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Abstract

Suppose that G is a finite group and S is a non-empty subset of G such that e ¢ S and
S~1 c S. Suppose that Cay(G,S) is the Cayley graph whose vertices are all elements of G
and two vertices x and y are adjacent if and only if xy~! € S. In this paper, we introduce
the generalized Cayley graph denoted by Cay,,(G,S) that is a graph with vertex set
consists of all column matrices X,,, which all components are in G and two vertices X,,, and
Y,, are adjacent if and only if X,,[(Y,,) "]t € M(S), where Y,,,”* is a column matrix that
each entry is the inverse of similar entry of ¥, and M(S) is m X m matrix with all entries in
S, [Y~1]¢ is the transpose of Y =1 and m > 1. In this paper, we clarify some basic properties
of the new graph and assign the structure of Cay,,(G,S) when Cay(G,S) is complete graph
K,,, complete bipartite graph K,, ,, and complete 3-partite graph K, ,, , for every m = 2.

Keywords: Cayley graph; complete graph; bipartite graph; 3-partite graph; generalized
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1. Introduction

A Cayley graph is a graph that encodes a group in a graph. It was defined by Arthur Cayley in
1878 [2]. He used the set of generators for the new geometric representation of a group. This
translates groups into geometrical objects which can be fully considered from the geometric
view. Particularly, it prepares a rich source of many symmetric graphs which are known as
transitive graphs and it plays a serious work in many graph-theoretical problems as well as
group theoretical problems, like Hamiltonian path and cycles, representation of
interconnection networks, a width of groups and expanders that surely occur in computer
science and etc. In this article, we purpose and present a new kind of generalization of the
Cayley graph.

Formerly, some kinds of generalizations of the Cayley graph have been defined and studied
by some authors. For example, Marusi¢ in [5] defined a generalization of the Cayley graph
with respect to an automorphism of group G. Later, Zho in [7] nominated Cayley graph on a
semigroup. Recently, Erfanian [1] gave a new definition of a generalized Cayley graph
namely Cay,,(G,S) by using column m X 1 matrices which is a new generalization of usual
Cay(G,S).

We mention that for any group G and any non-empty subset S of G such that e € S and
§~1 c S, the Cayley graph Cay(G,S) is an undirected simple graph whose vertex set consists
of all elements of G and two vertices x and y are adjacent if and only if xy~! € S. It is clear
that, there are many kinds of Cayley graphs for each group that it was built by changing of S.
We know that the Cayley graph Cay(G,S) is connected if and only if S is a generating set of
G. Also, it is regular and vertex transitive, see [3] for more details. Now, we define
Cay,,(G,S) as follows:

Definition 1.1 For each m > 1, the generalized Cayley graph Cay,,(G,S) of Cay(G,S) is

an undirected simple graph with vertex set consists of all m x 1 matrices [X1 X2 = Xp]*
, Where x;€G,1<i<m and two \vertices X=[x1 X2 - Xp]® and
Y=[D1 Y2 = Ym]* are adjacent if and only if
[3513’1_1 X1yt Xy Ym " ]
-1 -1 -1
X(r—bHt = rz% X2Y2 A J € M, (S), where
xmyl_l xmyz_l xmym_1
X11 X127 Xim
x x Ry x
Mpsm(S) =3[0 7% . 7| st x; €S, 1<ij<my.
Xm1 Xm2 7 Xmm

Itis clear that, if m = 1, then Cay,,(G,S) and Cay(G, S) are coincide.

In all parts of this paper, We always suppose that e € S, S~ € S and S is generating set of G
. Hence, Cay(G,S) is connected graph. Note that if e € S then graph will have a loop and the
condition , S~ € S deduces that the graph is undirected.

Before to continue stating some results about the generalized Cayley graph, some graph
theory concepts are reminded. We observe that a graph I' can be displayed by a pair of sets V
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and E as the vertex set and edge set of I, respectively. The graph I' is said to be a simple
graph if it has no loop (a vertex adjacent to itself) and multiple edges (having more than one
edge between two vertices). Assume that I" is an undirected simple graph. A vertex x in I" is
called an isolated vertex if there is no edge between x and any other vertices. An empty
graph is a graph such that all vertices are isolated vertices. In other words, the edge set is
empty. A path P, of length n — 1 from vertex x to vertex y in a graph I" is a sequence of n
distinct vertices starting with x and ending with y such that consecutive vertices are adjacent.
If there is a path between any two vertices of a graph I', then I" is connected otherwise, it is
disconnected. A cycle C,, is a connected graph with n vertices where every vertex has exactly
two neighbours. The smallest cycle is C; which is triangular. A graph with no triangular as a
subgraph is called triangular free. The degree of a vertex x in I" denoted by deg(x) is the
number of adjacent vertices of x. The length of the smallest cycle contained in a graph T is
called a girth and it is denoted by gr(I').
The distance between a and b in a graph I' is the length of the shortest path between a and b.
The diameter of a connected graph I" is the length of the longest shortest path between two
distinct vertices of I'. A complete graph with n vertices denoted by K,, is a graph in which
every pair of n distinct vertices is connected. A subset X of the vertex set V is called an
independent set if there is no edge between any of two vertices in X. The size of the largest
independent set is denoted by a(I") and is called an independence number. A bipartite graph
is a graph whose vertices can be divided into two disjoint and independent sets A and B such
that every edge has one ends in A and another ends in B. A complete bipartite graph is a
bipartite graph such that every vertex a € A is adjacent to every vertex b € B. If |A| = r
and |B| = s, the complete bipartite graph on sets A and B will be denoted by K, ;. The
complete bipartite graph K ,, is called a star graph. A k —partite graph is a graph in which the
set of graph vertices is decomposed into k disjoint sets such that no two graph vertices within
the same set are adjacent. A complete k—partite graph is a k—partite graph such that every pair
of graph vertices in the k sets are adjacent. If the size of k sets in a k—partite graphs are
p,q,...,v, then we may denote it by K, , , . A subset D of a vertex set of I' is called
dominating set, if for every vertex x outside of D, there exists at least one vertex y in D such
that x adjacent to y. The minimum size of a dominating set is called dominating number, and
will be denoted by y(I"). The chromatic number of a graph I, written y(I"), is the minimum
number of colors needed to label the vertices so that adjacent vertices receive different
colours. The complement of a graph I' is denoted by I" and has the same vertex set as I,
where vertices x and y are adjacent in I if and only if they are not adjacent in I".
Throughout the paper, we assume that G is always a finite group and all graphs are undirected
and simple.
All notations and terminologies about the groups and graphs are standard here and we
refer to [3].

In the following lemma, we find a necessary and sufficient condition for adjacency of two
arbitrary vertices in Cay,, (G, S).
Lemmal2[6] Let X =[x1 X2 = xp]ltandY =[Y1 Y2 = Ym]® be two arbitrary
vertices of Cay,,(G,S) where x; and y; are in G forall i,j € {1,2,...,m}. Then X and Y are
adjacent if and only if x; is adjacent to y; in Cay(G,S) forall i,j € {1,2,...,m}.

In the next lemma, we use some right cosets of S to consider a formula for the degree of
any vertex in Cay,, (G, S).
Lemma 1.3 [6] If X =[x1 X2 - xn]® is a vertex of Cay,(G,S). Then deg(X) =
|NEZ, Sx;l

It is interesting to see that when Cay,, (G, S) has at least one isolated vertex. The following
lemma states a condition of getting isolated vertex in Cay,, (G, S).

3105


https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://mathworld.wolfram.com/k-PartiteGraph.html
https://mathworld.wolfram.com/GraphVertex.html
https://mathworld.wolfram.com/GraphVertex.html
https://mathworld.wolfram.com/GraphVertex.html

Neamah et al. Iragi Journal of Science, 2022, Vol. 63, No. 7, pp: 3103-3110

Lemma 1.4 [6] Suppose that X =[x1 X2 = Xp]t is a vertex of Cayn,(G,S). If
d(x;,x;) # 2'in Cay(G,S) for some 1 < i # j <m and Cay(G,S) is triangle free. Then X
Is an isolated vertex in Cay,, (G, S).

In the next lemma, the structure of Cay, (G, S) is determined when Cay(G,S) = P, .
Lemma 1.5 [6]Let Cay(G, S) be a Cayley graph. Then
(i) Cay(G,S) is an empty graph if and only if Cay, (G, S) is an empty graph.

(ii) If Cay(G,S) = P,, then Cay,(G,S) = K, U K.

We know that if S is a generating set, then the Cayley graph is connected. But, it is not true
for Cay,,(G,S),m = 1. In fact, the generalized Cayley graph is not necessarily connected
even when S is a generating set. Moreover, the Cayley graph is always regular and the degree
of each vertex is |S]|, but the generalized Cayley graph is not regular. For example, If
Cay(G,S) =K, and S is a generating set. Then Cay,(G,S) = K, UK, which has two
isolated vertices. Therefore, the generalized Cayley graph, is not regular.

This paper is allocated to discuss the generalized Cayley graph when the usual Cayley graph
is complete graph K,,, complete bipartite graph K;, ,, and complete 3-partite graph K, ,, ,.
2. Case Cay(G,S) =K,

First, we recall some definitions and lemmas and then we determine the structure of the
generalized Cayley graphs Cay, (G, S) and Cay;(G,S) when Cay(G,S) = K,,.
Definition 2.1 Let G and H be two graphs. Then the union of G and H denoted by G U H is a
graphwhichV(GUH) =V(G) UV(H) and E(GU H) = E(G) U E(H).
Definition 2.2 Suppose that G and H be graphs, then the corona product of G and H denoted
by G o H is obtained by taking one copy of G and |V (G)| copies of H; and by joining each
vertex of i — th copy of H to the i — th vertex of G, where 1 < i < |V (G)|.
The structure of the generalized Cayley graph when the common Cayley graph is K, is
studied in the following lemma.
Lemma 2.3 Let Cay(G, S) be a Cayley graph, then
(i) Cay(G,S) is an empty graph if and only if Cay,, (G, S) is an empty graph.
(ii) If Cay(G,S) = K;, then Cay,,,(G,S) = K, U Kygm-1_y, forall m > 2.
Proof: (i) It follows from lemma 1.2 directly.
(i) Let Cay(G,S) = K,. Then G = {e,x} and e is adjacent to x, but S is a subset of G and
e & S. Therefore, S = {x} and |V (Cay,,(G,S)| = 2™. It is clear that there is just one edge
between [e e -+ e]tand [x x -+ x]t Other vertices are isolated and the number of
these vertices is 2™ — 2. Hence, Cay,,(G,S) = K, U Ez(zm—l_l) . O

It is interesting to know when the generalized Cayley graph is connected and when it is
not connected. In the next lemma, we find the condition for the generalized Cayley graph
when the Cayley graph is a complete graph.
Lemma 2.4 Let Cay(G,S) = K, wheren > 1.
(i) If n > m, then Cay,, (G, S) is connected.
(i) If n < m, then Cay,, (G, S) is not connected.
Proof: (i) Suppose on the contrary that Cay,, (G, S) is not connected and it has at least two
components X,Y. So, there is no path between X,Y where A,,---,4,€X and

By,-+,Bym_. €Y. Thus, A; is not adjacent to B; for all i € {1,---,7} and for all j €

{1,-,nm—r} If A, =[01 - @m]" and B; = [bj1 - Dbjm]® then there exist s,t €
{1,2,---,m} such that a; is not adjacent to b;, which is contradiction Because, our assumption
Cay(G,S) = K,, implies that all vertices in Cay(G,S) are adjacent. So, Cay,,(G,S) Iis
connected.
(ii) If n < m, then it is obvious that [X1, X2, **, Xn, X1, X2, ***, Xm—n]" is an isolated vertex. O
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For example, If Cay(G,S) = K3, then Cay,(G,S) is connected, but Cay;(G,S) is not
connected. (See Figure 1).

Figure 1- The graph Cay,(G,S) A component of Cay;(G,S) of K,

Lemma 25 Let Cay(G,S)=K,. Then Cay,,(G,S) has induced subgraphs K, and
Kimom .. mm_m Where n =maq +r.
Proof: By lemma 1.2, it is clear that K, is a subgraph of Cay,,(G,S). Let

[@11 @12 - aim]* be avertex of Cay,,(G,S) where a,q,a,,,**, as, are distinct and

A ={[¥111 X1z Xaam]Y X000, X1im € (@1, 0, A}

So, |A;;| = m™. Define By; = Ay, —{[@11 Q11 - aua]f, -, [@m QGam 0 Qam]tl
All vertices in B;; are not adjacent and so is an independent set. Now, Suppose n = mq +r
and q = [%]. By continuing this process, we get a vertex [dq1 Qg2 **  Aqm]* such that it
is distinct with all previous vertices and

Agp = {[qul Xq12 qum]tlqul, “, Xg1m € {Aq1, ---,aqm}}. Define

By =Ap —{[%1 Qa1  Qq]t,-,[Agm  Qgm Qqm]'}. Likewise, the vertices in

Bg, are not adjacent and they are adjacent to all vertices in Byq, Byy, -+, B(g—1)1. FOr r vertices
in Cay(G,S), we have r™ vertices in Cay,,(G,S) and these vertices are not adjacent to each
other but they are adjacent to all vertices in Byy,-++,Bgq. SO, Cayn,(G,S) has a subgraph
Kimpm_p .mm_m, Wheren =m.q +r. O

In the following proposition, we find the biggest star graph in the generalized Cayley
graph when the Cayley graph is a complete graph K.
Proposition 2.6 Suppose that Cay(G,S) = K. Then K; ,,_qym is the biggest star graph of
Cay,(G,S).
Proof: If A € V(Cay,,(G,S)) such that all entries are identity elements, then A is adjacent to
maximum vertices in Cay,,(G,S) and deg(A) = (n—1)™.  Hence, we have star graph
K1 (m-1ym-
O
The following proposition is a direct consequence of Lemma 2.5.
Proposition 2.7 If Cay(G,S) = K, then

(i) x(Cayn(G,S)) = n.

" m!
(i) If 7. < m, then @(Cay (G, 5)) = m™ —m + T
(i) If n < m, then ¥ (Cayy (G, 5)) = m™ —m + 2

3. Case Cay(G,S) =K,,and K, ,, ,
In this section, we are going to find the structure of Cay,,(G, S) when Cay(G,S) = K,, , or
K nn- First, we start the case m = 2 and m = 3 as the following:

Lemma 3.1 If Cay(G,S) = K. Then Cay,(G,S) = Kpz 2 U Kyp2.
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Proof: Suppose that V(Cay(G,S)) = {x1, x5, X3 U{¥1,¥2, -,V } =X UY. Then
V(Cay,(G.8)) ={[,] | b €XUY} and [V(Cay,(G,S))| = 4n?. If a,b € X, then [,] is

adjacent to all vertices [2] , where ¢,d € Y. Similarly, if a,b € Y, then [Z] will adjacent to all
vertices [2], for entry c,d € X. Thus;the induced subgraph to set {[Z] |a,b € X} U

{[Z] | a,b € Y} is a complete bipartite graph K2 ,2. The rest of the vertices are all isolated

vertices which implies that Cay,(G,S) = K,z ,2 U K,,2 asrequired. O
Lemma 3.2 If Cay(G,S) = Ky . Then Cays(G,S) = K3 3 U Kgps.
Proof: Assume that X = {x;, x5, -, x,} and Y = {y4,¥2, =, ¥ }. S0, V(Cay(G,S)) =X UY,

a
V(Cay;(G,S)) = {lbl | a,b,ceXUY } and |V(Cay3(G,S))| = 8n3. Now, if a,b,c €
c

a d
X, then H is adjacent to all vertices [e] , Where d, e, f €Y. Likewise, if a,b,c €Y, then
c f
a d
[bl will adjacent to all vertices [e], for entry d, e, f € X. Thus, the induced subgraph to set
c f

a a
{[b | a,b,c € X } U {[bl | a,b,c €Y } is a complete bipartite graph K, ,,3. The rest
Cc Cc

W1 41
of vertices are all isolated vertices. Because if Wz] Is adjacent to [22] then w; is adjacent to z;
W3 Z3

for all i, j € {1,2,3} which is a contradiction. The number of these isolated vertices is 6n3. So,
Cays;(G,S) = K33 U K3 asrequired. O

By using the method mentioned in the proof of Lemma 3.1 and Lemma 3.2, we are going
to determine Cay,, (G, S) for all m = 2, when Cay(G,S) = K, ..
Theorem 3.3 Let Cay(G,S) = K,,. Then for every m > 1, Cay,,(G,S) = Kymm U
Ky@m-1_1ynm
Proof: Let X = {x,x5,--,x,3 and Y = {y;,y,,---, ¥} and V(Cay(G,S)) = X UY. Then we

have V(Cay,(G,$)) ={Ww1 W2 - W]t :w; €V(Cay(G,S)), 1<i<m} Now,
put
A={vi v = Vp]t:v;€X,1<i<m}and B={Wwi w2 - Wp]t:w, €Y,

1 <i <m}. Then every vertex in A is adjacent to every vertex in B and so the induced
subgraph to the set AU B is a complete bipartite K,m,m. Moreover, every vertex in

V(Cay,(G,S))N\(AU B) is an isolated vertex. Because, if [W1 W2 ** Wp]t is one of
such vertex, then there exists 1<i# j<m such that w; €X and w; €Y. Now, if
[wi wz -+ wn]bis adjacent to vertex [Z1 Z2  * Zm]t, then we will have w; — z; —

w; which is not possible. If z; € X, then w; can not be adjacent to z; and if z; € Y, then w;
can not be adjacent to z;. Hence, all such vertices are isolated vertices. the number of such
vertices is

[V(Cay,(G,S)| — |A| — |B] = 2n)™ —n™ —n™ =2Mn™ - 2n™ = 2™ - 2)n™ =
2(2™1 — 1)n™. Thus, Cayn(G,S) = Kymym UKym-1_yyym. O

From Theorem 3.3, we can state immediately the following proposition.

Proposition 3.4 Let Cay(G,S) = Ky, ,,. Then
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() x(Cayn(G,9)) = 2.
(il) a(Cay, (G,S)) =n™(2™ —1).
(iii) y(Cayn(G,S)) = 2 + 2(2™ 1 — 1)n™,

Now, we start with the case Cay(G,S) = K, , . Suppose that Cay(G,S) = K, , », Where
n = 2. In the following two lemmas, we determine Cay,(G,S) and Cays(G,S) whenever
Cay(G,S) = Knnn-
Lemma 3.5 Let Cay(G,S) = Kpnn- Then Cay,(G,S) = Kyz p2n2 U 3K 202 2
Proof: Suppose that X = {x1,x5,-*,xn}, Y = {y,y2, ", ¥} and Z = {z,2,,-++,z,} such
that V(Cay(G,S)) =XUY UZ. So, V(Cay,(G,S) = {[w; w,]* : w,w, € V(Cay(G,S))}
and |V(Cay,(G,S)| =9n%. Now, put A; ={[a; a,]® :ay,a, €X}, A, ={[b; by]* :
by, b, €Y}, A3 ={[c; ¢3]* :cq,c, € Z). Every vertex in A, is adjacent to every vertex in
A, and As. So, the induced subgraph to the set A; U A, U A5 is the complete 3-partite graph
K2 2 n2. Now define
D ={[d; d,]" :dy,d; €EXUY}— (41 UAy),
Dz ={[d; d;]" :dy,d EXUZ}— (A, UA4y),
Dys ={[dy d;]* :dy,dy €Y UZ}— (A, U A3) and
E =V(Cay,(G,S)) — (AL UA, U A3 U Dy, UD;3U Dy3). The induced subgraph to the set
Dy, D13 and D3 is complete bipartite K,z ,2. Moreover, the set E is an empty set. Since

the number of the vertices in E is |E| = (3n)? — 3(2n)? — 3n? = 0. Therefore,the graph
Cay,(G,S) is connected and Cay,(G,S) = Kp2 22 U 3K (5p)2 2. O
Lemma 3.6 Let Cay(G,S) = Ky pn- Then Cayz(G,S) = K amy any?,2ny? Y K amyznz U Kena
Proof: Suppose that X = {x1,x3,-*,x,}, Y = {y,y2, ", ¥u} and Z ={z,2,,--+,z,} such
that V(Cay(G,S)) =X UY U Z. So,
V(Cg%(G:S) ={wr wz ws]" :wy,wy,ws €V(Cay(G,5)} and |V(Cays(G,S)| =
27n°.
Now, put A = {[a; a, a3]* :ay,a, a3 €X}, B={b; by, bs]* :by,bybsEY}
C={lc1 ¢z c3]" :cp,6005 €23,

D, ={[d; d, ds;]* :dy,dyd3;€XUY}—(AUB),
D,={[d;, d, d3]* :dy,dyd3;€XUZ}—(AUDC),
D; ={[d, d, d3]* :dy,dyd3€YUZ}—(BUC)and
E =V(Cays;(G,S))—(AUBUCUD,; UD,UDs). Then every vertex in A is adjacent to
every vertex in B and C and so the induced subgraph to the set AU B U C is complete 3-
partite K3 3,3 and the induced subgraph to the set D, ,D, and D5 is complete bipartite
K (2n)3 n3- Moreover, every vertex in the set E is an isolated vertex. The number of such
vertices is |E| = (3n)% —3(2n)% — 3((2n)3 — 2n3) = 6n3. Therefore, Cay;(G,S) =
K(Zn)3,(2n)3,(2n)3 U 3K(2n)3,n3 UKgys. O

The following theorem is the general case for m > 2.

Theorem 3.7 Let Cay(G,S) = Ky nn- Then

Caynm(G,S) = Knm pmpm U 3K apym m U K gpym_znm_32nym-2nm)
Proof: Suppose that X = {x;,x5,-*,x,}, Y ={y,y2, -, v} and Z = {z,,2,,-+, z,} such
that V(Cay(G,S)) =X UY U Z. So,

V(Cay;(G,S) = {[W1 Wy ot Wit rwy,wy, e, Wy, € V(Cay(G,S))}

and |V(Cay,(G,S) = B3n)™. Now,putA={[a1 az = am]* :q;€X,1<i<m}
B={[by by, - bplt :bh€Y,1<i<m}

C={c1 2 = ctm]t:ics€Z,1<i<m}

Dy={[d, dy - dpl* :d;€XUY,1<i<m}-(AUB),
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D,={ld, d; - dnl® :d;€EXUZ,1<i<m}—-(AUC0),
D;={[d, d, - dy]*® :djeYUZ,1<i<m}—(BuC(C)and
E=V(Cay,(G,S)) —(AUBUCUD; UD, UD3). Then every vertex in A is adjacent to
every vertex in B and C and so the induced subgraph to the set AU B U C is complete 3-
partite K,m ,m ,m and the induced subgraph to the set D, ,D, and D5 is complete bipartite
K 2nym ym. Moreover, every vertex in the set E is an isolated vertex. The number of such
vertices is |E| = (3n)™ — 3n™ — 3((2n)™ — 2n™). Therefore, Cay,,(G,S) = Kym ym,m U
3K 2nympm U Em and the proof of theorem is completed. O

Finally, we end the paper with the following problem.
Problem: Find Cay,,(G,S) when Cay(G, S) is complete r-partite graph for all r > 1.
4-Conclusions:
The aims of this paper is to introduce a generalization of the Cayley graph denoted by
Cayn(G,S). Some basic properties of the new graph are given and investigated. Furthermore,
the structure of Cay,,(G,S) when Cay(G,S) is complete graph K,,, complete bipartite graph
K, and complete 3-partite graph K, ,, for every m > 2 has been also assigned. Many
important results have been also obtained and provided in this work.
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