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Abstract  
     In this research, we study the dynamics of one parameter family of meromorphic 

functions   *  ( )      ( )           +. Furthermore, we describe the 

nature of fixed points of the functions in  ,and we explain the numbers of real fixed 

points depending on the critical point  . So, we develop some necessary conditions 

for the convergence of the sequence *  
 ( )+when    . 
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( )  ديناميكية عائلة الدوال ذات المعلمة الواحدة       ( ) 
 

3, نهى حامد حمادة2, زينة زكي جميل*1نايمان عبدالوهاب حسي  
 قسم الرياضيات وتطبيقات الحاسهب, كيلة العلهم, جامعة النهرين, بغداد, العراق1

 قسم الرياضيات, كيلة العلهم, جامعة بغداد, بغداد, العراق2
 العين, أبه ظبي, الإمارات العربية المتحدةجامعة 3

 الخلاصه
 في هذا البحث, قمنا بدراسة ديناميكية الدوال الميرومهرفية ذات المعلمة الهاحدة 

                             *  ( )      ( )           + 
تؤثرعلى   , وبينا أن النقاط الحرجة  . بالأضافة إلى ذلك قمنا بإعطاء وصف كامل للنقاط الثابتة للدوال في 

  *عدد النقاط الثابتة الحقيقية. كما وأعطينا بعض الشروط الضرورية الجديدة لتقارب المتتابعة 
عندما   +( ) 

   . 
 

1-Introduction 

 Fixed point theory works  as an essential tool for different branches of mathematical 

analysis and its applications. One of these applications is the study of real or complex 

dynamic function. The real dynamics of functions has been explained by Devaney [1], [2], 

Fadil [3] and Sajid [4],while, Akbari and Rabii [5], Magrenan and Gutierrez [6] and Radwan 

[7] have suggested and analyzed the real dynamics of the cubic polynomials, generalized 

logistic maps and one parameter family of transcendental functions. Faris [8] has discussed 

the dynamics of one parameter families   *  ( )    
  (   )    + and   

{  ( )  
     ( )

  
    } of critically and finite non-critically finite transcendental 

meromorphic functions respectively. For more details see [9], [10]. 
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 In this paper we present the real dynamics of the one parameter family   
*  ( )      ( )           )+. A distinction is made between points for which   

 ( ) 
remains bounded as     and points for which   

 ( ) diverges. We will prove the following 

result. 

Theorem 1:  

Let     ; then there are            such that           such that: 

1) At   , there exists a fixed point    and      where    (  )     satisfies :as    , 

i.   
 ( )    when   (     ), 

ii.   
 ( )    when   (    )  (     ), 

iii.   
 ( )    when   (   ). 

2) At   , there exist two fixed points   and   (     ), and      where    (  )     

satisfies : as   , 

i.    
 ( )    when  (     ), 

ii.    
 ( )    when  (    )  (     ), 

iii.    
 ( )     when  (   ). 

3) At   , there exist a fixed point    and      where    (  )     satisfies : as    , 

i.    
 ( )    when  (     ), 

ii.    
 ( )   when  (    )  (    ), 

iii.    
 ( )    when  (    ). 

4) At   (     ), there exist two fixed points    (     ),    (     ) and      where 

  (  )     satisfies : as    ,  

i.   
 ( )    when  (     ), 

ii.   
 ( )   when  (    )  (     ), 

iii.   
 ( )    when  (   ). 

5) At   (    ), there exists two fixed points   (    ),    (     ) and      where 

  (  )     satisfy: as    ,  

i.   
 ( )   when  (    )  (     ), 

ii.   
 ( )    when  (   ), 

iii. The orbit *  
 ( )+ is periodic or chaotic for   (     ). 

6) At   (    ), there exist two  fixed points   (    ),    (    ) and      where 

  (  )     satisfy: as    , 

i.   
 ( )    when  (     ), 

ii.   
 ( )   when  (    )  (    ), 

iii.   
 ( )    when  (    ). 

7) At   (     )  (    ),   
    as    , for all   (    ) * +. 

2- Preliminary Results  

In this section, we describe the behavior of the fixed points of the one parameter family   of 

transcendental meromorphic functions. Let  ( )     be a mapping which is defined by 

 ( )       . 

Now for all     , a fixed point of    must satisfy the equation  ( )   . By solving this 

equation, we can find that    has two fixed points          and         . So    has two 

critical values          and        . Since   is even and continuous then we can 

reduce the domain of   to (   )  
The following propositions describe the number of fixed points of    with respect to  . 

Proposition 2: Let     , then there are three cases for the number of fixed points for    

with respect to  : 

1-    has no fixed point if      or     . 

2-    has one fixed point at    and at   . 
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3-    has two fixed points on (    ) and on (    )  
Proof: - 

let ( )        and   ( )             then: 

1-    ( )             ,    (  )   ,    (  )    where          and         . 

Thus    is a maximum point and    is a minimum point for  ( ) in the (    ).Then  ( )  
  has no solutions for     (    ). So that   have no fixed points in this step. 

2- When     (    ), because of      (  )(    (  )) is the minimum(maximum) 

value of  ( ) in (    ).Then    has only one fixed point at     (    ). 

3- When   (    ), the point      is a minimum value in (    ). Since   is strictly 

decreasing in (     ) and it is strictly increasing in (     ), then the line     intersects the 

plot of   at exactly one point in all of the intervals (     ) and (     ). Similarly, when   
(    ) the point      is a maximum value in (    ). Hence   is strictly increasing (    ) 
and it is strictly decreasing in  (     ), so the line     intersects the plot of    at exactly 

one point in interval (    ) and (     ). Then    has two fixed points on (    ) and on 

(    )  
The purpose of the following proposition is to study the nature of fixed points of the function 

   on  . That is, we must study the equation |   ( )|   , since    (  )    
   (  )  then      are indifferent fixed points of   . While the positive solution of the 

equation   ( )           , is         , hence     (  )          
Proposition 3:Let      ,then if: 

1-     , the two fixed points of    are:   is indifferent, and    (     ) is repelling , 

2-   (     ), the two fixed points of    are:   (     ) is attracting , and    (     ) is 

repelling , 

3-   (    ),the two fixed points of    are:    (    ) is repelling and    (     ) is 

repelling, 

4-   (    ),the two fixed points of    are:   (    ) is attracting and    (    ) is 

repelling. 

Proof: let   ( )        , hence    ( )               and the solutions of equation 

  
 

    
  ( ) are the fixed points of    . 

        So    ( ) at fixed point    is obtained by  

|   ( )|  |
  

    
        |  |      |  

|     |

|    |
 

Now, we define the function  ( ) as follows: 

 ( )  |     |  |    |, it is continuous and has 3 zeros when     ,     and   . From 

the graph we can show that  ( ) is decreasing in the intervals (    ) and (     ), while  it is 

increasing in the intervals (     ) and (     ). So  ( ) has maximum point at   and it has 

minimum point at x=-1. From the above statements that  ( )   ;  

when   (     )  (     ),  ( )   ; when     ,     ,   and  ( )    when   
(    )  (     ) see Fig(1).  

Thus 

1- If     ,the fixed point    (     ) satisfies |   (  )|   , then    is repelling fixed 

point. 

2- If   (     ), the fixed point    (     ) satisfies |   (  )|     then     is an 

attracting fixed point. While, if the fixed point     (     )  satisfies|   (  )|   ; then    is 

repelling fixed point. 

3- If   (    ), the fixed points     (    )  and    (     )  satisfy|   (  )|   , i=3,4, 

then    are repelling fixed points for i=3,4. 
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4- If   (    ), the fixed points     (    ) and     (    )  satisfy |   (  )|     and 
|   (  )|    respectively. Then    is an attracting fixed point and    is a repelling fixed 

point.  

 
                             

Figure 1-  ( )  |     |  |    |, ( )   
 

    
  

 

3-The Proof of the Main result 

The proof of the main result is described as follows: 

Proof of the main results: 

Let   ( )    ( )    then 

1) when    ,    has an indifferent fixed point    by proposition (3).   (  )   and 

    (  )   , then    has minimum at   . Because of   (  )   , it follows that   ( )    

for each   in a neighborhood of   .Hence by continuity of   , for sufficiently small     , 

  ( )    in (        )  (        ). From Fig.(2) we have  ( )    in (    )  
(     ),   ( )>0 for all   (    )  (     ) and   ( )    for   (   ). 
       Next, we will study the dynamics of    as follows: 

Case(1):For   (     );    (    ).    is a minimum point for  .  ( )   in   
(    )  (     ), hence when   (     ),    ( )   , so    ( )     , then    ( )  
 . Thus by the mean value theorem |  ( )    (  )|     ( )|    | such that   (     ). 
that is implies |  ( )    (  )|  |    | for all   (     ). Since    is a fixed point of   , 

Thus   
 ( )     as    , for all   (     ). 

Case (2):For   (    )  (     )  then   ( )   ,hence   ( )   , but   (  )    , thus 

   maps the interval (    ) into (     ), then it is enough to prove that   
 ( )    as 

    when   (     )  
 Since   ( )   , then *  

 ( )+ is unbounded above and  strictly increasing sequence 

in   (     ), so   
 ( )    as    , for all   (     ).  

Case (3):When   (   ) ,   ( )    and   ( )   , therefore    is strictly decreasing in 

this interval then*  
 ( )+ is decreasing sequence and it is unbounded below. So for   

(   ),  
 ( )     as      

         (x) 

         (x)  

         Y=x 
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Figure 2-   ( )    ( )   ,      

 

2)when      , it is clear from Fig. (3)   ( )   , for all   (    )  (     ) and 

  ( )    for all   (     )  (   ). 
Now, we can describe the dynamic of   . 

Case (1):For   (     ), we will show that   
 ( )     since   ( )    for   (     ) 

then  ( )   . Since   is decreasing and by continuity forward iteration process we get 

    ( )    
 ( )      

 ( )    . 

Therefore, the sequence *  
 ( )+ is decreasing and bounded below by   . So   

 ( )     as 

   for   (     ). 
Further since   (  )    , and it is decreasing in (     ),   maps the interval  (     ) into 

(     ).It follows that byusing the previous arguments,   
 ( )     as    for   (     ). 

Case (2):For   (     ),   ( )   . Moreover    is strictly increasing in this interval, then  

      ( )    
 ( )      

 ( )    

Thus, the sequence *  
 ( )+ is increasing and it is unbounded above. Hence   

 ( )     as 

   for   (     ). 
Now, for   (    );   (    ), we have   ( )   .  (  )    . Then    maps the 

interval(    )into (     ). Thus   
 ( )     as    for   (    )  (     ). 

Case (3): For   (   ) from Fig.(3), we have  ( )    then  ( )    so that    is strictly 

decreasing in this interval, and hence 

    ( )    
 ( )    

 ( )      
 ( )    

Thus *  
 ( )+ is decreasing sequence, which is unbounded below. Therefore, for   (   ) 

we have   
 ( )    as    . 

        X= 

        Tk (x)  

         Y=x1 
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Figure 3-   ( )    ( )   ,      

 

 

3)when     ,    has an indifferent fixed point    by proposition (3).   (  )     and 

    (  )   , then    has minimum at   . Because of    (  )   , it follows that   ( )    

for each   in a neighborhood of   . Hence by continuity of   , for sufficiently small     , 

  ( )    in   (        )  (        ). From Fig.(4) we have  ( )    in 

  (    )  (    ), so   ( )>0 for all   (    )  (    ), and   ( )    for   
(    ). 
       Next, we will study the dynamics of    as follow: 

Case(1):For   (     );    (    ),   is a minimum point for  .   ( )    in (    )  
(    ), hence when   (     ),    ( )   , so   ( )   , then    ( )   . For     , 

   ( )   . Thus by the mean value theorem |  ( )    (  )|     ( )|    | such that 

  (     ). Since    is a fixed point of   , that is implies |  ( )    (  )|  |    | for all 

  (     ). Thus   
 ( )    as    , for all   (     ). 

Case (2):for   (    )  (    ) then   ( )    for all   (    ), hence   ( )   , since 

   is strictly increasing in this interval, and  

      ( )    
 ( )      

 ( )     
Then *  

 ( )+ is increasing sequence which it is unbounded, above so   
 ( )   as    , 

for all   (    ). Since   (  )     and   maps the interval (    ) into (    ) hence we 

can use the same arguments to prove  
 ( )    as    when   (    ). 

Case (3):when   (    ) ,   ( )    then  ( )   , therefore    is strictly decreasing in 

this interval and  

     ( )    
 ( )      

 ( )    . 

Then *  
 ( )+ is decreasing sequence and it is unbounded below. So for   (    )  

 ( )  
   as      

           Y=x 

          Tk(x) 

          X= 
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Figure 4-   ( )    ( )   ,      

 

4)when   (      ),  by proposition (3)   has an attracting fixed point    (      ) and 

repelling fixed point    (      ). From Fig.(5)  ( )    in (    )  (     ),  ( )>0 for 

all   (    )  (     ) and   ( )    for   (   )  (     ). 
To describe the dynamics of   , we have three cases:- 

Case(1) when   (      ).   ( )    for all   (      )and it is decreasing, so  

    ( )    
 ( )      

 ( )    . 

Hence the sequence *  
 ( )+ is decreasing and bounded below by   , and there is no fixed 

point larger than   . Therefore   
 ( )     as    for all    (     ). 

Case (2):-For   (    )  (     ),   ( )    for all   (     ) . Since    is increasing 

and by continuing forward iteration process, it follows 

      ( )    
 ( )      

 ( )    

Hence, the sequence *  
 ( )+ is increasing and there is no fixed point larger than   , the orbit 

must go to  as    . Then   
 ( )    as     for all   (     ).    (  )    ,    

maps the interval (    )into (     ). Then by using the above arguments   
 ( )    as 

    for all   (    ). 
Case (3): for   (   ),   ( )     hence  ( )   , therefore    is strictly decreasing in this 

interval and  

    ( )    
 ( )      

 ( )   . 

Then *  
 ( )+ is decreasing sequence and it is unbounded below. So for   (   )  

 ( )  
   as      

           Tk(x) 

            X= 

            Y=x 
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Figure 5-   ( )    ( )   ,   (      ) 
 

5)when   (    ),    has two fixed points    (     )and    (      ) which are 

repelling by proposition (3). From Fig(6) we have   ( )   for all   (    )  (     ) and 

  ( )    for   (   )  (     ). 
To describe the dynamics of   , we have three cases:-  

Case (1):-  for   (     ),  ( )   . Hence    is strictly increasing in (     ), then 

         ( )    
 ( )      

 ( )    . 

So the sequence *  
 ( )+is increasing sequence which is unbounded above. So   

 ( )   as 

    for   (     ). Then   
 ( )    as     for all   (    ). Because   (  )  

  ,and   maps the interval (    ) into (     ). By  using the above arguments   
 ( )    as 

    for all   (    ). 
Case (2):- for   (     ) the system of dynamics of    has no point attractors. Thus 

dynamical system will move indefinitely, and the orbit *  
 ( )+ will be periodic or chaotic in 

these intervals.  

Case (3):-when  (   ) ,   ( )    then  ( )   .Therefore    is strictly decreasing in this 

interval and  

     ( )    
 ( )      

 ( )    

Then *  
 ( )+ is decreasing sequence and it is unbounded below. So for   (   )    

 ( )  
   as      
 

           Y= 

           Tk(x) 

            Y=x 
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Figure 6-   ( )    ( )   ,   (     ) 
 

6) when   (     ), so   has an attracting fixed point    (     ) and repelling fixed point 

   (     ) by proposition (3). From Fig. (7) we have   ( )    for all   (    )  (    ) 
and   ( )    for   (    )  (     ). 
To describe the dynamics of   , we have three cases:- 

Case(1) when   (      ), then   ( )    and it is decreasing, so  

    ( )    
 ( )      

 ( )       

Hence the sequence *  
 ( )+ is decreasing and bounded below by   , and there is no fixed 

point larger than   . Therefore   
 ( )     as     for all    (     ). 

Case (2):- for   (    )  (    ),   ( )    for all   (    ) . Since    is increasing and 

by continuing forward iteration process, it follows that  

      ( )    
 ( )      

 ( )    

Hence, the sequence *  
 ( )+ is increasing and there is no fixed point larger than   , the orbit 

must go to  as    . Then   
 ( )    as     for all   (    ).  (  )     and    

maps the interval (    )into(    ). So by using the above arguments  we can getting 

  
 ( )    as     for all   (    ). 

Case (3):for   (    ),   ( )    then  ( )   , therefore    is strictly decreasing in this 

interval and  

                    ( )    
 ( )      

 ( )   . 

Then *  
 ( )+ is decreasing sequence and it is unbounded below. So for all 

  (    ),  
 ( )     as      

           Y=x 

          Tk(x) 

          Y=x  
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Figure 7-   ( )    ( )   ,   (     ) 
 

7)when      (    )    has no fixed point by proposition (2).  Since    is continues and 

differential for    (    ) then    is continuous and differentiable. From Fig. (8) the 

sequence *  
 ( )+ is increasing and it is unbounded below for all   (    ). Hence  

  
 ( )    as      for all   (    ). When      the proof is similar to the previous 

arguments. 

 

 
 

Figure 8-   ( )    ( )   ,      ) 
 

 

          X= 

          Tk(x) 

           Y=x 

            X= 

             Tk(x) 

            Y=x 
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