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Abstract

The aim of this paper is to introduce and investigate new subclasses of regular
functions defined in . The coefficients estimate|a,|, |asland |a; — paZ| for
functions in these subclasses are determined. Many of new and known consequences
are shown as particular cases of our outcomes.
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1. Introudction
Let A be the class of all regular functions f in the unit disk U = {z: |z| < 1},of the following form
@ =z + I an, (L.1)
and normalized by f (0)=1and f (0) =0 .
A function f(z) € A is subordinate to regular function F(z) if there is Schwarz function £(z) which
is regular satisfying £(0) =0,|£ (z)|<1 in U, and
f(2) = F(£(2)),
in this case we write
f<Forf(z)<F(z) (ze. (1.2
Furthermore, if the F is univalent inl, then f < F is equivalent to f(0) = F(0) and f(U) c
F (U).For more details on the notion of subordination, (see [1]).
Let f (z) and F (2) be regular in the open unit diskll. Then we say that f is majorized by F in U (see
[2]) and write
f(z) << F (2) (z €V),

if there exists a regular function ¢(z) in U, such that |¢ (z)| <1 andf(2) = ¢ (2) F (2) (z €W).
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Ma and Minda [3], defined the classes as follow:

K():= {h e A: 1+ZZ((§) <¢(2); zeu}
L zh (2) .
S#(9): = {h A: h@ <0(2);ze u},

We suppose that the function ¢(z) is a regular and univalent with a positive real part in the disk U,
satisfying ¢(0) = 1, ¢'(0) > 0 and ¢ (U) is starlike region with the respect to 1 and symmetric with
the respect to the real axis. The classes K(¢) and S*(¢), are called convex of Ma-Minda type and
starlike of Ma-Minda type respectively.
At this work, it is supposed that
#(2) =hqz + #oy2? + £3Z° + -

and

0(2) =1+d,z + dy z%4d5z3 + -+, d>0,
where ¢ is a regular in U and ¢(0)=1. Motivated by the work in [4], we introduce the classes as
follows.
Definition (1.1).Let the class Zg(¢)(0 <P <1) consist of functions f ecA satisfying the

subordination condition
Bzf (2) [

Chaprem T A7) [f’(z) + 1] < 6@
Definition (1.2) Let the class £;(B,¢), (0<B<1,0<A<1) consist of functions f €A satisfying the
subordination condition

of @ [F@1° 2f ()

1-nZ2 [ . ] +x[m +1] <(|>(z).
Definition (1.3) Let the class B,(¢) (0 <a <1 ) consist of functions f €A satisfying the
subordination condition

#' @, f @D+ '@
70 T rorare < ¢
Definition (1.4) Let the class A (B, ¢) (a>0, B>0,0<y<1), consist of functions f €A satisfying the
subordination condition
29 [1+ 29 i@ -1 <@
In this paper, the Fekete-Szego inequality for the functions in these subclasses are obtained. More
details of Fekete-Szego coefficient for various classes (see [5, 6, 7, 8, 9])
To prove our results, we shall use the next lemma.
Lemma (1.5) [9].Let w be regular function normalized by |w(z)|<1, w(0)=0, and
W(2)= w1z + wyz? + w3z® + -

Then

lwy, — pwi|< max {1,|u/}, where p is complex number.
2. Main Results.

Theorem (2.1). Let f €A belongs to Zg(¢) . Then

B3-2B%+24p-24 d,

|a'2| < (2—B2)? 1 d,

max{l

J

d, H(6-3p-p*)+B>-2p%+24p-24 . d,
| :ua’Zl = |6-34-B2| maX{l | (2—B2)? dl d, }

Proof: Sincef e Zg(¢), there exist regular function w with [w(z)| < 1and w(0)=0 such that:

e 19al S
and
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Ot (1-p[L2+1] = o(w(2)

(1-Pz+pf (@) @
Since
o= BH(2B—?) arz+{(3B-p7)as-B(2— BHIZ3] +
and
zf (2)
(1- B)(f( =+ 1) =1-p+2(1 - Pa,z+6(1—P)(as-4a3)z? ...

from (2.4) and (2.5), we get the following
Bzf @ [ @ _
-pBr@ | S [f’(z> + 1] B
1+(2—p?) azz + [(6 — 38— B? )as — (24 — 244+ 2p*-p*)a3]z?

and
d(W(2) =1 + dywqz + (dywy+d, wy?)Z2...
Putting (2.6) and (2.7) in (2.3) and equating coefficient both sides, we get

d,w
a’2 = ZiB;
and
B3-2B%+24p-24 , 2
az = m [diwatdy wi? —— o di"wy ]
By using the well-known inequality, |w,| < 1, we obtain
d
la,| < ;2'
Further
2 B3—232+24—ﬁ—24 2 dq?w,?
as uaz; = 6— 3ﬂ B2 [d1W2+d2 Wl (Z_BZ)Z ] “(2 -B2)2

Applying Lemma (1.5) to
_(u(6-3p-B*)+B3-2p*+24p-24 . d, 2
|W2 { (2—-B2)? dy dl} W1 |

We conclude that

dq n(6=3p-B*)+p3-2p*+24p-24 .  d,
| .ua’Zl = l6-35-52| maX{l | (2-p2)? dl dq

For u=0, the above relation will give estimate of |as|.
Remark (2.2): For B=0, we have

Zo(9) = K(9),

}

Also for B=1, we have

Z,(9) =S(9),
In this case, & (¢) and S*(¢), were studied by Ma and Minda (see [3]).

We observe that on choosing 3 =% in previous theorem, we obtain the next corollary.

Corollary (2.3): Let f be in the class Z1(¢).Then
2

4
|a’2|< _dlv
99y | 4y

ol

dq

|as |<— max{l |

and
las — uas| <24 max{l }
Theorem 2.4)If f € A satlsfles

Bzf () o [F@
aporsrm T AR [f’(z> + 1] <),

|17 99d; d,

then
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3 2
|dz| P Bz,|d3|_|6 321 82| £ if_;;ﬁ =~ 1_3_?
and
d, u( 6-3p-p%)+p3-2p%+24p-24 d,
| — U 2| = |6=34-52 (2-p2)2 dl _d_l :

Proof: The required proof is obtained by setting w(z)= z in the previous proof.

Theorem (2.5) If f is given by (1.1) belong to £,(B, ¢) , then
ds

ol (2.8)
3 3 1 1
dy A ATA=3IA 4 -1 d;
|a3|§|ﬁ—7w+4-,1+2| max{l, (B-3p+A+1)? 1t d. ||
and
3 3 1 1
o d, A3 -1 p(pTiprasi)ds  d,
las — na; |S|ﬁ—7/w+4/1+2| max{l, (B-3Ap+A+1)2 dy (P-3A5+1+1)2 dq || (2.9)
Proof: Let f € £,(B, $).Then there exists a regular function w with w(0)=0 and |w(z)|<1 such that:
(1 - 0L Dy LD 4 1)1 = gw(2)). (2.10)
Since
2f @) f@O\pon @D | y1-p
A= f@ ( ) Mf() +1)

3 3 1 1 2 2
+(—-3A0+ A+ 1) a,z +[(f—7A+ 44+ 2)as +{ Eﬁﬂz +SAB— 3/1+Eﬂ2 +54—1}a; )]z
+o (2.11)

Putting (2.7) and (2.11) in (2.10) and equating coefficients both sides, we get

diwy
az = B3P+ A+1"
By using the well-known inequality, |w;| < 1, on a,, we obtain (2.8).
Also

2 _
az —paz; =

d (B3 A1 4. — MBTIpAIADA dy )| o
p=Tp+ai+2 |2 (f—31p+7+1)2 1 (f-31p+1+1)2 4, M
Applying Lemma (1.5) in previous relation, we obtain (2.9).
For u=0, in (2.9), we get the upper bound to |a;|.
Remark (2.6): Setting p= 0, and A=0, we have
Lo(0,) =S(9),
and for B= 0, and A=1, we obtain
L1(0,9) = K(¢),
These classes were introduced by Ma and Minda see [3].
For A=1, we get the class £ (B, d): =£L(,¢), and for =0, we obtain the class L, (B, $):=LA(¢), in this
case, we obtain the next corollaries.
Corollary (2.7): Let f be in the cIassL(ﬂ $), .Then

max{l |2(ﬁ22 jzzg_:' d,

as |_

d,
a-|<
| 2|_|2—2ﬁ| l6— 6,8|

d;
+5 }
And
22 +25-4 u(6-6pd, dy
las — 2|—|6 64 max{l | (2-2p)? dy = (2-2p)?2 _d_l}'
Corollary (2.8): Let f of the form (1.1), belong to the class £#(¢).Then

1 1

“F+>p-1 d

2 2 2
la 2|_|ﬂ+1l | 3|_Iﬁ+2l mex {1’

G Aty

all

and
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Theorem (2.10): If f € A satisfies

(1-2) Z;(/(? = (Z)] + [Z]f ((Z)) 1]1 ! « d(2),

| #“2|<|ﬂ+2| max {1.
Setting x:% in previous theorem we get the next corollary.
Corollary (2.9): Let f be in the class L1(B, ¢) .Then

5

d d Fr —ﬂ——

a2l lasis— {1 :
22 +=f 27z

d
173,

and

G zﬁﬂ toa

L

then
d
< L < L
|“2|—|ﬁ—3w+1+1|’ la'3|_|ﬁ—7/1ﬂ+4/1+2|

3 3 1 1
AP AA=3A Fop-1 L g2
(f-3A5+1+1)2 17 a

and
AP A3 04S F 4o f-1— (S~ A+ 4A+2) g _d

— 21< 2
23 '““ZL |5~ 7/w+4,1+2| ( (B-32p+1+1)2 Loa,

Proof: The required proof is obtained by setting w(z)= z in the previous proof.
Theorem (2.11) If f is given by (1.1) belong to B, (¢) , then

2] < Soary (2.12)
—-a—1 dz
|a3|<—max {1 |(2a+1)2 174, }
and
2 dy 2u+a’—a—1 dy
|as — ua3| < Zmax{1, |—(2a+1)2 — } (2.13)
Proof: Let f € B, (¢) .Then there exists regular function with |w(z)| < 1 and w(0) = 0 such that:
'@ | @D+ @ _
_ Tt Forarm - *WE) (2.14)
Since
'@, f @D+ @ _ 3 21,2
e +f(z)+azf @ = 1+2Q2a+ Dayz + 4[2a; —(1+o-a?)a3]z?. .., (2.15)
putting (2.7) and (2.15) in (2.14) and equating coefficient both sides, we get
_ diwy
a2 T2(2a+1)
By using the well-known inequality, |w;| < 1, on a,, we obtain (2.12).

Also

a2 =4 lta-a 2) _ #di’wi
Haz =% {WZ + ((2a+1)2 di + ) } 4(2a+1)?’

applying Lemma (1.5) to previous relation, we obtaln (2.13).
For u=0, the above will reduce to the estimate of|as|.

Remark (2.12): For a=0, 1, in Theorem (2.11), we have
Bo(9) =K (9),B1(9) = K(9),
This class was introduced by Ma and Minda see [3].
Putting o = % in previous theorem, we obtain the following corollary.
Corollary (2.13): Let f be in the classB1(¢). Then

d;

!

2
d d 5
la,| < las] < jmax{l, |Ed1 +

and
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gl

< ¢$(2),

|a; — na3| <3 max{ ‘ Sdy

Theorem (2.14): If f € A satisfies
i @ N f@+z2f @
f@ f@+eaf'@

then
d, a’-a-1
lay| < 22a +1)| asz| <
and
di 2u+a?—a—1 d,
las — paz] < 3 2a+1Dz dl"

Proof: The required proof is obtained by setting w(z)= z in the previous proof.

Theorem (2.15) If £ is given by (1.1) belong toA’, (B, ), then

dq
< 1
S wrapy 2 (2.16)
2d, 2d,((@+2B)%-3(a+4B)) 2d,
|a 3|—3|y|+4(a+3ﬂ) max{l | 2[y+(a+2p)]? S dy }
and
) 2d, 2d, ((a+2B)*-3(a+4p))+ud;, By+4(a+3f))  2d,
s ua2|53|y|+4(a+3ﬁ) max{1,| 2[y+(a+28)]? dy } (217)
Proof: Let f € A (B, $).Then there is a regular function w with |w(z)|<1 and w(0)=0 such that:
f @1 o1 :
Z2 1 +L2] +1vr @ -1 <o (2.18)
Since
f (2 zf (@) N 1=
[f( ] [ + f(z)] H1(f @ -1)=
1+((0+2B)+2y) a,z +§ [((0+2B)?-3(a+4P)) a5 +(4(o+3)+3y) as]z? +... (2.19)
Putting (2.7) and (2.19) in (2.18) and equating coefficient both sides, we get
—_ D1
a2 (a+2pB)+2)
By using the well-known inequality, |w;| < 1, on a,, we obtain (2.16).
Also
2 2d, (@+2B)?d;=3(a+4f)d; _ dp) o pdi*wi
a3~ Ha; = s Ve { 2(at 2P+ 2 al} 1™ Watzprizn?

Applying Lemma (1.5) to previous relation, we obtain (2.17).
For u=0, the above relation will reduce to the estimate of |as]|.
Remark (2.16): When y = =0, a=1, and ¢(z) = M in Theorem (2.15), then we get the
estimates in [10, Corollary (3.3)]. For y =0, Theorem (2.15) gives a special case of the estimates [11,
Theorem (2.7)], for k=1.
Taking a=1,=1 and y = 1 in Theorem (2.15), we get the following corollary.
Corollary (2.17): Letf be in the classA (¢). Then
k<, lag it max{1, [F2E - 22|},
18d;—15+19ud;  2dp }
32 dqy 1)

dq
For =0 in previous theorem, we get the following corollary.
Corollary (2.18): Let f be in the class A/, (¢) .Then

d 2d 2d,(c?-3 2d
|42|§—1, | 3|S 1 max{l} M _ 2%z
2|y|+a 3ly|+4a 2[y+a)? dq

and
2d
|d3 — ﬂd% |§1—91 max{l, |

J

2d; (% =3a)+ud,(3y+4a) _2d,
las — uajls ;o 3|y|+4 {1 | 2[y+a)? dq }
Put y =1 and =0 in previous theorem, we obtain the next corollary.

and
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Corollary (2.19) If f is given by (1.1) belong to A (¢ ), then

2d 2d4(a?-3 2d
1 max{l, |—1( @) _ 24,
3+4q 2(1+@)? dq

}

2d;(e?—3a)+ud,(3+4a)  2d,
2(1+a)2 d1

d
|azl<5 =, lasl<

and
2120 { |
|as uazl_—3+4a maxj 1,

Theorem (2.20): If f € A satisfies

N1 P
[Zf (Z)] [1 LY@ +1(f @ - 1) < d(2),

f@ f®@
then
dy 2d, 2d,((@+2B)*-3(a+4B)) _ 2d,
|“2|§z|y|+(a+zﬁ) ' |“3|§3|y|+4(a+3ﬁ) {l 2[y+(a+2pB)]? dq }
and
2 2d, 2d, ((@+2B)*=3(a+4B)+ud, (By+4(a+3p))  2d,
las ““2|§3|y|+4(a+3ﬁ){| 2[y+(a+28)]? d, }

Proof: The result follows by taking w(z)= z in the proof of Theorem(2.15).
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