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Abstract

In this research, we study the dynamics of one parameter family of meromorphic
functions H = {f,,(x) = kcsc(x): k € Randx € R}. Furthermore, we describe the
nature of fixed points of the functions in H,and we explain the numbers of real fixed
points depending on the critical point k. So, we develop some necessary conditions
for the convergence of the sequence {f;* (x)}when n — oo.
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1-Introduction

Fixed point theory works as an essential tool for different branches of mathematical
analysis and its applications. One of these applications is the study of real or complex
dynamic function. The real dynamics of functions has been explained by Devaney [1], [2],
Fadil [3] and Sajid [4],while, Akbari and Rabii [5], Magrenan and Gutierrez [6] and Radwan
[7] have suggested and analyzed the real dynamics of the cubic polynomials, generalized
logistic maps and one parameter family of transcendental functions. Faris [8] has discussed
the dynamics of one parameter families H = {h,(z) = ke?/(z—1):k € R} and H =

{gk(z)zkcosf(z):k>0} of critically and finite non-critically finite transcendental

Z

meromorphic functions respectively. For more details see [9], [10].
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In this paper we present the real dynamics of the one parameter family H =

{fi.(x) = kcsc(x): k € R andx € R)}. A distinction is made between points for which f*(x)
remains bounded as n — oo and points for which f;*(x) diverges. We will prove the following
result.
Theorem 1:
Let f,, € H; then there are kq, k,, k3 € R such that k; < k, < 0 < kssuch that:
1) At kq, there exists a fixed point x; and b; € R where f; (b;) = x; satisfies :asn — oo,

i.fie. (x) = x;when x € (by, x4),

ii.fi, (x) = o when x € (1, by) U (x4, 2),
iii.fi©: (x) » —oowhen x € (0, 7).
2) At k,, there exist two fixed points x,andr; € (x,2m), and b, € R where fi (b;) = x,
satisfies : asn — oo,
i fie,(x) = xwhenx € (by, 1),
ii. fii, (x) = oo whenx € (1, by) U (14, 2m),
iii. fir. (x) > —oo whenx € (0, ).
3) At k3, there exist a fixed point x; and b3 € R where f;. (b3) = x3 satisfies : asn — oo,
i fie;(x) = xzwhenx € (b3, x3),
ii. fie; (x) > cowhenx € (0, b3) U (x3, ),
iii. fii, (x) » —oowhenx € (m, 2m).
4) At k € (kq, k,), there exist two fixed points a; € (x,,x;,), 1, € (xq,17) and b, € R where
fi(by) = 1, satisfies : asn — oo,
I fit(x) = azwhenx € (by,13),
ii. fii'(x) = cowhenx € (1, by) U (1, 21),
iii. fii'(x) = —cowhenx € (0, ).
5) At k € (k,,0), there exists two fixed pointsr; € (m,x,), 1, € (r1,2m) and bs € R where
fi.(bs) = r, satisfy: as n — oo,
I. fii'(x) = cowhenx € (1, bs) U (1, 2m),
ii. fi'(x) = —ocowhenx € (0, ),
iii. The orbit {f;;*(x)} is periodic or chaotic for x € (r3,1,).
6) At k € (0, k3), there exist two fixed pointsa, € (0,x3), 15 € (x3,m) and bg € R where
fi(bg) = 15 satisfy: asn — oo,
i. fit(x) = aywhenx € (bg,135),
ii. fiit(x) = cowhenx € (0, bg) U (135, ),
iii. fii' (x) = —oowhenx € (m, 2m).
7) Atk € (—0, k1) U (k3, ), fit > coasn — oo, forall x € (0,2m)\{mr}.
2- Preliminary Results
In this section, we describe the behavior of the fixed points of the one parameter family H of
transcendental meromorphic functions. Let ¢(x): R — R be a mapping which is defined by
¢(x) = xsinx.
Now for all f; € H, a fixed point of f,, must satisfy the equation ¢(x) = k. By solving this
equation, we can find that f; has two fixed points x; =~ 4.913 and x; =~ 2.029. So ¢ has two
critical valuesk,; =~ —4.814 and k; =~ 1.82. Since ¢ is even and continuous then we can
reduce the domain of ¢ to (0, ).
The following propositions describe the number of fixed points of f;, with respect to k.
Proposition 2: Let f; € H, then there are three cases for the number of fixed points for f;
with respect to k:
1- f. has no fixed point if k < k; or k > k.
2- fi. has one fixed point at k; and at k5.
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3- fx has two fixed points on (k4,0) and on (0, k5).

Proof: -

let¢p(x) = x sinx and @'(x) = sinx + x cos x then:

1- ¢""(x) = 2cosx — xsinx, ¢''(x3) <0, ¢"(x;) > 0 where x; =~ 4.913 and x; = 2.029.
Thus x5 is a maximum point and x; is a minimum point for ¢(x) in the (0,27).Then ¢(x) =
k has no solutions for k < k,(k > k3). So that f,,have no fixed points in this step.

2- When k = k,(k = k3), because of k; = ¢(x;)(ks = ¢p(x3)) is the minimum(maximum)
value of ¢(x) in (0,2m).Then f; has only one fixed point at x = x;(x = x3).

3- When k € (kq,0), the point x = x; is @ minimum value in (0,2m). Since ¢ is strictly
decreasing in (x3,x;) and it is strictly increasing in (x;, 2m), then the line k = c intersects the
plot of ¢ at exactly one point in all of the intervals (x3,x;) and (x4, 2m). Similarly, when k €
(0, k3) the point x = x5 is @ maximum value in (0,2m). Hence ¢ is strictly increasing (0, x3)
and it is strictly decreasing in (x3, 2m), so the line k = c intersects the plot of ¢p at exactly
one point in interval (0,x3) and (x3,2m). Then f;, has two fixed points on (k;,0) and on
(0, ke3).

The purpose of the following proposition is to study the nature of fixed points of the function
fi on R. That is, we must study the equation |f',(x)| =1, since f'x(x;)=1=
f'(x3), thenx,, x5 are indifferent fixed points of f;. While the positive solution of the
equationf’ (x) = tanx —x = —1, is x, = 4.493, hence k, = ¢(x,) =~ —4.385.

Proposition 3:Let f;, € H,then if:

1- k = k,, the two fixed points of f; are:x, is indifferent, and r; € (x,, 2m) is repelling ,

2- k € (kq, k), the two fixed points of f; are:a; € (xy,x,) is attracting , and r, € (x;,77) is
repelling ,

3-k € (k,,0),the two fixed points of f, are: r3 € (7, x,) is repelling and r, € (ry,2m) is
repelling,

4- k € (0,k3),the two fixed points of f; are:a, € (0,x3) is attracting and r5 € (x3,m) is
repelling.

Proof: let f,(x) = kcsc x, hence f',(x) = —kcsc x cotx and the solutions of equation

X

k= o ¢ (x) are the fixed points of f.
So ', (x) at fixed point x is obtained by
IF ()] = |— tx| = | tI_Ixcosxl
fex)| = CSCxcscxco x| =|—=xcotx| = Isin x|

Now, we define the function u(x) as follows:

u(x) = |x cosx| — |sinx]|, it is continuous and has 3 zeros when x = x;, x, and x5. From
the graph we can show that p(x) is decreasing in the intervals (0, x3) and (x,, x;), while it is
increasing in the intervals (x3, x;) and (x4, 2m). So u(x) has maximum point at 7 and it has
minimum point at x=-1. From the above statements that u(x) > 0;

when x € (x3,x;) U (xq,2m), u(x) =0; when x =x;, x, ,x3 and u(x) <0 when x €
(0,x3) U (x4, x1) see Fig(1).

Thus

1- If k = k,,the fixed point r; € (x,, 2m) satisfies |f',(r)| > 1, then 7, is repelling fixed
point.

2- If k € (kqi,k;), the fixed pointa, € (x,,x,) satisfies |f',(a;)| <1, then a; is an
attracting fixed point. While, if the fixed point r, € (x,,7;) satisfies|f’,(r,)| > 1; then r, is
repelling fixed point.

3- If k € (k,,0), the fixed points r; € (m,x,), and r, € (ry,2m) satisfy|f', (r;)| > 1, i=3,4,
then r; are repelling fixed points for i=3,4.
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4- If k € (0, k3), the fixed points a, € (0,x3) and 75 € (x3,m) satisfy |f',(a;)| <1 and
|f'i(rs)| > 1 respectively. Then a, is an attracting fixed point and rs is a repelling fixed
point.

— n(x)

) 0

— Y=x

. -10

X

Figure 1- u(x) = |x cos x| — |sinx|,¢p(x) =

CsCx

3-The Proof of the Main result
The proof of the main result is described as follows:
Proof of the main results:
Let T, (x) = fi,(x) — x then
1) whenk = k4, f;, has an indifferent fixed point x; by proposition (3).7',(x;) = Oand
T" . (x;) > 0, then T}, has minimum at x;. Because of T} (x;) = 0, it follows that T),(x) > 0
for each x in a neighborhood of x;.Hence by continuity of T}, for sufficiently small m,; > 0,
Tr(x) >0 in (x; —mq,x1) U (xq,x; + my). From Fig.(2) we haveT,(x) # 0 in (m,x;) U
(x4, 2m), T (x)>0 for all x € (7, x,) U (xq,2m) and Ty, (x) < 0 for x € (0, ).
Next, we will study the dynamics of f; as follows:

Case(1):For x € (by,x1); by € (mr,x1). x4iS @ minimum point forT,.T;(x) > 0in x €
(1, x1) U (x4, 2m), hence when x € (by,x;), T'(x) <0, so f',(x) —1 <0, then f',,(x) <
1. Thus by the mean value theorem |f;, (x) — fi (x1)| = f'k(c)|x — x4| such that ¢ € (b, x;).
that is implies | f, (x) — fi(x1)]| < |x — x4| for all x € (by, x,). Since x; is a fixed point of f;,
Thus f*(x) = x, asn — oo, forall x € (by, x7).
Case (2):For x € (m, by) U (x4, 2m), then T, (x) > 0,hence fi,(x) > x, but f,(b;) = x4, thus
fi maps the interval (m, b;) into (x;,2m), then it is enough to prove that f;'(x) - o as
n — oo when x € (x, 2m),

Since fi (x) > x, then {f*(x)} is unbounded above and strictly increasing sequence
inx € (xq,2m), S0 f'(x) = 0 asn — oo, for all x € (x;,2m).
Case (3):When x € (0,m) , Tr(x) < 0 and f,(x) < x, therefore f is strictly decreasing in
this interval then{f;*(x)} is decreasing sequence and it is unbounded below. So for x €
(0,m),fi(x) » —0 asn — oo.
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T X=r —20
Ti(x)
Y:Xl
T T 10
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-10

Figure 2- Ty (x) = fi,(x) —x, k =k,

2)when k =k, , it is clear from Fig. (3) T, (x) > 0, for all x € (7, x,) U (1, 2m) and
T, (x) < 0 forall x € (x,,17) U (0, ).
Now, we can describe the dynamic of f.
Case (1):For x € (b,, 1), we will show that f*(x) = x, since T (x) < 0 for x € (xp, 1)
thenf, (x) < x. Since f;is decreasing and by continuity forward iteration process we get
x> fir(x) > fiZ(x) > - > fil'(x) > x,.
Therefore, the sequence {f;*(x)} is decreasing and bounded below by x,. So f;*(x) = x, as
n — oofor x € (x,, 7).
Further since f;(b,) = ry, and it is decreasing in (b, 1), fimaps the interval (b,,7;) into
(x5, 1m1).1t follows that byusing the previous arguments, f'(x) — x, asn — oofor x € (by, 7).
Case (2):For x € (1, 2m), fi(x) > x. Moreover f; is strictly increasing in this interval, then
0<x < fir(x) <f(x) < <fif(x) <

Thus, the sequence {f;*(x)} is increasing and it is unbounded above. Hence f;*(x) —» —oo as
n — oofor x € (ry, 2m).
Now, for x € (m, b,);b, € (m,x,), we have fi(x) > x.fi(b,) =r;. Then f, maps the
interval(m, by)into (ry, 2m). Thus f{*(x) = —o asn — oofor x € (m, b,) U (14, 21).
Case (3): For x € (0, ) from Fig.(3), we haveT, (x) < 0 thenf, (x) < x so that f; is strictly
decreasing in this interval, and hence

x> fi(x) > fE0) > fZ(x) > > fit (%) > -
Thus {f;*(x)} is decreasing sequence, which is unbounded below. Therefore, for x € (0, )
we have f'(x) - —ocoasn — oo.
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Y=x 0
Ti(x)
— X=n
10
/-
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Figure 3- Ty (x) = fi,(x) —x, k =k,

3)when k = k3, f; has an indifferent fixed point x5 by proposition (3).T';(x3) = 0, and
T" . (x3) > 0, then T, has minimum at x5. Because of T’ (x3) = 0, it follows that Tj,(x) > 0
for each x in a neighborhood of x3. Hence by continuity of Tj, for sufficiently small m; > 0,
Tp(x) >0 in x € (x3—mq,x3) U (x3,x3 + my). From Fig.(4) we haveT,(x) #0 in
x € (0,x3) U (x3,m), sO Tp(x)>0 for all x € (0,x3) U (x3,m), and Tp(x) <0 for x €
(m, 2m).
Next, we will study the dynamics of f;, as follow:

Case(1):For x € (b3, x3); b3 € (0,x3),x3 is @ minimum point forT,. T, (x) > 0 in (0,x3) U
(x3,m), hence when x € (b3, x3), T'(x) <0, so Tx(x) <0, then f',(x) < 1. For x > x5,

f'i(x) > 1. Thus by the mean value theorem |fi.(x) — fi | x1 || = f'x(c)|x — x4| such that

¢ € (bs, x3). Since x5 is a fixed point of f, that is implies |f,, (x) — fi, (x3)| < |x — x3]| for all
x € (b3, x3). Thus fi'(x) = xzasn — oo, for all x € (b3, x3).
Case (2):for x € (0,b3) U (x3, 1) then T, (x) > 0 for all x € (x5, m), hence f,(x) > x, since
fi is strictly increasing in this interval, and

0<x<fr(x) < fE(x) < <firx) <.
Then {f*(x)} is increasing sequence which it is unbounded, above so f;*(x) — ocas n — oo,
for all x € (x5, m). Since f;(b3) = x5 and f,maps the interval (0, b3) into (x5, ™) hence we
can use the same arguments to provef;*(x) — o asn — cowhen x € (0, b3).
Case (3):when x € (m,2m) , T (x) < 0 thenf, (x) < x, therefore f, is strictly decreasing in
this interval and
X3 > fi(x) > fZ(x) > - > fil(x) > -
Then {f;*(x)} is decreasing sequence and it is unbounded below. So for x € (7, 2r) f;*' (x) =
—0o0 dSn — oo,
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Ti(x)

— X=m

-10

Figure 4- Ty (x) = fi,(x) —x, k = k3

4)when k € (kq,k, ), by proposition (3)f, has an attracting fixed point a; € (x,, x5 ) and
repelling fixed point r, € (xq,17 ). From Fig.(5)T,(x) # 0 in (1, 13) U (1y, 21), T (x)>0 for
all x € (r,a,) U (1y, 2m) and Ty (x) < 0 for x € (0, ) U (az, ).

To describe the dynamics of f;,, we have three cases:-

Case(1) when x € (by,1y). fr(x) < x forall x € (aq, 1, )and it is decreasing, so

x> fir(x) > fZ(x) > > fi(x) > a;.

Hence the sequence {f;'(x)} is decreasing and bounded below by a,, and there is no fixed
point larger than a,. Therefore f*(x) = a; asn — oofor all x € (by,1).

Case (2):-For x € (m, by) U (1, 21), fi,(x) > x for all x € (r,,2m) . Since f; is increasing
and by continuing forward iteration process, it follows
0 < x < filx) < f2(2) < -+ < fl'(x) < -~
Hence, the sequence {f;(x)} is increasing and there is no fixed point larger than r,, the orbit
must go to oas n — co. Then f*(x) - o as n - oo for all x € (1ry,2m). fi(by) =1y, fi
maps the interval (m,b,)into (r,,2m). Then by using the above arguments f;*(x) — oo as

n — oo forall x € (7, b,).

Case (3): for x € (0,m), T, (x) < 0, hencef, (x) < x, therefore f;, is strictly decreasing in this
interval and

x> fiulx) > f2(20) > > fl ) > -

Then {f*(x)} is decreasing sequence and it is unbounded below. So for x € (0,7)f'(x) =
—0o0 dSn — oo,
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Figure 5- Ty (x) = fi,(x) — x, k € (ky, k3 )

5)when k € (k,,0), fi has two fixed points r; € (m, x, )and 1, € (r;,2m) which are
repelling by proposition (3). From Fig(6) we have T (x) > Ofor all x € (m, bs) U (13, 2m) and
Tr(x) < 0forx € (0,m) U (13,13).
To describe the dynamics of f;, we have three cases:-
Case (1):- for x € (1, 2m),fi,(x) > x. Hence fj is strictly increasing in (ry, 27), then
0<1<x<fr(x)<fEx)<-<fl(x)<-.
So the sequence {f;*(x)}is increasing sequence which is unbounded above. So f*(x) — ooas
n — oo for x € (ry, 2m). Then f'(x) = o as n — oo for all x € (w,r,). Because f; (bg) =
rs,andf, maps the interval (m,r,) into (r,, 2m). By using the above arguments f;*(x) — oo as
n — oo forall x € (m,1y).
Case (2):- for x € (r3,7,) the system of dynamics of f, has no point attractors. Thus
dynamical system will move indefinitely, and the orbit {f;*(x)} will be periodic or chaotic in
these intervals.
Case (3):-when € (0,7) , T, (x) < 0 thenf, (x) < x.Therefore f; is strictly decreasing in this
interval and

X > fil(x) > f2(x) > > fR(x0) >
Then {f;*(x)} is decreasing sequence and it is unbounded below. So for x € (0, 1), f*(x) =
—00asn — oo,
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Figure 6- Ty (x) = fi,(x) — x, k € (k;,0)

6) when k € (0, k3 ), sof; has an attracting fixed point a, € (0, x5 ) and repelling fixed point
15 € (x3, ) by proposition (3). From Fig. (7) we have T, (x) > 0 for all x € (0, bg) U (15, M)
and Ty (x) < 0 for x € (m, 2m) U (ay, 15).
To describe the dynamics of f;, we have three cases:-
Case(1) when x € (bg, 15 ), then f.(x) < x and it is decreasing, so

x> fr(0) > fEG) > > fif(x) > > ay
Hence the sequence {f;*(x)} is decreasing and bounded below by a,, and there is no fixed
point larger than a,. Therefore f/'(x) = a, asn — oo forall x € (b, 15).

Case (2):- for x € (0,bg) U (15, 1), fi(x) > x for all x € (r5,m) . Since f, is increasing and
by continuing forward iteration process, it follows that
0<x < fr(x) <f(x) < <fir(x) <
Hence, the sequence {f;'(x)} is increasing and there is no fixed point larger than rg, the orbit
must go to oas n — . Then f*(x) = o as n — oo for all x € (15, m).fi,(bg) = 15 and f
maps the interval (75, m)into(0,bg). So by using the above arguments we can getting

frt(x) = coasn — oo forall x € (0, bg).
Case (3):for x € (m, 2m), T (x) < 0 thenf, (x) < x, therefore f is strictly decreasing in this
interval and

x> fi() > fE) > > fit(x) > -,
Then {f*(x)} is decreasing sequence and it is unbounded below. So for all
x € (m, 2m),fit(x) > —c0 asn — oo.
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X=m /
Tk(X) 20

4 - ! —-20
Figure 7- T, (x) = fiy(x) —x, k € (0,k3)

7)when k < kq (k > k3), fi, has no fixed point by proposition (2). Since f;, is continues and
differential for x € (0,2m) then Tj is continuous and differentiable. From Fig. (8) the
sequence {fy*(x)} is increasing and it is unbounded below for all x € (0,2m). Hence
frt(x) = 0 asn —» —oo for all x € (0,2w). When k > k; the proof is similar to the previous

arguments.
X=r

— Y=x

Figure 8- T (x) = fi,(x) —x, k> k3)

738



Hussain et al. Iragi Journal of Science, 2022, Vol. 63, No. 2, pp: 729-739

References

[1]
(2]
3]
[4]
[5]
(6]
[7]
(8]
(9]

Devaney, R.L., "Dynamics Topology, and Bifurcations of Complex exponentials”, Topology
Appl., vol. 110, pp. 133-161, 2001.

Devaney, R.L., "A survey of exponential dynamics ", Chapman and Hall/CRC, pp. 105-122,
2004.

Al-Husseiny, H., F.," A Study of the Dynamics of the family A

vol. 4, no. 52, pp. 494-503, 2011.

Sajid, M., "Real and Complex Dynamics of One Parameter Family of Meromorphic Functions",
Far East .Dyn. Syst., vol. 19, no. 2, pp. 89-105, 2012.

Akbari, M., Rabii, M., "Real Cubic Polynomials With a Fixed Point of Multiplicity Two",
Indagationes Mathematicate, vol. 26, pp. 64-74, 2015.

Magrenan, A., Gutierrez, J., "Real Dynamics for Damped Newtons Method Applied to Cubic
Polynomials", Comput. Appl. Math., vol. 275, pp. 527-538, 2015.

Radwan, A. G., "On Some Generalized Discrete Logistic Maps", J. Adv. Res., vol. 4, no. 2, pp.
163-171, 2013.

Faris, S. M., "Dynamics of Certain Families of Transcendental Meromorphic Functions”, Ph.D.
thesis University of Baghdad, 2006.

Jamil, Z. Z. and Hussein, Z., "Common Fixed Point of Jungck Picard Itrative for Two Weakly
Compatible Self-Mappings", Iragi Journal of Science, vol. 62, no. 5, pp. 1695-1701, 2021.

[ hm n H -
Sl;mz , Iraqgi Journal of Science,

[10] Sajid, M., "Singular Values and Real Fixed Points of One-Parameter Families Assogiated with

Fundamental Trigonometric Functions sinz, cos z and tan z", International Journal of Applied
Mathematics, vol. 33, pp. 635-647, 2020.

739



