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Abstract

We consider some nonlinear partial differential equations in higher dimensions,
the negative order of the Calogero-Bogoyavelnskii-Schiff (nCBS) equationin (2+1)
dimensions, the combined of the Calogero-Bogoyavelnskii-Schiff equation and the
negative order of the Calogero-Bogoyavelnskii-Schiff equation (CBS-nCBS) in
(2+1) dimensions, and two models of the negative order Korteweg de Vries (nKdV)
equations in (3+1) dimensions. We show that these equations can be reduced to the
same class of ordinary differential equations via wave reduction variable. Solutions
in terms of symmetrical Fibonacci and Lucas functions are presented by
implementation of the modified Kudryashov method.

Keywords: nCBS equation, CBS-nCBS equation, nKdV equation, modified
Kudryashov method, symmetrical Fibonacci and Lucas functions.
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1 Introduction
The derivation of nonlinear partial differential equations by employing recursion operators has been
attracted a considerable attention recently [1,2,3]. The recursion operator is known as an integro-
differential operator that one of its uses is that to form differential equations. The author in [1] derived
the nCBS equation in two spatial dimensions plus time. This is given by
Useext + FUyUsr + 2Usx Uy + Uyyy = 0, ey

and that by exploiting the inverse of the recursion operator for the KdV equation. Beside of that he
used the simplified version of Hirota's method to get some types of solutions. In [2] the same
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framework, the combined CBS-nCBS equation was built up by putting together the recursion operator
of the CBS and its inverse operator. The combined CBS-nCBS equation [2], is then
Uyt + uxxxy + Usxxt + 4ux(uxy + uxt) + Zuxx (uy + ut) =0. (2)

It was shown that it is a completely integrable equation in the sense that it passes Painelvé test [2].
Moreover the simplified version of Hirota's method was used to obtain soliton solutions. In [3], the
Verosky approach with the recursion operator for the KdV equation were used to construct some new
models in three fields. The author managed also to obtain multi-soliton solutions by applying the
simplified version of Hirota's method. The nKdV model | equation in three fields plus time [3] reads

—Uysext T AUy Upr + 2Ups Uy — Uyy — Uyy — Uxz = 0, (3)

and the nKdV model Il equation [3] therefore
—Uysexe T AUy Uye + F2UsepUp — Uyy — Uy + Uyyy — dUsUyy — 2Upu, = 0. (4)

A few analytic solutions for these equations were found. In the coming sections, we shall solve
these equations by applying the modified Kudryashov method in order to gain exact solutions by
means of symmetrical Fibonacci and Lucas functions. The organization of the paper as follows; in
section two the modified Kudryashov method is described. The following three Sections are devoted
to transform the nCBS equation, the nCBS-CBS equation, the nKdV model | equation and the nKdV
model Il equation into ordinary differential equation, the reduced equation, by using a wave reduction
variable. In section six the reduced equation is solved by using the modified Kudryashov method
which gives the base for constructing the solutions for the nCBS equation, the CBS-nCBS equation,
the nKdV model | and model 1l equations in section seven. Finally, conclusion is given.

2 The modified Kudryashov method

The Kudryashov method is named after Kudryashov [4]. The Kudryashov method is a reliable
method for getting solutions of nonlinear equations. It is applied and developed by many researchers
see for instance [ 5-11 ]. We shall use Pandir’s modification [5] for this method to solve the nonlinear
equations under consideration. The method can be briefly described as follows

Consider a partial differential equation

G(u, U, Uy, Uzy Upy Uy Ugys Uy Uty U oo - ) =0, 5

where u is a function of x,y, zand ¢ and uy,u,, ... refer to the partial derivatives with respect to
the independent variables .

Taking the wave reduction variable

E=ax+ Py +yz+ 6t
and
ulx,y,zt)=UE), §{=¢{(xyz1),

where a, 8,y and § are arbitrary constants.

Equation (5) is transformed into an ordinary differential equation

F(U,Ug, Ugg, Uggg, ........) = 0, (6)
here Uy = £
where Uy = 2
We search for solutions in the form
UE) = Zk=—nckQ(®", (7)
where ¢, k =0,+1,+2,43, ......., £n are arbitrary constants and Q (&) satisfies the auxiliary
differential equation
Qs (&) =1Ina(Q*(®) - Q) (€))

where a is a constant . The solution for auxiliary equation (8) is
1
Q) = Trat’ a=+1.
The number of the terms, positive number n , in the formula (7) can be deduced by balancing
highest order nonlinear terms in the equation (6) . Inserting determined equations (7) and (8) into
equation (6) and next collecting the coefficients of the Q(&)* (k=0,+1,42,43,..) and then
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equating each coefficient to zero to gain a system of algebraic equations can be solved to get the
solutions of the equations under study.
3 The negative order of the Calogero — Bogoyavelnskii-Schiff equation
The nCBS equation (1) is written by
Ugeext T AUyt + 2Usx Uy + Uyy, = 0, )
where u is a function of x,y and t . It is a fourth order nonlinear partial differential equation. Clearly,
the terms ., and u,,, represent the linear terms while the terms w, u,; and u,,u, are the nonlinear
terms. The nCBS equation (9) can be transformed into ordinary differential equation and that by
reducing the number of independent variables to only one independent variable ¢ by using wave
reduction variable
ulx,y,z,t) =UE&), &=ax+ pBy+dt, (10)
where «, and § are arbitrary constants.
Substituting equation (10) into equation (9), after using the chain rule, gives
0!38(]&& + 6&28U§U§§ + OC,BUgg =0,
integrating with respect to &
CZB(S'U&E + 30[26U§2 + aﬁUsr +c* =0,
where ¢* is a constant of integration.
Multiplying Ug; and mtegratlng it again lead to
a3s ap
—U& + 0[26U§ +—U§ +c U +c*™ =0,
where c** isa constant of integration . Rewrltlng the last equation

2 B 2, 2c* 2c**
Uge® +—U® + —2Ug” + —=Ug + —= = 0.
Now by using the dependent varlable transformatlon
U =f ddé, (11)
¢

that gives

®f + A; @3+ B ®* + ;P +D; =0, (12)
where
2 B 2c” 2c™

A1=E, Bl:%, C1=% and D1=m, (13)

and all the constants are arbitrary .
4 The combined of the Calogero-Bogoyavelnskii-Schiff equation and the negative order of the
Calogero-Bogoyavelnskii-Schiff equation
We again use a wave reduction variable to transform the combined CBS- nCBS equation (2), reads
Uyt + uxxxy + Usxxt + 4ux(uxy + uxt) + Zuxx (uy + ut) = 0: (14)
into ordinary differential equation and that by reducing the number of independent variables to only
one independent variable ¢ by exploiting
ulx,y, z,t) =U(%), E=ax+ By + 6, (15)
where a, # and § are arbitrary constants.
Substituting equation (15) into equation (14), after using the chain rule, gives
O_’3(ﬁ + 6)UfEEE + 6a2(ﬁ + 5)U€Uff + a5U§§ = 0,
integrating once
a?(B + 8)Uggr + 3a(B + §)Us? + 6Us + ¢* =0,
where c* is a constant of integration.
Multiplying Ug; and integrating again leads to
a?(B + 8)Uge® + 2a (B + 8)Ug® + SUg% + 2¢*Ug + 2¢™ = 0,
where ¢** is a constant of integration.
Using the dependent variable transformation, equation (11), one can obtain
®F + A, @3 + B, @2 + C,® + D, = 0, (16)
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where

A_Z B. — o) . — 2c* i D= 2c**

270 2T @) 2T ar(B+e) MY 2T 2B +0)’

and all the constants are arbitrary .
5. The negative order Korteweg de VVries model I and model 11 equations
We start off with the nKdV model | equation (3), reads
—Uyxxt T 4‘uxuxt + Zuxxut T Uxx — Uyy — Uxz = 0.
Putting
ulx,y,z,t) =U&), § =ax+ By + +yy + 6,
where «, 8,y and § are arbitrary constants.
Substituting equation (19) into equation (18), after employing the chain rule, to obtain
—a36U§§§§ + 6&26U§U§$ - a(a + ﬁ + )/)U;; =0,
integrating once with respect to &
—a38Ugg + 3a20Us” — a(a + f +y)Ug +c* =0,
where ¢* is a constant of integration.
Multiplying U and integrating again gives
~a38U% + 2a%8U¢ — a(a + B+ y)UZ + 2¢*Ug + 2¢™ = 0,
where ¢** is a constant of integration.
Using the dependent variable transformation, equation (11), one can obtain
®F + A3 ®3 + B3 P2 + 3@ + D3 = 0,
and
2 a+pf+y 2c” 2c™
A3__E, B3_—a28 , 3——% and D3——%
where all the constants are arbitrary .
We arrive at the nKdV model Il equation (4), that is
“Uxxt T 4uxuxt + 2uxxult = Uxx — Uxy + Uyxxz — 4'uxuxz - 2uxxuz =0,
applying
ulx,y,z,t) =UE), ¢ =ax+ Py +yz+ 6t
where @, 8,y and § are arbitrary constants.
Substituting equation (23) into equation (22), after using the chain rule, yields
(ZS(]/ - 5)U€EEE + 6(12(5 - }/)Ufof - (I((I + B)Uff = 0,
integrating once
a(y = §)Ugg + 3% (y — 6)U§2 —a(a+PUs+c* =0,
where c¢* is a constant of integration.
Multiplying Ugs and integrating again gives
a®(y — §)Uf + 2a*(6 — y)UZ — a(a + U + 2¢*Ug + 2¢** = 0,
where c¢** is a constant of integration .
Using the dependent variable transformation, equation (11), leads to
®F + Ay @3 + B, P + (@ + Dy = 0,
where
a+p 2c* 2c**
-0 4T Ee-0 M T Eg ey
and all the constants are arbitrary.
6. Solutions of the nonlinear reduced equation
We move in this section to solve the nonlinear equation
®F + AD? + BO? + CP + D = 0.

Ay=—=,B, =
4 a 4

: 1480-1489

17)

(18)

(19)

(20)

(21)

(22)
(23)

(24)

(25)

(26)

One may notice that this equation is similar to equations (12), (16), (20) and (24). In order to solve
equation (26), we follow the same approach that was employed by Pandir [5], by doing balance

between d)? and @3, one can deduce that n =2 in equation (7)
D) =c2Q7% + 107" +¢o +¢1Q" + 0%
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where c_,, ¢c_4, ¢o, ¢; and ¢, are constants to be determined and Q (&) satisfies the auxiliary
equation
Qe (§) =, (28)

where a is a constant . The solution for the auxiliary equation (28) is

-1
Q6 = Tt F 1.
Now differentiating equation (27) once with respect to &
Qp = —2¢_50:Q073 — c_10:Q7% 4 ¢1Q¢ + 2¢,Q¢ Q. (29)
Substituting equation (27) and equation (29) into equation (26) yields

(—2c220¢07% = c_10¢Q 7% + €1 Q5 + 2¢,0¢0)’
+A(c_;07%2 4+ c_1Q07 + ¢y + ;0 + ¢,0%)3
+B(c_,Q07 %+ ¢c_1Q7  + ¢y + ;0 + c,0%)?
+C(c_2Q7 %+ c_1Q Y+ ¢y +¢1Q +¢c,Q2)+D =0.
Inserting equation (28) into the last equation and simplifying to obtain
Ac3, + DQ® + BQ8c? + 6Ac_yc_1Q%c; + 6Ac_yc_1Q%¢c, + 6Ac_5c,Q7 ¢y + 6Ac_,c_1Q3¢
+ 6Ac_5c0Q%c; + 6Ac_,c0Q%c, + 6Ac_1c,Q8¢c; + 6Ac_1¢yQ%¢c; + 6Ac_;cyc,Q”
+ 6Ac;coc,Q° + AcdQ® + Ac3Q° + Ac3Q? + Bc?,Q% + Bc2,Q* + Bc3Q*°
+ Bc3Q% + Cc_,Q0* + Cc_1Q% + CcyQ® + Cc1Q7 + Cc,Q8 + Ac3,0Q3
+34c_,c2Q8% + 3Ac_,c2Q* + 34c;c2,Q5 + 3Acyc?,Q° + 3Acyc?,Q*
+3Ac_1c2Q7 + 3Ac_1c2Q° + 3Ac_1c2Q° + 3Ac,c2Q7 + 3Ac,c2Q8 + 3Acyc2 Q8
+ 34cyc2Q0 + 3Ac,c2Q° + 34c;c2QM + 2BQ3c_yc_q + 2BQ%c_ycq
+ 2BQ%c_,cy + 2BQ%cic_y + 2BQ7 cyc_1 + 2BQ%cycq + 2BQ%*c_5cq
+ 2BQ%coc_1 + 2BQ7 cycy + 2BQ8cqc, + 3Ac_1¢2,Q + 3Ac;c2,Q3 + 3Acyc?, Q4
+ 3A4cyc?,Q% + 3Ac_5c?,Q% + 3Ac_,c?Q% + Q* (Ina)? c2; + Q¥ (Ina)? ¢
+4Q (Ina)? ¢ + Q° (Ina)? %, — 2Q° (Ina)? c2; + Q% (Ina)?c?
—2Q% (Ina)?c?
+4Q2(Ina)?c? — 8Q' (Ina)? ¢ + 4Q*(Ina)?c?, + 4Q* (Ina)? c2,
—-8Q3(Ina)?c?, +4Q3(na)?c_yc_; —4Q° (Ina)? c_,c; — 8Q° (Ina)? c_,c,
—2Q%(na)?c_1c; —4Q7 (Ina)? c_1c; + 4Q° (Ina)? cycq + 4Q° (Ina)? c_yc_q
—8Q*(na)?c_yc_; —4Q7 (Ina)?c_,c; +8Q° (Ina)? c_,c; — 8Q8 (Ina)? c_,c,
+16Q7 (Ina)? c_yc; —2Q8 (Ina)? c_1¢; + 4Q7 (Ina)? c_q1c; — 4Q° (Ina)? c_4 ¢,
+8Q8 (Ina)? c_ ¢y + 4Q (Ina)? c,¢; — 8Q° (Ina)? c,¢q = 0.
Collecting the coefficients of Q for k = 0,1,2,3,..,12 to get the following system of
algebraic equations
Ac3, =0,
34c%,c_, =0,
Acs +4(Ina)?cz =0,
3Acic3 —8(Ina)?cz + 4 (Ina)?cic, =0,
6Ac_pc_1co+4(Ina)?c_p,c_q +Ac3;, +2Bc_yc_q + 3Ac%,c; —8(Ina)?c?, =
Bca + 6Ac_qicocy + +3Ac%c; —2(Ina)?c_1cy —8 (Ina)? c_ycy + 3Acic_, + Ccy
+6Acycoc_y + 2Bc_qcq + Acd + 2Bc_yc, + (Ina)? ¢, + 8(Ina)?c_,cy + D =0,
Bc?, + Cc_y + 3Ac%,c, + 3Ac_pc3 + 6Ac_yc_q¢y —8(Ina)? c_pc_q + (Ina)? ¢,
+2Bc_ycq + 3Ac2%,cy + 4 (Ina)? c?, = 0,
6Ac_,c_1c,—4(Ina)?c_,cq —2(Ina)?c?; + 34c2,¢, + Ce_y +4(Ina)? c_,c_4
+2Bc_ycq + 6Ac_ycoc; + 2Bc_qco + +3Ac_1cé =0,
3Ac_,c%; + Bc?, + 4(Ina)?c?, + 34c2,c, = 0,
(Ina)? c? + 6Ac_icic, — 2 (Ina)? c_icq + Ccy + 3Acyc? + 2Bcyc, + 8 (Ina)? c_qcy
—8(na)? c_ycy 3Ac_pc2 + 3Acic, + Bc? =0,
34coc2 +4(Ina)? c2 —8(Ina)? cycy + Be2 + (Ina)? ¢ + 3Acic, = 0,
16 (Ina)? c_yc, + 3Ac_qc? + 3Acéc; — 4 (Ina)? c_qc, + 6Ac_,cq¢y + 2Bcgey
+2Bc_qc; + Ceqy + 6Ac_qcocy; + 4 (Ina)? c_ic; —4(Ina)? c_pcq =0,
6Acycicy + Acd + 3Ac_yc2 + 2Bcic; —2(Ina)? ¢2 + 4 (Ina)? ¢ic, — 4 (Ina)? c_q1c, = 0.
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Solving the system of algebraic equation to gain the following solution for cyc;c, # 0

A 4 (Ina)? B (Ina)?(—c, + 12¢) C- 2 (Ina)? cy(—c;, + 6¢y)

(&) C2 C2

D= (Ina)? c2(—c, + 4cg)

p ,Co=1C€p,C1 = —Cy, C3=0Cy,¢c_1 =0, ¢c_,=0, (30)
2

where all the constants are arbitrary. From equation (27), solutions for the reduced equation (26)
are established. In the next section, we shall use these results to get the solutions for the nCBS
equation, the CBS-nCBS equation and the nKdV model | and model Il equations rely on analogues of
the coefficients.

7. Solutions for the nCBS equation, the CBS - nCBS equation, the nKdV model I and model Il
equations

This section is dedicated to construct solutions for the nCBS equation, the CBS-nCBS equation, the
nKdV model | equation and the nKdV model Il equation by taking into account the results in pervious
section.

In order to get solutions for the nCBS equation (1), comparing the coefficients of the equation (13)
and equation (30) to deduce that
c;=-2(na)?a, ¢ =a®5cy((lna)?a+ 3cy) ,

a=a, c*= —EcgaZS(ZCO + (na)? a), ¢ =-c;,

Co = Co, B=—-ad((Ina)? a+6¢cy), &=3,
using equation (27), we get the solutions for equation (12)
1

2 1 2
D) = 2a(l ———2a(l —_—
@) =cot 0(( n(a)) 1F ot 0(( n(a)) aF aE)z '
employing equation (11) and the appendix, the solutions for the nCBS equation (1) are
cLs (—%f) + sLs (—%f)

u(x,y,t) =cpé —alna

u(x,y,t) =cpé —alna

1
u(x,y, t) = coé — alna(l —tLs (;{)),

1
u(x,y,t) =cpé —alna <1 — ctLs (E§>> ,
cFs (—%f) + sFs (—%f)
cFs GE)
sFs Gf)—ch GE)
sFs GE)
1
u(x,y,t) = coé — alna(l —tFs (Ef)>,

u(x,y,t) =cpé —alna

)

ulx,y,t) =cyé —alna

)

1
ulx,y,t) = cyé — alna(l — CctFs (Ef)> ,

where § = ax — ad(In(a)? a + 6¢,)y + 6t and all the constants are arbitrary.
The next set of results for the CBS- nCBS equation (2). Calling equation (17) and equation (30) to
gain
1(8 + (Ina)? a?p + (Ina)? a?6)
6 B+ da '
B=B, &=

Co = g =—-¢, c==-2(na)}a, a=a,
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. _i(ln(a)2 a’f + (Ina)? a?8 — 6)(6 + In(a)? a?p + (Ina)? a?6)

12 B+ 8a ’
w1 2Ona)?*a?B+2(0na)’a’s—6)(§+ (na)’a’p + (Ina)? a?s)?
216 (B + 6)%a? '

From equation (27), we get the following solutions for equation (16),

16+ (Ina)? a?B + (Ina)? o?s 1
*®) = _E( = (gfs)oE D 4 2a(na) 1¥at
2
- Za(ln(a)) m
By using equation (11) and the appendix, the solutions for the CBS- nCBS equation (2) are
3 5 la(lna)?f a(na)?s > (I )2
u(x’y’t)__<6(ﬂ+5)a+€ B+5 6 Bid (Ina) a>§
1 1
—alnaCLS (—Ef) +15Ls (—Ef)
cLs 59)
5 1a (Ina)? Ina)?§
u(x,y,t) = — (6(B o +ga(ﬂn_|t_1)5 F +%(;?5 —2(na)? a)f

s (16) 15 ()
(00

3 5 la(lna)?p a(na)?s 1
u(x'y't)__<6(ﬁ+5)a+g T +g T —2(1na)2a>f—alna<1—th<§f>>

—alna

3 5 la(lna)?p a(na)?s 1
u(x’y't)__<6(ﬁ+8)a 3 B+o 5 5+0o —2(1na)2a>§’—alna(l—cth(Ef))
5 la(lna)®’p a(lna)?s 5
u(x'y’t)=_<6(ﬂ+6)a 6 p+6 6 prs 2Und “)f
1 1
_alnach(—EE)+st(—Ef)
()
1) la(l 2 1 25
PSS SISHILY LY TR
1 1
_alnast(Eg')—lch(Ef)
SFS(Ef)
10) la(l 2 1 28
u(x'y’t)=_<6(ﬁ+6)a Ea(ﬁnfzsﬁ %(;?5 _2(1”)%‘)5
1
—alna(l—th(§€>>,
10) la(l 2 1 25
“(x'y’t)=_<6(ﬁ+5)a+€a(ﬁnf)5ﬁJ“%(;i)a _2(1““)2“>§

—alna <1 — ctFs (%f)),

where ¢ = ax + By + &t and all the constants are arbitrary.
To get solutions for nKdV Model | equation (3). Using equation (21) and equation (30)
to have

c; = 2 In(a)’a, f = —a — y-In(a)? a?5 + 6adcy, ¢; = —cy,
a = a, y=y!6=61 Co = Co»
1
c* = —a?8cy(In(a)? @ — 3cy), ¢ = §c§a28(ln(a)2a — 2cp),
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Calling equation (27), the solutions for equation (20) are given by
1

2 1 2
(D(f) =Cop— Za(ln(a)) m + Za(ln(a)) m
By using equation (11) and the appendix, the solutions for nKdV Model | equation (3) are

1 1
u(x,y,t) = co§ + alnaCLS (_Ef) +SLS(‘5'5)

)
1 1
ulx,y, t) = cyé + alnaSLS (Ef) _1CLS (Ef) ,
sts (5€)
1
ulx,y,t) =cyé +alna (1 —tLs <55)>,

u(x,y, t) = cpé + alna<1 — ctLs (%f))
cFs(—3¢)+sFs(-1¢)
)
sFs (5€) = oFs (56)
sFs (5¢)
u(x,y,t) = o +alna (1 — tFs (%f)) ,

1
u(x,y, t) = cpé + alna<1 — ctFs (EE)> ,

where & = ax — (a+ vy + (Ina)?a?s — 6adc0)y + yz + 6t and all the constants are
arbitrary.

For gaining solutions for the nKdV Model 1l equation (4). Using equation (25) and equation (30) to
get

ulx,y,t) =cpé +alna

u(x,y,t) =cpé +alna

)

c; = 2(na)’a, f =—a+ (Ina)?a?(y — 8) — 6acy(y — 6),
Co = Co, a=a, Y=Yy, C1 =—Cy §=40
c* = coa?((Ina)?ay — §(Ina)?a — 3cyy + 3¢,0),

*k _1 2.,2(_ 2 _ 2
¢t = zcoa (=2cpy +2¢p6 + (Ina)*ay — §(Ina)“a).
Applying equation (27), we get the solutions for equation (24) in the form
— _ 2 2
®(¢) =cy— 2a(lna) 1T af + 2a(lna) AT a7
and by using equation (11) and the appendix, the solutions for the nKdV Model Il equation (4) are
1 1
cLs (—Ef) + sLs (—Ef)
1
cLs (59)

1 1
sLs (Ef) —cLs (Ef)
s ()

1
ulx,y,t) = cyé + alna(l —tLs (Ef)>,

ulx,y,t) =cpé +alna

’

u(x,y,t) =cpé +alna

1

1
u(x,y, t) = cpé + alna(l —ctLs <§$)> ,

(cPs (=3¢) +sPs(-3¢))

cFs (%f) '

u(x,y,t) =cpé +alna
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o (35) s 39
(59
1
u(x,y,t) = coé + alna(l —tFs (—E)) ,

u(x,y,t) =cpé +alna

)

2

1
ulx,y,t) =cyé+alna <1 — ctFs (Ef>> ,

where & =ax — (a— (Ina)?a?(y —68) + 6acy(y —8))y +yz+ 6t and all the constants are
arbitrary.
Conclusion

In this work, we have dealt with four nonlinear equations, the nCBS equation, the nCBS-CBS
equation, the nKdV model I equation and the nKdV model Il equation in higher dimensions. We stress
that these equation can be reduced to the same nonlinear ordinary differential equation by employing
wave reduction variable. Types of solutions in terms of symmetrical Fibonacci and Lucas functions
are established. The modified version of the Kudryashov method is used to achieve our goal, the
method is reliable to get exact solutions to nonlinear equations. The structure of the solutions of the
nKdV model | equation is seem to be similar to that of the nKdV model Il equation .
Appendix

Symmetrical representation of Lucas and Fibonacci functions and some their properties [12].
Symmetrical Lucas and Fibonacci sine and cosine functions

sLls(§) =af —a % ,cls=af +a” ¢

Fs(é) at —at F at +at
sFs()=——— ,cFs =——.
_ _ _ V5 5
Symmetrical Lucas and Fibonacci tangent and cotangent functions
tLs(E) as—a* ‘L al+a¢
s(¢) =——= ,ctls =————
aé +a-$ aé —a=¢

F _af—a‘f F _a‘f+a“f
t S(E)—m ,Ct S—m.

The correlations of the symmetrical Lucas and Fibonacci functions
_sLs@®) _cLs@)
sFs(§) = N cFs(§) = NG
Some identities for the symmetrical Lucas and Fibonacci function
4
(cLs(f))2 - (SLS(E))2 =4, (ch(f))2 — (st(f))2 =z
sFs(§) = —sFs(=¢$), sLs(§) = —sLs($),
(sLs(g‘))2 + 2 = cLs(2§), (cLs(f))2 — 2 =cLs(2¢),
cFs(§) = cFs(=¢), cLs(§) = cLs(=%),

%CFS(ZE) = sFs(§).cFs(§), sLs(2&) = sLs(é).cLs(&).
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