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Abstract

In this paper, the aquatic food chain model, consisting of Phytoplankton,
Zooplankton, and Fish, in the contaminated environment is proposed and studied.
Modified Leslie-Gower model with Holling type 1V functional response are used to
describe the growth of Fish and the food transition throughout the food chain,
respectively. The toxic substance affects directly the Phytoplankton and indirectly
the other species. The local stability analysis of all possible equilibrium points is
done. The persistence conditions of the model are established. The basin of
attraction for each point is specified using the Lyapunov function. Bifurcation
analysis near the coexistence equilibrium point is investigated. Detecting the
existence of chaos is carried out using bifurcation diagrams. Numerical simulation
shows that the food chain has rich dynamics including chaos. Moreover, the
existence of toxic substances works as a stabilizing factor in the model.
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1. Introduction
Mathematical biology is the most important subject to study real-world systems in both
ecology and epidemiology. Ecological systems are real-world systems in which the
interaction between their compartments is nonlinear. Such systems have stimulated great
interest in the development of mathematical models for several ecological systems so that a
remarkable variety of dynamic behaviour's including periodic and chaos were discovered. The
food chain, which represents one of the most important ecological systems, is a linear
sequence of organisms where nutrients and energy is transferred from one organism to the
other. A food chain explains which organism eats another organism in the environment.
Since the marine ecosystems cover around 70% of the Earth’s surface and account for nearly
half of global primary production that supports human life. In the last few decades, many
mathematical models have been developed and applied in aquatic ecosystems [1]. These
models simulate the transport of nutrients or aquatic populations. The aquatic ecosystem
provides an incubation area for the plankton population, fishes and invertebrates, and
conserves the rest of the coastline by bounding wave action and controlling water [2]. The
plankton population plays a vital role in the aquatic food chain system. The food chain
demonstrates the feeding style or connection between living creatures. A trophic level
indicates the successive stages in a food chain, starting with producers at the bottom, followed
by a sequence of consumers. Every level in a food chain is recognized as a trophic level.
Plankton species have defense mechanisms against predation through their production of
toxins [3]. Such defensive behavior has a considerable impact on phytoplankton—zooplankton
dynamics [4—7]. Upadhyay and Chattopadhyay [8] demonstrated that the defense mechanisms
against predation by plankton may sometimes act as a biocontrol by the stabilizing effect
towards the plankton population. The flowering of such algal and fish predation on
zooplankton has a great negative effect on zooplankton and the marine ecosystem.
On the other hand, the study of the aquatic food chains in a polluted marine environment by
external toxicity has been considered by many researchers. It is observed that external toxicity
plays a pivotal role in the aquatic ecosystem, different dynamical behavior in such a food
chain has been obtained, see for example [9-14]. Recently, Raw et al [2] have studied a three
species plankton—fish system that incorporates external toxicity and nonlinear harvesting.
They consider that the growth of species is affected by an external toxic substance, however,
the predation rate is considered as Holling type Il functional response. It is observed that there
are complex dynamics in the system.
According to the above, a variety of aquatic mathematical models are proposed and studied.
These models are considered different biological factors such as toxicity, harvesting, delay,
etc. Raw and Mishra [15] proposed and studied a tri-trophic reaction-diffusion model that
incorporates Holling type 1l and Monod-Haldane functional response for food chain
consisting of phytoplankton, zooplankton, and fish, in the existence of toxic grouped
phytoplankton on zooplankton and fish populations. They observed that the inhibitory effect
is able to destabilize the homogeneous steady-state and also able to produce chaos in the
plankton—fish system. Recently, Thakur and Ojha [16] proposed and studied delayed
plankton—fish model with Monod-Haldane-type functional response. They observed that the
system is rich in complex dynamics, and due to defense ability in prey and middle predator
system shows extinction in top predator.
The main objective of this paper is to propose and studied a tri-trophic aquatic food chain
model consisting of phytoplankton—zooplankton-Fish with the usage of Holling type IV
(simplified Monod—Haldane-type) functional response to model the feeding process. It is
assumed that the food chain system lived in a contaminated environment in which the toxic
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substance affects directly the Phytoplankton, while it affects indirectly the other species.
Moreover, a modified Leslie—Gower model is used to describe the growth of Fish.

The outline of the paper is: Section 2 gives the description of the model and how to reduce its
parameters. Section 3 determines the equilibrium points and gives conditions for their local
stability. Section 4 treats the persistence of the model. However, the investigation of global
behavior is given in section 5. Section 6 investigates the possibility of the occurrence of local
bifurcation. Section 7 interests in the numerical simulation of the model. Finally, section 8
gives the conclusion of this study.

2. Mathematical model formulation

In an aquatic food chain system, some species are affected by external toxic substances, for
example, industrial wastage, which inhibits the growth of that species. Recently, Chakraborty
and Das [13] studied the effect of an external toxic substance on the population dynamics of a
system consisting of two zooplanktons and phytoplankton with constant harvesting. In this
section, a food chain model for the interaction of phytoplankton, zooplankton, and fishing in
contaminated aquatic areas is formulated. Let X(T), Y(T), and Z(T) be the density at time T
for phytoplankton, zooplankton, and fish, respectively. Now in order to formulate the above
mathematical model of an aquatic food chain, the following assumptions have been adopted:
1. Assume that phytoplankton, zooplankton, and fish participate in an aquatic food chain
system, wherein in the absence of zooplankton, the phytoplankton grows logistically with
constant intrinsic growth rate and carrying capacity. The existence of toxic substances causes
depletion in the density of phytoplankton. Because the phytoplankton directly depends on
environmental resources a cubic term b;X3(T) is used to describe the intensity of
effectiveness at timeT'.

2. It is assumed that, both the species phytoplankton and zooplankton have the capability of
group defense against any attack by a predator, therefore Holling type IV functional responses
are used to describe the consumption process in the first and second level of food chain.

3. It is assumed that zooplankton is hurt due to natural death and indirect infection of
external toxicity.

4. Because the fish at the upper-level consumes the preferred food, represented by the
zooplankton, as well as additional food from the environment, the logistic growth rate is used
to describe the fish growth in which the carrying capacity depends on the zooplankton.
Moreover, the fish decreases due to indirect infection of external toxicity. Finally, because the
fish grows by sexual reproduction and loses due to intra-species competition. The term ¢, Z?
signifies the fact that fish is sexually reproducing species. It shows that the mating frequency
is directly proportional to the number of males as well as that of females present at any instant
of time T.

5. It is assumed to use the quadratic term for describing the indirect infection of external
toxicity in both the zooplankton and fish.

According to the above hypotheses, the dynamics of described aquatic food chain can be
written in the following set of equations:

dx X apXY

—=rX[1——]— XY _ p, X3,

dT K 1+ moX?

dy a1XY a2YZ 2

— = ~— —— b,Y? —dy, (1)
dT 1+ m()X 1+ le

dz z?

_=C1[ 2 — ]—b3ZZ,

ar cptc3Y

where X(0) = 0,Y(0) = 0, and Z(0) = 0. All the parameters are assumed to be positive and
described in the Table (1).

Table 1- Brief description of the system (1) parameters
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| Parameters Description |
T The intrinsic growth rate of phytoplankton.
K Environment carrying capacity of phytoplankton.
b, The coefficient of toxicity efficiency of the phytoplankton population.
b, The coefficient of toxicity efficiency of the zooplankton population.
by The coefficient of toxicity efficiency of the fish population.
ao The maximum consumption rate of the phytoplankton population.
a, The maximum per capita growth rate of the zooplankton population.
a, The maximum consumption rate of the zooplankton population.
d The natural death rate of the zooplankton population.
mg The defense efficiency of phytoplankton against zooplankton.
my The defense efficiency of zooplankton against fish.
(o) The growth rate of fish by sexual reproduction.
Cy The protection rate of fish provided by the environment.
C3 The fish's preference rate of zooplankton.

Now, in order to study the above system of equations more generally, we drop all the units
from it by using the following dimensionless variables and constant.

X Y z ap K 2
x=Y=2Z2= E't= rT,u; = Uy = moK*,
b1K2 alK azK 2 sz
Uz = Uy = —, U = —, U = MK*, u;, = — 2
3 r ' 4 r 5 r 6 1 ) 7 r ()
Ua = d Ua = ClK u _ 1 u _ Cy u _ b3K
8 — r’ 9 — r '’ 10 — CgK’ 11_C3K' 12 — r "

Accordingly, the dimensionless system corresponding to the system (1) can be written as:

2

—=x|(1—x)— — U3X ] =x

[( ) 1+ uy x2 3 fu
dy [ UgX UsZ ]
- = - — Uy —ug| =
dt 1+ upx?2 1+ ugy? 7y 8| =¥/ 3
dz U10Z ) ]
—=Z (Ug|\Z— —/)— U1 Z| = Z
dt [ 9( U1ty 12 f3,

where x(t) = 0,y(t) =0, and z(t) = 0. Note that the number of parameters has been
reduced from fourteen in the system (1) to twelve in the system (3). Moreover, the functions
fi; i = 1,2,3, in the right-hand side are continuous and have continuous partial derivatives on
the following space:

R.? ={(x,v,2) € R%:x(0) = 0,y(0) = 0,2(0) > 0}.

Therefore, the solution of the system (3) exists and is unique.

Theorem (1): All solutions of the system (3) initiating in R3 are uniformly bounded.

Proof: From the first equation of the system (3), we have

dx

- SX (1—x).

Then, it is obtained that sup x(t) < 1. Consider M(t) = x(t) + y(t) then
M dx

u; dy
= — —_— <
” dt+u4dt_x(1 X))+ ugx — ugM,

Therefore, for all t > 0, it is observed that M(t) < (1 + ﬁ) =14.
8
Now, consider the function N(t) = x(t) + %y(t)+ « z(t), then the derivative of N(t) can
4

be written as:

ES x(1—- x)+u8x—u8N+u82(1— Az),

u9u10+ Uizt T1)u12

where A = —[ ugl, which is positive provided that

e +_T)
11 11

Uu.
Uglyg + (u11 + = Tl) Ugp > Ug (u11 + —u“ Tl).
1 1
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Therefore, by using the maximum values of the logistic terms and that for the variable x, it is
obtained that

dN 1 ug
— 4+ ugN<-+4+u —.
dt+ 8 —4+ 8+4A

.- (l+u8+ﬁ)
Hence, for all t > 0, it is observed that N (t) < ‘*11—‘“‘

3. Existence of equilibrium points and local stability

In this section, the existence of equilibrium points of the system (3) is carried out. Then the
linearization technique is used to investigate the local stability for each of them. Notes that,
there are at most six non-negative equilibrium points of the system (3), these points are
described as follows:
e The trivial equilibrium point E, = (0, 0, 0) always exits.
e The first single-species equilibrium point E; = (x;, 0, 0) always exits, where
—1+ T+ dug
—m (4)
e The second single-species equilibrium point E, = (0,0, z,), where z; > 0, exists provided
that the following condition holds.

= T,, thus the proof is done.

x1=

Uy = u9u101:i11u12. (5)
e The fish-free equilibrium point that denoted by E; = (%, y,0), where

- _ 1 u4f

Y= u_7[1+u2f2 B ug], )

while, x is a positive root of the following six-order polynomial equation:

—uduzu, X0 —udu,x° + (Udu, — 2uyusu, )Xt — 2uyu, i3 .

+ Uty + UgUUg — UsUy)X? — (Uy + U U)X + (u; + U ug) = 0. 7

Clearly the fish-free equilibrium point exists uniquely in the positive quadrant of xy —plane
provided that the following conditions hold:

u4f
Ug < 1+ u, %2’ (8a)
2u, + 22288 <y, (8h)

e The zooplankton-free equilibrium point that denoted by E, = (x4, 0, z;), where x; is given
by equation (4) and z; > 0, exists uniquely in the positive quadrant of xz —plane under
condition (5).

° The coexistence equilibrium point Es = (x*, y*, z*), where
2
x _ UoUugo— uzp(Ug—u12) 1+ ugy” [ ugx” * ]
= Lzt = —(u ug) |,
y Ug— Up2 ( us ) 1+ upx*? (u7y" + ug)

while x* is a positive root to the following fourth order polynomial equation:
—uyuz(ug — 1112)95*4 — Uy (ug — u12)x*3 + (uo — uszx)(u; — us)x*z (10)
—(ug — us)x™ + (U9 — ugp) (14 ugugq) — Uslguyy = 0.
Obviously, the coexistence equilibrium point exists uniquely in the interior of R, 3, provided
that the following conditions hold.

1
0 < uyq(ug — Ugp) < Uglyg < (Ug — Ugp) (u_1+ u11)’ (11a)
U, < us, (11b)
(uyy™ + ug) < # (11c)

Now, to investigate the local stability at each of the above equilibrium points the Jacobian
matrix is determined and then their eigenvalues are found. The equilibrium is said to be local
asymptotically stable if and only if all the eigenvalues have negative real parts. However, it is
unstable if there is a positive real part eigenvalue. Finally, it said to be non-hyperbolic
equilibrium point if there exists zero real part eigenvalue and then the linearization does not
applicable in this case.
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For the trivial equilibrium point E, = (0, 0, 0), the Jacobian matrix can be written as:

1 0 0
/ww=0-msol (12a)
O 0 0
Thus the eigenvalues of J(E,) are given by:
101 = 1 > 0, AOZ == _u8 < 0, and Ao3 = 0 (12b)

Clearly, the existence of positive eigenvalue ensures that the trivial equilibrium E; is unstable
point.

The Jacobian matrix at the first single-species equilibrium point E; = (x4, 0,0) can be written
as:

—x1(1+2uzx;) — %
J(Ey) = 0 X o ol (13a)
14 uyx? 8
0 0 0

Thus the eigenvalues of J(E;) are written as:
111 = —x1(1 + 2“3 xl) < O, 112 = 1_?‘5:19(% — Ug, and 113 = 0. (13b)

The existence of zero eigenvalue of J(E;) leads to that, the first single-species equilibrium
point E; is a non-hyperbolic point. Therefore, the stability of the equilibrium point E; can be
studied using the Lyapunov method provided that the second eigenvalue is negative too.

The Jacobian matrix at the second single-species equilibrium point E, = (0,0,z;) can be
written as:

1 0 0
JE) = |0 st e) 0| (142)
0 9lU10 Z1 0
Upq?
Thus the eigenvalues of J(E,) are determined by:
121 = 1 > O, 122 = _(u521 + ug) < 0, and Az3 = O (14b)

Clearly, the existence of positive eigenvalue ensures that the second single-species
equilibrium E, is unstable point.

For the fish-free equilibrium point E; = (x, y, 0), the Jacobian matrix can be written in the
form:

— 2u1u2f)7 — ulf
|—x [(1+ uzfz)z - ( 1 + 2u3 x )] - 1+ quz 0 ]
J(Es) = wsy(1- upx?) YUY | (15a)
(1+ uzfz)z 7y 1+ u6y32
- 0 0 0

Clearly, the characteristic equation of J(E3) can be written as

AA%+ DA+ D,) =0, (15b)
where

_ = =\ 2UqUx XY —
Dy =x [( 14+ 2uzx) Ur w2 uzfz)z] + u,y.

D, = u, %y [( 1+ 2uy ¥ ) — SateXy ] + (52 )(”“y(l‘”z’zz)).

(1+ uyx2)2 1+ uyx2 (1+ uyx2)2
Clearly, there exists a zero eigenvalue given by A;; = 0, which ensures that the fish-free
equilibrium E5 is a non-hyperbolic point. While the other eigenvalues are the roots of the
second order polynomial equation that given in equation (15b), and can be written as

-D;— }012—402 -Di+ }012—4D2
Ay =——— — (15c)

Obviously, the eigenvalues A3,, and 15, have negative real parts provided that the following
sufficient conditions hold.

,132=

2178



Talib et al. Iragi Journal of Science, 2022, Vol. 63, No. 5, pp: 2173-2193

2u1u23?37 —
Tr? < (14 2uzx). (15d)
u,x% < 1. (15e)

Note that, since the equilibrium point E; is a non-hyperbolic point with simple zero
eigenvalue and two negative real parts eigenvalues under the conditions (15d)-(15e), then the
stability of E5 can be studied using other methods e.g. Lyapunov method.

Now the Jacobian matrix of the system (3) at the zooplankton-free equilibrium point that
denoted by E, = (x4, 0, z;) can be written by:

u1x
[_xl(l + 2u3 xl) - #2;12 0}
UgX
J(Es) = 0 e~ (W71t e) - 0) (163)
0 u91;120212 0
11
Direct computation gives that the eigenvalues of J(E,) are given by
141 = _xl(l + ZU3 xl), 142 = %:;12 - (u521+ ug), 143 = 0 (16b)
Here, the eigenvalue A, is negative provided that the following condition holds.
e < (uszy+ Ug). (16c)
241

However, the existence of zero eigenvalue makes the zooplankton-free equilibrium point non-
hyperbolic point. Similarly, point E,can be studied using the Lyapunov method.

Finally, the local stability conditions of the coexistence equilibrium point are established in
the following theorem.

Theorem 2: The coexistence equilibrium point Es = (x*,y*, z*) of the system (3) is locally

asymptotically stable provided that the following conditions hold:
2U U XY

> < (14 2uzx™), (17a)
(1+ uzx*?)
ZUstey 7 Uy, (17b)
(1+ ugy*?)
u,x*? < 1. (17c)
Proof. The Jacobian matrix at the coexistence equilibrium point can be written as:
J(Es5) = [kij]3x3’ (18a)
where
— ot [BaMeX Y . - WX -
ki1 =x [(1+u2x*2)2 (1+2ugx )]1 ki = T2 ki3 =0,
Ko = u4y*(1—u2x*2) Koo = v 2UsUgy*Z* —u k _ usy”*
21 _—(1+u2x*2)2 1 K22 =Y —(1+u6y*2)2 7 Res T T T 7
UgUqpZ”
k31 =0, ks, = m, 33 = 0.
The characteristic equation of the J(E5), is given by:
B+ K22+ KA+ K3 =0, (18b)
where

Ky = —(kq1 + k22),
Ky = kyy kyp — kazksy — kaikiz
K3 = ky1ka3ks),
while, A= KK, — K5 = —(kq1 + kap)lki1 kaz — kaikqz].
It is easy to verify that, the conditions (17a)-(17c) guarantee that K; > 0, K3 > 0, and A> 0.
Hence, according to the Routh-Hurtwitz criterion all the eigenvalues of J(E5) have negative
real parts. Therefore, the coexistence equilibrium point is locally asymptotically stable.
4. Persistence
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In this section, the persistence of the system (3), which means the survival of all the species
for all the time, is investigated. Before that the dynamics in the interior of boundary plane are
studied using Bendixson - Dulac criterion [17].

Obviously, the system (3) has two subsystems belong to xy —plane and xz —plane
respectively. These subsystems can be written respectively as following.

d
T=x|(1- 0 - 25— wx?| = piey),

(19a)
d
d_)t/ - [1+u::x2 - u7y_u8] = p2(x,y).
And
%:x [(1-x)— uzx?] = p3(x,2),
(19b)

dz _ UgeZ) _
E =Z [UQ (Z Upq ) ulz Z] - p4_(x, Z).
Now, in order to investigate the existence of periodic dynamics in the Int.R,? of the
xy —plane, define the Dulac function as H;(x,y) = % that satisfies H(x,y) > 0 and C?

function. Moreover, straightforward computation gives that:

= 1m x| Hypy = L2y
Hyp, = y[l X7 Tz~ WX Hpa = x ez — W7V T Y]
Hence

_ 0(Hypy) | 9(Hy py) _1[_ _2ugliz Xy ]_&
Axy) = =3P+ =P = Wr ey 2Us ¥

Accordingly, A(x, y) does not identically zero and does not change sign in the Int. R..* of the
xy —plane under the following condition:
2uquy x 1+2uz x uy
(1+ uyx2)2 y + X (20)

Therefore, by using Bendixson - Dulac criterion, there is no closed curve lying in the Int. R, 2
of the xy —plane for all the trajectories satisfying condition (20). Hence, according to the
Poincare Bendixon theorem [17], the unique equilibrium point in the Int.R,* of the
xy —plane that given by (x, y) will be a globally asymptotically stable whenever it is locally
asymptotically stable.

Similar argument can be obtained regarding to the nonexistence of closed curve in the

Int.R.* of the xz —plane for the second subsystem (19b) using the Dulac function as
follows H,(x,z) = é It is observed that, there is no periodic dynamics in the Int. R, * of the

xz —plane provided that
Uglqp +u11u12. (21)

Ug <
9 U11

Indeed, the zooplankton-free equilibrium point will be globally asymptotically stable when
the equality occurs in the condition (21).

Theorem 3: Assume that there are no periodic dynamics in the boundary planes. Then the
system (3) is uniformly persistent provided that the following conditions hold

ug < ﬁ (22a)
(1+2us%) <(fj%y) (22h)
1 < u,x?, (22¢)
Uszy + ug < ﬁ (22d)

Proof. Consider the point P in the Int.R3 and O(P) is the orbit through P. Let the omega
limit set of the O(P) is given by 2(P). Clearly, 2(P) is bounded, due to the boundedness of
the solution of the system (3). The proof will follow if we can prove that all the boundary
equilibrium points do not belong to the 2(P).
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Now, assume that E, € 2(P), then since E, is a saddle point, then by Butler-McGhee lemma
[18], P cannot be the only point in 2(P), and hence there are at least one other point, say k;,
such that k; € w*(E,) N 2(P), where w®(E,) is the stable manifold of E,. Since w®(E,) is
the yz —plane (or at least y — axis) and the entire orbit through k,, say O(k;), is contained in
N(P). Then, if k, is on either boundary axes of yz —plane, it is obtained that the positive
specific axis that containing k; is contained in Q2(P) which is contradicting to its
boundedness. Otherwise, k; belongs to the interior of yz —plane and since there is no
equilibrium point in the interior of yz —plane, the orbit through k; that contained in 2(P)
must be unbounded which leads to contradiction too. Thus we obtain that E, & 2(P).
Now, since the conditions (22a) guarantees that E; is a saddle point, whiles E, is already
saddle point, and the conditions (22b) and (22c) guarantee that E is a saddle point, however
condition (22d) guarantees that E, be a saddle point. Hence using similar arguments as that
used for the point Ey, it is observed that all the boundary equilibrium points do not belong to
the 2(P). Therefore, the proof is done.
5. Globally stability
In this section, the dynamics of the system (3) is further investigated with the help of
Lyapunov function. The objective is to specify the basin of attraction for the locally
asymptotically stable equilibrium points and the non-hyperbolic point.
Theorem 4: The first single-species equilibrium point E; = (x;,0,0) of system (3) is a
global asymptotically stable if the following condition hold:

U x; < ug, (23a)

Ug < Ujy. (23b)
Proof. Consider the following scalar function N; = (x — x; — x; lnx%) +y+z
It is clear that N;:R,* > R, so that N;(E;) =0 and E;(x,y,z) >0 for all {(x,y,2) €
R.%x>0,y>02z>0,(x,v,2) # E; }. Hence, N, is a positive definite function. Now, by
differential N; with respect to time and simplify the result it is obtained that

= [+ up ()] (- x)? - 2

dt 1+ upx?
U1 X1y UsZy

2
— Uu —Uu
1+ uyx? 1+ ugy? 4 8y
UgllyoZ?

Uty

+ ugz? — — Uy z2.

Hence,

dN
d—tl < —[14 usz O+ x)](x — x9)% — (ug — usxy)y — (ugy — ug)z>.

Therefore, using the conditions (23a)-(23b) leads to % is a negative definite. Accordingly,

the function N, is strong Lyapunov function, hence the first single-species equilibrium point
E; is globally asymptotically stable.
Theorem 5: The fish-free equilibrium point E5 = (X, ¥, 0) is an asymptotically stable in the

interior of sub-region of R, 3, that satisfies the following conditions:
U Uy (x+ x)

(1+ upx2) (14 uyp%2) <1+ uz(x+ %), (249)
UgU1g

Ug < Uy + ity (24b)

(a12)* < 2a;11u7, (24c)

(@23)? < 2a33u7, (24d)

where all the symbols a;;; i,j = 1,2,3 are given in the proof.
Proof. Consider the scalar function N; = (x - X - fln%) + (y —y—yln X_) + z.
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It is clear that N;:R,®> - R, so that N3(E3) = 0, and Ns(x,y,z) > 0 for all {(x,y, Z) €
R,%x>0,y>0,z>0,(x,y,z) # E3 }. Hence, the function N; is positive definite
function.

Now by differentiate N; with respect to time, and then simplify the result, it is obtained that

% —ay(x — ©)* + a,(x— D — y)——(y y)?
_7(3’_ Y)? — a3 2(y — ) — az37?,

UUL Y (x+ %) _ug (1—upx®)—uq (1+ upx2)

a =
(1+ upx?) (1+ uy2)’ 12 (1+ upx2)(1+ up%2)
UgU10

1+ u U11+ y'
Hence, usmg the above conditions (24a)- (24d) gives

dN3< Vag; (x— %) — f()’ }’)] f(y y)-h/E]

Clearly, F IS negative definite and hence N; is a strong Lyapunov function. Therefore, the
fish-free equilibrium point if an asymptotically stable in the region that satisfies the above set
of conditions.

Theorem 6: The zooplankton-free equilibrium point E, = (x4,0,z;) is an asymptotically
stable in the interior of the sub-region of R, 3, that satisfies the following conditions:

where a1 =1+ us;(x+ %) —

ay3 = s and azz = Uy, —ug +

U;x; < Ug, (25a)
UgU10Z1 Us

< , 25b

Uqq? 1+ UG(Z—:H)Z ( )

022(z — 21)* < 071 (x — x1)*. (25¢)

where all the symbols g, and a,, are given in the proof.
Proof. Consider the function N, = (x — x; — x3 lnxi) +y+(z—2z1—24 lnzi) .
1 1

It is clear that N,:R,> > R, so that N,(E,) =0, and N,(x,y,z) >0 for all {(x,y,2) €
R,%:x>0,y>0,z>0,(x,y,z) # E, }. Hence, the function N, is positive definite
function. Now by differentiate N, with respect to time, and then simplify the result, it is

obtained that.
aNs

= —[1+ us (x4 x)](x —x1)% = (ug — usxy)y

_ — _UolUio — 2
[u12 Ug + (u11+y)] (z—-1z)

_ [ _ __UolUj0Z3 ]
) 1+ ugy? ) (u11+ Y)uas o o )
Obviously, the last term is negative under the condition (25b), hence it is obtained that:
d N,
< =011 (x —x1)? — (Ug — Uy ;)Y + 022(z — 2)%,

dt
where g;1 = [14 uz (x + x,)] > 0, and oy, = ug — ——22
(u11+y)

4

the existence condition (5). Therefore, the derivative ‘Z—I\t’ IS negative definite under the

conditions (25a) and (25c). Hence N, is a strong Lyapunov function. Therefore, the
zooplankton-free equilibrium point if an asymptotically stable in the sub-region that satisfies
the above set of conditions.

asymptotically stable then it has a basin of attraction in the interior of R, > that satisfies the
conditions:

— Uy, . Clearly, g,, > 0 under

U uy”
Tr e < Us (26a)
Usugz (y+y*)

Tty U7 (26h)
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Ugly Y™
Yo < Uizt o (26c)
(12)% < 211159, (26d)
(U23)? < 2pa2033, (26e)

where all the symbols y;;; i,j = 1,2,3 are given in the proof.
Proof. Consider the following scalar function

_ * * X * * y * * z
Ns = (x— X" —x ln;)+(y— y =y ln;)%—(z— zt—z ln;).
It is clear that N5:R,> > R, so that Ns(Es) =0, and Ns(x,y,z) >0 for all {(x,y,2) €
R,%x>0,y>0,z>0,(x,y,z) # Es }. Hence, the function N5 is positive definite

function. Now by differentiate Ny with respect to time, and then simplify the result, it is

obtained that:
ANs <
dt

(y - y")2

—p1(x = x)2 = (x — xDN@ — y*) — Uz

(v -y , ,
—lop = 3 (2 = 2y — ") — pas(z — z )2,

v _ usuez"(y+y")
where =1 ( “tts ) X X =Uu T
U1 + T+ wpx? (x+ x7), U = uy — Tt ugy?
_ usuez’(y+y")
=—"—(ux* Uy X =Uu e
Uiz = 1+ux*2( 1X7 + ULX), oy = Uy — T+ ugy?
*2
UglqgY” Us UsUeY UgUj0Z
=Ujp; —Ug+ = - .
Hs3 12 o (ug1+ Mg+ y*)’ Has 1+ ugy*® 1+ ugy*? g1+ y) g+ y*)

Hence, using the above conditions (26a)-(26e) , it gives
2 2
f%s—Hmnwam+fﬁ@—yﬂ-{fﬁw—yahm%@—fﬂ.

Clearly, 2 is negative definite and hence N: is a strong Lyapunov function in the sub-region

of R,? that satisfy the conditions (26a)-(26e). Therefore, the coexistence equilibrium point is
an asymptotically stable for any trajectory starting from a point in the region satisfies the
above set of conditions.

6. Local bifurcation analysis

In this section, the sensitivity of the dynamical behavior near the locally asymptotically stable
equilibrium points of the system (3), in which a specific parameter is varying, is investigated
using the Sotomayor’s theorem for the local bifurcation [17]. The necessary but not sufficient
condition for the local bifurcation to occur is the existence of a non-hyperbolic equilibrium
point. Therefore, the candidate bifurcation parameter is selected so that the equilibrium point
will be non-hyperbolic at a specific value of that parameter.

Now, we rewrite the system (3) in the matrix form as follows :

% =F(Y),Y =(xy2)", and F = (xfy, yf2, 2f3)". 7
Then the second derivative of F with respect to Y can be written as:
DXF(Y,0)(V, V) = [bir s, -

where V = (v, v,,v3)T any vector and 6 is any parameter with

2uquy%x3y—6uuxy uluzx
b = [2 — — 6uUzx|vc—2 12%%
11 (1+ uyx2)3 3 1 (1+uzxz)2 1¥2:
2u22u4x3y—6u2u4xy 2 —Up Uy x?
b, = [ + 2 ===V
21 (1+ uyx2)3 (1+u2x2)2 172
2usug?y3z—6usugyz Us—UsUpY ,
— + 2u, | vy, — 2 |—>—"—" v,
[ (1+ ugy?)3 7 2 (1+uey?)? 273

2U U1022 2 UgU10Z UgU190 2
b :[—9—]17 + |1 4——=|vv; +|2uyg — 2———2u 1%
31 (u11+y)3] 72 (u11+y)2] 7273 9 Uity 1273
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Theorem 8. Assume that the conditions (17b) and (17c) hold, Then the system (3) undergoes

a saddle node bifurcation near the coexistence equilibrium point as the parameter u; passes
U U Y"

through the value u; * = ﬁ - % provided that
1+ uyx*

By g (29)
(1+ uzx*z)3 '
Proof. According to the form of the determinant of the Jacobian matrix of the system (3) at
Es that is given by K; = ky1k,3k3,, in equation (15b). It is easy to verify that K; = 0, when
u; = u3*. Therefore, the characteristic equation of the J(Es) that is given in (15b) has a zero
eigenvalue, and hence the coexistence equilibrium point becomes a non-hyperbolic point and
the Jacobian matrix at (Es, u3* ) can be written as:
]* = [kij]3x3'
where all elements of J* are the same that are given in equation (15a) except k,;(u3*) = 0.
Let the vector V; = (vy1,v,1,v31)7 be the eigenvector corresponding to the eigenvalue
T
As* = 0 of the matrix J*. Then, direct computation gives that V; = (v11,0, (— %) 1711) ,

23
where v;, be any non-zero real number.

Let the vector V, = (v1,, V55, v3,)7 be the eigenvector corresponding to the eigenvalue
T
As* = 0 of the matrix J*". Then, direct computation gives that V, = (vlz,o, (— %) U1z) :

32
where v;, be any non-zero real number.

Now since ;TF =FE, = (=x300). Then it is obtained that:
3
VzTFu3 (Es,uz”) = —x"°v;, # 0.
Moreover, substituting the value of (Es, u3*) and V; in the equation (28) gives that:
D?F(Es,uz")(Vy, V1) = [bi1 I3x1

*3 * * *
* 2u U 2x* Yy —6uuyx*y
where by, = [2 — —=
(1+ upx*?)
bt = 2up2 Uy x 3y —6u us Xy " 2
21 = 73 V117,
(1+ upx*?)

3
8uuy’x* y*

(1+ uzx*2)3

- 6u3 *x*] Ullz = [5 - Ullz,

U1+ y*
Therefore, it is obtained that:

V,TD?F (Es us*)(Vy, V) = [5 -

by = [Zug _ o Mot _ 2u12] <(— :—Z) v11>2 =0.

Suuy2x*3y*
(1+ uzx*2)3
Clearly, V," D?F(Es,u3*)(Vy,V,) # 0 under the condition (29), and hence the system (3)
undergoes a saddle node bifurcation in the sense of Sotomayor.

7. Numerical simulation

In this section, the global dynamics of the system (3) is studied numerically. The system (3) is
numerically solved using four step Predictor-Corrector methods for different sets of
parameters and different sets of initial conditions. The objective is to complete the vision of
the dynamic behavior of the system (3) especially when the parameter values are varying. It is
observed that, for the following set of hypothetical parameter values, the trajectory of the
system (3) approaches asymptotically to the coexistence equilibrium point, starting from
different initial conditions. This is shown in figure (1).

2
V11" V12.
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Figure 1-The trajectory of the system (3) approaches asymptotically to a global stable
coexistence equilibrium point E; = (0.74,0.5,0.06) for the data given by (30) starting from
different points. (a) 3D attractor. (b) Trajectories of Phytoplankton versus time. (c)
Trajectories of Zooplankton versus time. (d) Trajectories of Fish versus time.

u; =09,u;, = 4,uz = 0.2,uy, = 0.6,us = 0.5, u5 = 6,u; =0.15,
ug = 0.05,ug = 0.6,u;0 = 0.5,uy; = 0.1, uy, = 0.1. (30)

However, for the following hypothetical set of parameters in which the toxicity efficiency is
decreasing throughout the food chain levels, the system (3) undergoes a chaotic attractor. This
is shown in figure (2).
u, =09,u, = 4,u3 = 0.1,uy, = 0.6,us = 0.5,u5 = 6,u;, =0.05,
ug = 0.08,uy = 0.6,u;, = 0.5,uy; = 0.1, u;, = 0.01. (31)

@ ®
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3 32 34 e 38 4
Time . 105

Figure 2-(a) The trajectory of the system (3) approaches a chaotic attractor for the data given
by (31) with ug = 0.05. (b) Trajectories of Populations versus time.
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According to the chaotic attractor in figure (2), the system (3) is sensitive to varying in the
parameters therefore in the following the bifurcation diagrams as a function of some
parameters are drawn in order to specify those parameters how have vital effects on the
dynamical behavior of the system (3).

It is observed that, the system (3) is sensitive to varying in the u; so that the system
approaches to different attractors as varying including periodic, chaotic, and then return to
asymptotic stable point, see the bifurcation diagram given in figure (3). However, figure (4)
shows clearly the rout to chaos through periodic and then periodic doubling after that the
system (3) approaches to chaotic. Finally, figure (5) shows that the as the parameter u,
increases the system approaches to the coexistence equilibrium point and then the extinction
in the Fish population occurs and the system approaches to the fish-free equilibrium point.

5 T T T T

2.5

Figure 3- Bifurcation diagram of the system (3) using data (31) in which the maximum value
of z is drawn as a function of u;.
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Figure 4-Transition of the trajectory from periodic to chaotic using data (31). (a) Periodic
attractor when u; = 0.75. (b) Trajectories of Populations versus time for Fig. (4a). (c)
Chaotic attractor when u; = 1.1. (d) Trajectories of Populations versus time for Fig. (4c).
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Figure 5-(a) The system (3) approaches to asymptotically stable coexistence point when
u, = 2.25 with rest of data as in (31). (b) Trajectories of Populations versus time for Fig.

(5a).

Zooplaniton 0 0 Phytoplankton

Now, the bifurcation diagram of the system (3) as a function of varying the parameter u, is
drawn in figure (6). However, figure (7) shows for the typical values of u, within the range of
bifurcation diagram given in figure (6) the existence of exchange between the chaotic and
periodic dynamics as the parameter varying. While increasing the parameter u, > 6.4 leads
first to approach the system to coexistence equilibrium point and then extinction of Fish
population.

25 T T T T T

1.5¢

Max (z)

05r

0
1 2 3 4 5 5 7

Figure 6- Bifurcation diagram of the system (3) using data (31) in which the maximum value
of z is drawn as a function of u,.
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Fizh

1 0.5 0 L S A
Zooplankten 0 O Phytoplarkton 1.5 175 2

Figure 7- Transition of the trajectory from chaotic to periodic using data (31). (a) Chaotic
attractor when u, = 1.74. (b) Trajectories of Populations versus time for Fig. (7a). (c)
Periodic attractor when u, = 2. (d) Trajectories of Populations versus time for Fig. (7¢).

Further investigation for the effect of system’s parameters on the dynamical behavior of the
system (3) is done using bifurcation diagrams as shown in the figures (8), figure (9), figure
(10), and figure (11) for the varying the parameters us, ug, u, and u,, , respectively.

0.7

Figure 8- Bifurcation diagram of the system (3) using data (31) in which the maximum value
of z is drawn as a function of u;.
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o Z 4 & g 10

Figure 9-Bifurcation diagram of the system (3) using data (31) in which the maximum value
of z is drawn as a function of u,.
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Figure 10- Bifurcation diagram of the system (3) using data (31) in which the maximum
value of z is drawn as a function of u,.
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Figure 11-Bifurcation diagram of the system (3) using data (31) in which the maximum value
of z is drawn as a function of u,,.
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According to the bifurcation diagrams (8-11), it is observed that increasing the parameters
us, Uy, and u4,, those stand for the toxicity efficiency of the Phytoplankton, Zooplankton, and
Fish population respectively, reduces the chaotic and then leads to stabilizing the system (3)
at the coexistence equilibrium point for the small range, after that the system faces extinction.
On the other hand, from the bifurcation diagram given in figure (9), increasing the parameter
ue that stands for defense efficiency of Zooplankton against Fish, makes the system more
chaotic and the system still persistent. In the following, the varying of the other parameters of
the system (3) is investigated by solving the system (3) numerically for the set of parameters
given by equation (31) and then drawing the obtained trajectory at a typical value of these
parameters to understand their effects on the dynamical behavior of the system (3), see figures
(12), (13), (14), and (15) for the parameters u,, ug, uqg, and u,, respectively.
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Figure 12-The trajectory of the system (3) for the data (31) with different values of u,. (a)
The system (3) approaches to fish-free equilibrium point when u, = 0.3. (b) Trajectories of
the Populations versus time for Fig. (12a). (c) The system (3) approaches to chaotic attractor

when u, = 0.8. (d) Trajectories of the Populations versus time for Fig. (12c).
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Figure 13- The trajectory of the system (3) for the data (31) with different values of ug. (a)
The system (3) approaches to coexistence equilibrium point when ug = 0.08. (b) Trajectories
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of the Populations versus time for Fig. (13a). (c) The system (3) approaches to fish-free
equilibrium point when ug = 0.1. (d) Trajectories of the Populations versus time for Fig.
(13c).
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Figure 14-The trajectory of the system (3) for the data (31) with different values of u,. (a)
The system (3) approaches to chaotic attractor when ug = 0.5. (b) Trajectories of the
Populations versus time for Fig. (14a). (c) The system (3) approaches to coexistence
equilibrium point when ug = 0.01. (d) Trajectories of the Populations versus time for Fig.
(14c).
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Figure 15- The trajectory of the system (3) for the data (31) with different values of u,,. (a)
The system (3) approaches to periodic attractor when u,, = 0.9. (b) Trajectories of the
Populations versus time for Fig. (15a). (c) The system (3) approaches to coexistence
equilibrium point when u;, = 1. (d) Trajectories of the Populations versus time for Fig.
(15c). () The system (3) approaches to fish-free equilibrium point when u,, = 1.5. (f)
Trajectories of the Populations versus time for Fig. (15e).
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According to the figures (12)-(15), it is observed that the dynamics of the system (3) are
highly affected by varying parameters and different types of attractors can be obtained.
Finally the parameters us and u,; have a quantitative effect on the dynamics of the system
(3), but the behavior is still chaotic.

8. Conclusions

In this paper, an aquatic food chain model within a contaminated environment is
suggested. Since the species at the first and second levels have a capability of group defense,
the consumption of food through the predation process is considered as the Holling type-1V
functional response. The pollution affects directly the phytoplankton individuals, while it
affects indirectly the zooplankton and fish individuals. Finally, it is assumed that the fish at
the upper level grow logistically and reproduce sexually using a modified Leslie—Gower type.
It is observed that system (3) has at most six equilibrium points, some of them are the non-
hyperbolic point. The conditions of local stability for hyperbolic equilibrium points are
determined. The basin of attractions for each equilibrium point is specified using a suitable
Lyapunov function. The persistence of the system (3) is also investigated. It is observed that
the system (3) undergoes a saddle-node bifurcation near the coexistence equilibrium point
too. Finally, with the help of numerical simulation, it is observed that there are rich dynamics
in the proposed food chain model including periodic and chaos. Now, the obtained numerical
simulation results are summarized as follows.
Although the system (3) has a globally asymptotically coexistence equilibrium point for
different sets of parameters, it has rich dynamics as those parameter values vary including
periodic and chaos, especially for low values of the toxicity efficiency. According to the
bifurcation diagrams, system (3) approaches chaotic attractors through the cascade of periodic
doubling. It is observed that decreasing the maximum consumption rate of the phytoplankton
population leads to periodic dynamics in the interior of positive octant while increasing this
parameter leads first to chaotic attractor for a specific range and then the system (3) stilled at
coexistence equilibrium point before losing the persistence through extinction in the fish
population. The varying of the defense efficiency of phytoplankton against zooplankton has a
clear effect on the dynamics so that the system alternates their dynamics between periodic and
chaotic for a large range while increasing it leads to persistent at a periodic dynamics in the
positive octant. Moreover, the bifurcation diagrams as a function of the coefficients of
toxicity efficiency show clearly that increasing the values of these parameters above specific
values leads first to stabilizing the system (3) and then extinction in the fish population.
However, increasing the defense efficiency of zooplankton against fish leads to destabilizing
of the system (3) and the solution approaches chaotic dynamics.
On the other hand, it is observed that decreasing the maximum per capita growth rate of the
zooplankton population below a specific value makes the system (3) face extinction in the
Fish population and the solution approaches the Fish-free equilibrium point. However, system
(3) is still chaotic otherwise. Also, increasing the natural death rate of the zooplankton
population gradually makes the system (3) approaches asymptotically to a stable coexistence
equilibrium point, then it faces extinction in the Fish population and the solution approaches
the Fish-free equilibrium point. However, system (3) is still chaotic otherwise. On the other
hand, it is observed that the behavior of the system (3) is transferred from chaotic to
asymptotically stable at the coexistence equilibrium point as the growth rate of Fish by sexual
reproduction decreases. Finally, increasing the parameter u,,, which stands for the inverse of
the fish's preference rate of zooplankton, makes the solution of the system (3) transfer from
chaotic to the periodic, asymptotically stable at the coexistence point and then extinction in
the fish population and the solution approaches Fish-free equilibrium point.
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