+ hq+x2 ) hq+x2
(hq+x2)2
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Here the equilibrium points e;, = (0,0) is a saddle point, while e;; = (%,0) IS unstable
saddle point if condition (3) holds, and it is a locally asymptotically stable if

< d, (8)
On the other hand, the positive planar equilibrium point e;, = (x,y) is a locally
asymptotically stable in the Int(R2) of the xy —plane if the following condition holds

2x(a—bx) < b. (9)

hq+x2
while e;, is unstable saddle if the opposite of condition (9) holds. Moreover, the global
stability of e;, = (x, ¥) is discussed in the following theorem.
Theorem 1 If the unique positive planar equilibrium point e;, = (%,y) is a locally
asymptotically stable in the Int(R?) of the xy —plane, then it is a globally asymptotically
stable.
Proof. Let

K(x,y)z%, kl(x,y)zx[a—bx— Woy],

hl +x2
and

ko(x,y) =y [725 -

h1+x2
Obviously, the function K(x,y) > 0 be C! in the Int(R?) of the xy —plane. Also we have
that

d d 1 2WoXy
VGy) = g O, K) + 3 Gk K) = = | b+ s
Hence
v 1 5 2x(a — bx)
() _37[ Tt
Clearly if condition (9) holds, V(x,y) does not change sign and is not identically zero in the
Int(R?) of the xy —plane. Then by using Dulic-Bendixons criterion there is no closed curve
in the Int(R?2). Since the Kolmogorov model (2) has a unique equilibrium point e, in the
Int(R?%) of the xy —plane, hence according to Poincare-Bendixon theorem e;, = (%, ¥) is a
globally asymptotically stable in the Int(R2) of the xy —plane.
4. Persistence of the subsystem
In the next theorem the conditions of persistence of model (2) is established.
Mathematically persistence of the model means that if all the variables are initially positive
then the solution of the model does not have omega limit sets on the boundary planes for all
the time.
Theorem 2 The model (2) is uniformly persistence provided that condition (3) holds.
Proof. Consider the following function o(x,y) = xSty2 , where s; and s, are undetermined
positive constants. Obviously o (x, y) is a positive function in the Int(R2) and a(x,y) — 0 if
x = 0 ory — 0. Now since

_oxy) _ % y
d)(x;J’) = _O,(x‘y) =5 * +5; '

Therefore
_ 60y
a(x,y)

Y(x,y)

=5 [(a — bx) — Yo) ] WX d]

—— S ——
h, + x? 2 [hy + x2

Recall that, since e;, = (x,y) is globally asymptotically stable in the Int(R2?) of the
xy —plane. Therefore, there are no periodic orbits in this boundary plane. So to prove that o is
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persistence function, in the sense of Gard [20], and hence model (2) is uniform persists, it is
enough to show that there are no omega limit sets on the boundary planes of R2 or
equivalently the following conditions should be satisfied:

Y(ep) =504 —s,d >0,

Y(ey) = s, [ nr o _ d] >0,

hq+x2

Note that by choosing s; > 0 sufficiently large value and keeping s, fixed at small positive
value then W(e,y) > 0 holds. Also, due to the Kolmogorov condition (3) the inequality
WY(e,;,) > 0 is satisfied for any positive value of s,. Therefore o represents persistence
function and hence system (2) is uniformly persists.

Now, before go further, we have to mention that the function o will be an extinction
function, in the sense of Gard [18], if condition (3) violated, then the solution of model (2)
approaches to an omega limit point on the boundary planes of the R and hence model (2)
does not persist.

5. Numerical exploration

The food chain model (1) is simulated numerically to study the global dynamics of it by

using six order Runge-Kutta method. For the following set of fixed parameters values

a = 045,b = 0075, hl = hz = 10, h3 = 20, WO = 1, W1 = 2,
w, = 0.405,w, = 1,d = 0.15, c; = 0.047 (10)
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Figure 1-Bifurcation diagram of model (1) for data set (10) that shows the successive

maxima of y as a function of a € (0.45,0.50) and c; = 0.047 .

Bifurcation diagram and the typical 3D attractors of model (1) are plotted with their time
series. Our target here is to investigate the behavior of model (1) depending upon the
parameters a and c; with keeping other parameters of (10) fixed.

Now, the first case is by fixing c; = 0.047 and varying the value of a in the range 0.45 —
0.25. It is observed for the value a = 0.45 the dynamics of model (1) with data (10) is
chaotic as shown in Fig.1 and Fig.2. Decreasing the value of a = 0.30 change the behavior
of model (1) to period-doubling as shown in Fig.3, and for the value a = 0.25 the model
will be stable as shown in Fig.4.
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The second case by fixing a = 0.45 and varying the value of c; in the range 0.041 —
0.049. It is observed for data (10) that model (1) behavior is chaotic as it is blotted in Fig.2
and periodic with z approach to extinction as it is shown in Fig.5. Moreover, the stable case

appears in model (1) for data (13) when c¢; = 0.04 and a = 0.25 with z approach to
extinction as it is shown in Fig.6.

x:blue, y:green, z:red

73
x10°

Figure 2-a) 3D chaotic attractor of model (1) for data set (10) with a = 0.45 and
c; = 0.047 . b) Time series of Fig.2a
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Figure 3- a) 3D of model (1) periodic attractor for data (10) with a = 0.30, b) Time series of
Fig.3a
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Figure 4-a) 3D of model (1) stable attractor for data (10) with a = 0.25, b) Time series of

Fig.4a.
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Figure 5- a) 3D of model (1) periodic attractor for data (10) with a = 0.45, c; = 0.049,

with z approach to extinction b) Time series of Fig.5a
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Figure 6- a) 3D of model (1) stable point for data (10) with a = 0.25, ¢; = 0.040,

Conclusions

with z approach to extinction b) Time series of Fig.6a

A food chain model with different functional responses including Holling type 1V and type
Il in additional to Leslie-Gower is proposed and studied. In order to explain the dynamical
behavior of the proposed food chain model (1) is local as well as global stability analyses are
carried out for the subsystem. Persistence of the subsystem is discussed. Global stability for
the food chain model (1) is analyzed numerically. According to our study above we obtained
that the parameters a and c; are controlling parameters and they are responsible about the
chaotic, periodic and asymptotic stable of Leslie-Gower food chain model (1) with simplified
Holling type IV functional response.
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