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Abstract

The aim of this article is to present the exact analytical solution for models as
system of (2+1) dimensional PDEs by using a reliable manner based on combined
LA-transform with decomposition technique and the results have shown a high-
precision, smooth and speed convergence to the exact solution compared with other
classic methods. The suggested approach does not need any discretization of the
domain or presents assumptions or neglect for a small parameter in the problem and
does not need to convert the nonlinear terms into linear ones. The convergence of
series solution has been shown with two illustrated examples such (2+1)D- Burger's
system and (2+1)D- Boiti-Leon-Pempinelli (BLP) system.

Keywords: System (2+1) dimensional -PDEs; BLP System, Burger's system,
Coupled Method, ADM.
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1. Introduction
Differential equations and (2+1)D-PDEs arise in all branches of science and engineering,
hence the existence of suitable methods to find their solution are being a fundamental
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importance topic. As analytical solutions are only available in a few cases the construction of
efficient approximate or numerical methods is essential [1-5].

Many researchers have paid attention in recent years to study the solutions of nonlinear
systems of PDEs using various methods, namely ADM, HAM, HPM, DTM, Laplace
Decomposition Method, Cubic Trigonometric B Spline Method, Parallel Processing
Technique, VIM and Semi Analytic Technique [6-26]. In this article, we suggest an efficient
reliable technique to solve a system of (2+1)D-PDEs based on combining two high
performance methods such LA-Transform [27-30] and ADM [31-34] has been used to solve
2" order nonlinear (2+1)D- Burger's system also, to solve 3 order nonlinear (2+1)D- Boiti-
Leon-Pempinelli system.

This paper has been arranged as follows: In section 2, we present LA- transformation. In
section 3, the basic ideas of the suggested method will be given. lllustrative problems via two
important models as a system of (2+1)D- Burger's equations and (2+1)D- Boiti-Leon-
Pempinelli (BLP) has been presented to illustrate the efficiency and accuracy for the
suggested method will be given in section 4. Finally, the conclusion is given in section 5.

2. LA- Transformation
Tawfiq and Jabber in 2018 [35] defined LA- transformation for a function f(t) as follows:

f(s) =T} = [ et (5) dt,

Where s is a real number, for those values of s, the improper integral is convergent.

The domain of this transformation is wider than in the Laplace transform (L.T) this
feature makes the LAT more widely used in problems, and has some interesting properties
which make it more appropriate or suitable than the Laplace Transform. Such as: the duality
between LAT with LT, therefore, the LAT can solve all the problems which can be solved by
LT; the unit step function in the t-domain is transformed to unity in the u-domain; The
integration and differentiation in the t-domain are equivalent to division and multiplication of
the transformed function F(u) by u in the u-domain moreover, linearity property that is for any
constant aeR, T{a} = aT{1} = a, and hence, T '{a} = a, that means there is no any
problem when we deal with the constant term (the constant with respect to the parameter u).
For more details see [35].

3. Suggested Approach for Solving Nonlinear (2+1)D- Differential Equations
Here, we suggest an efficient approach that is based on combining LA-transform with
ADM and denoted by LATDM. Firstly, we write the form of the nonlinear system of (2+1)D-
PDEs as follows:
u(x,y,t) = g1(x,y,t) + Ry(w,v) + Ny (u, v)
_ } @
vt(xf Y, t) - gz(x:y' t) + RZ(u' 17) + NZ(u' U)
Subject to initial conditions: u(x,y,0) = f;(x,y), v(x,v,0) = f5(x,y)
where u;and v, are considered, without loss of generality, the first derivative for u and v
w.r.t. (t) respectively, R, and R, represent the linear operators part, N; and N, represent the
nonlinear operators part and g, and g, are the inhomogeneous source.
The implementation of the suggested approach is started by taking LA-transform (denoted by
T) on both sides of the equations in (1) to get
T{u.(x,y, )} = T{g1(x,y, )} + T{R; + Ny} }
T{v:(x,y, 0} = T{g.(x,y, O} + T{R, + N2}
using the property of derivative for LA-transform we get the following:

()
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ST{U(X, y; t)} - Sfl(x’ }’) = Zl(x' y' S) + T{Rl + Nl} } (3)
5 S'H‘{v(x,y,t)}—sfz(x,y) :ZZ(xﬂy'S)+T{R2+N2} ’
0,
']I'{u(x,y, t)} = Wl(x’y) S) + %T{Rl + Nl} (4)

Tw(x,y,0)} = wy(x,7,5) + S T(R, + N3}

Hence, we used for the linear part the decomposition series and for the nonlinear part, we
used the infinite series of Adomian polynomials. Where Adomian polynomialsA,,are defined
as follows:

Am == [N(E20AY)] ., m=012,.. . 5)

So, by linearity property of LA- transform, the solutions u(x,y,t) and v(x,y,t) are
obtained easily by applying the inverse of LA- transform. Putting these components into the
expansion that is given by:

u(nyit)=Z$lo=0un(xiylt)=u0+u1+u2+"' }
v(x,y,t)=Z;’l°=0vn(x,y,t)=v0+v1+v2+~- ’
We get the required solution such that

— _1\1
uO(ny! t) =T 1{W1(x,3’; S)}, Un+1 = T ! {;T{Rl + Nl}}

— _1\1
vO(xJ Y, t) =T 1{W2(x) Y, S)} y Un+1 = T ! {;T{RZ + NZ}}

(6)

4. lllustrative Problems
In this section, two important models as system of (2+1)D-PDEs have been presented to
illustrate the efficiency and accuracy for the suggested method.

Example 1: Consider the following nonlinear (2+1)D-PDE (Burger's equations),[36]
Up + Uy + VUy = Uyy + Uy

Uy + Uy + UV, = Uy, + 1), with initial conditions

ulx,y,0)=x+y

v(x,y,0) =x—y
By taking LA-transformation on both sides above equations

T{u;} = ’]I‘{uxx + Uy, — UL, — vuy}

T{v.} = 'H‘{vxx + vy —uUv, + vvy}

sT{u} — su(x,y,0) = ']I‘{uxx + Uyy — Ul — vuy}
sT{v} — sv(x,y,0) = T{vy, + vy, — uvy + vv,}

_ 1
u="T71 {u(x, y,0) + ;’]I‘{uxx + Uyy — Ul — vuy}}

_ 1
v=T"1 {v(x, y,0) + ;’]I‘{vxx + vyy — U, + vvy}}

By using decomposition procedure
uy = T Hu(x,y,0)} =x+vy
vo =T Hv(x,y,00} =x—y

-1\11
u, =T1 {;’]I‘{u(,xx + Ugyy — Ag — BO}}

-1 11
vl = T 1 {;T{vax + voyy - CO - Do}}
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Ag = F(ug, v9) = UglUlox =X + Y
By = F(ug,vp) = VolUgy =X — Y
Co = F(ug,vp) = ugVox = x+y
Dy = F(ug, Vo) = Vopx = —X +y

u1=’ﬂ“1{%'ﬂ‘{0+0—x—y—x+y}}=—2xt

v1=’J]“1{%'H‘{O+O—x—y+x—y}}=—2yt

A1 = UplUyy T+ Ugxlly

Bl == vOuly + uoyv1
B1 - —Zyt

C1 = UgVyx + VpxlUy
Cl = _th

D1 = Uovly + onvl
Dy = —2xt + 4yt

_1\1
uz = T 1 {_T{ulxx + ulyy - Al - Bl}}
U, = { (4x + 4y)} =2(x + y)t?

1
172 = T 1 {;T{lex + vlyy Cl - Dl}}

1
v, =T~ 1 5—2(4x —4y)} =2(x —y)t?

1
Ay = > [uo (2uzy) + UsrlUy + Uy (2Up) + UgUyy]
A, = 8xt? + 4yt?

1
BZ = 4-xt2 — 4‘yt2

1
G =3 [U(2V25) + VixlUy + Vor (2U3) + Up V4]
C, = 4xt? + 4yt?

1
Dz = E [vo(szy) + vlyvl + voy(sz) + Ulvly]
D, = —4xt? + 8yt?

_ 1

u3 = T 1 {;T{uux + uzyy - Az - Bz}}

Uy =T1 {%'H‘{O +0 — 8xt? — 4yt? — 4xt? + 4yt2}}
_ 2

Uy = T-1 {5—3(—12x)} = —4xt3
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— 1
vy =T1 {;T{vm + Vyyy — Cy — Dz}}
vy =T 1 ET{—&thZ — 4yt? + 4xt? — 8yt2}}

vy =T! {513 (—12y)} = —4yt3

U=Yr oy =Uy+ U +uz+ -
u=x+y—2xt+ 2xt? + 2yt? — 4xt3 + -
u=x(1+2t>+-)—2xt(1+2t*+-)+y(1+2t*+-)

x _ 2xt y
U=100 12 " 122

x+y—-2xt

u=-—-

1-2t2

V=DmoUn=Vg+V +v3+
v=2x—y—2yt+2xt?—2yt* —4yt3 + -
v=x(14 262 4 ) — y(L+ 262 4+ ) = 2yE(L + 262 + )

_ X y 2yt
T 1-2t2  1-2t2  1-2t2
_ x-y-2yt

1-2t2

This is close to the exact solution.

Suleman et al [36] solved the system by using the Elzaki Homotopy perturbation method
and get analytic solution but herein we get the exact an analytic solution with easy
implementation and fewer steps.

Example 2: Consider the following nonlinear (2+1)D- Boiti-Leon-Pempinelli system (BLP)
[30, 37]
Uty — 2UyUy — 2UUyy + Ugyy — 2Uxxx = 0 } )
Ve — VUygy — 2UV, =0
With initial conditions,
u,(x,y,0) = sech?(x +y) , v(x,y,0) = tanh(x + y)
To solve (9) by using the L.A. method with D. method,
we take the L.A. transform to both sides of (9)
']I‘{uty} = ']I‘{Zuyux + 2Ulyy — Upyy + vaxx}
T{Ut} = T{Uxx + Zuvx}
s’]I‘{uy(x, vy, t)} —su,(x,y,0) = ']I‘{Zuyux + 2Ulyy — Uyyy + vaxx}
sT{v(x,y,t)} —sv(x,y,0) = T{v,, + 2uv,}

uy, = T-1 {uy(x, y,0) + %']I‘{Zuyux + 2Ulyy — Uyyy + vaxx}}

v=T71 {v(x, y,0) + %']I‘{vxx + Zqu}}

By using decomposition procedure

Upy = T 1 {sech2 x+y)+ i']I‘{ZAn + 2By — Upyxy + 2vnxxx}}
v, =T {tanh(x +y)+ i']I‘{vnxx + ch}}

Ugy = sech?(x +y)
Uugy = sech®(x + y) , integrating w.r.t (y)
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uy = tanh(x +y) + a(x),leta(x) = —%
= Uy = —§+ tanh(x + y)
= vy = tanh(x +y)
_ 1
Uy = T {; T{ZAO + 2By — Uoxxy T Zvaxx}}

v, =T" ET{VOxx + 2CO}}

Ay = F(uy) = UgyUox » A = UgyUix T UpxUry

By = G(ug) = Uglgxy » By = Ugllyxy + Ugxylly

co = H(ug, Vo) = UgVpy , €1 = UgV1x F VoxlUy

Ugy, = Sech?(x +y)

Uy = —25ech?(x + y)tanh(x + y)

Ugxry = —25ech*(x +y) + 4sech®(x + y)tanh?®(x + y)
UgyUpy = Sech*(x +y)

UgUoyy = Sech®(x + y)tanh(x + y) — 2sech?(x + y)tanh?(x + y)
Vox = Sech?(x +y)

Voxx = —25ech?(x + y)tanh(x + y)

Voxxx = —25ech*(x + y) + 4sech?(x + y)tanh?(x + y)
UgVoy = —% sech?(x + y) + sech?(x + y)tanh(x + y)

Uy, =T71 {% T{2sech*(x + y) + 2sech?(x + y)tanh(x + y) — 4sech?(x + y)tanh?(x +
y) + 2sech*(x + y) — 4sech?(x + y)tanh?(x + y) + —4sech*(x + y) + 8sech?(x +
y)tanh?(x + y)}}

uyy, = 2tsech®(x + y)tanh(x +y)
= u; = —tsech?(x + y)

v, =T1 E T{—2sech?(x + y)tanh(x + y) — sech?(x + y) + 2sech?(x + y)tanh(x +

y)}}

= v, = —tsech?(x + )

Uy, = 2tsech?(x + y)tanh(x + y)

Upyy = 2tsech*(x + y) — 4tsech?(x + y)tanh?(x + y)

Uipxx = —16tsech*(x + y) tanh(x + y) + 8tsech?(x + y)tanh3(x + y)

V1, = 2tsech?(x + y)tanh(x + y)
Vixx = 2tsech*(x +y) — 4tsech?®(x + y)tanh?(x + y)
Vixxx = —16tsech*(x + y) tanh(x + y) + 8tsech?(x + y)tanh3(x + y)

A, = 4tsech*(x + y)tanh(x + y)
B, = 2tsech*(x + y) tanh(x + y) — 4tsech?(x + y) tanh®(x + y) — tsech*(x + y) +
2tsech?(x + y) tanh?(x + y) + 2tsech*(x + y) tanh(x + y)
¢, = —tsech?(x + y)tanh(x + y) + 2tsech?(x + y) tanh?(x + y) — tsech*(x + y)

Uy, = T71 E T{8tsech*(x + y) tanh(x + y) + 4tsech*(x + y) tanh(x + y) —
8tsech?(x + y) tanh3(x + y) — 2tsech*(x + y) + 4tsech?(x + y) tanh?(x + y) +
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4tsech*(x + y) tanh(x + y) + 16tsech*(x + y) tanh(x + y) — 8tsech?(x + y)tanh3(x +
y) — 32tsech*(x + y) tanh(x + y) + 16tsech?(x + y)tanh3(x + y)}}

Uy == (~2sech*(x +y) + 4sech? (x + y)tanh? (x + y))

= u, = tz—zl(—Zsechz(x + y)tanh(x + y))
v, = ']I‘_l{.']I‘{Ztsech“(x + y) — 4tsech?(x + y)tanh?(x + y) — 2tsech?(x + y)tanh(x +
y) + 4tsech?(x + y)tanh?(x + y) — 2tsech*(x + y)}}

= v, = tz—zl(—Zsechz(x + y)tanh(x + y))

Thus, u=Y,"ou, and v=737_,v,

u=- % + tanh(x + y) — tsech®(x + y) + tZ_Z' (—2sech?(x + y)tanh(x +y)) + -

t? 92

1 3]
u=--+ [tanh(x+y—t) +tatanh(x+y—t) + 255

tanh(x +y —t) + ]

2 t=0
u= —E+tanh(x+y— t),also

v = tanh(x + y) — tsech?(x + y) + tz—zl (—2sech?(x + y)tanh(x +y)) + -

' t? 92

T tanh(x +y —t) + - ]c=o
v = tanh(x + y — t). This is closed to the exact solution.

v= [tanh(x+y— t) + t%tanh(x+y— t) +

Wang in [37] studied the properties of this type of system, Ayati in [38] solved this
system by using the modified simple equation method and he got the exact solution but
this method generates some parameters that will be determined. Also, Qi and Zhang in
[39] solved this system by using Traveling Wave with computer simulations to get the exact
solution.

5. Conclusion

In this article, an efficient approach based on combining LA-Transform with the
decomposition method is suggested to solve nonlinear system of (2+1)-D model problems to
get the exact solution, where other directed methods are used to solve the same model
problems without getting the exact solution. Also, the Elzaki Homotopy perturbation method,
modified simple equation method and Traveling Wave have been used in this type of
systems but the suggested method is easier to implement than other methods.  Moreover, in
LATDM the nonlinear terms are easier to compute than in ADM or its modifications. So, the
suggested approach has high accuracy, easy implementation and rapid convergence to the
exact solutions.
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