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Abstract

The purpose of this paper is to introduce dual notions of two known concepts
which are semi-essential submodules and semi-uniform modules. We call these
concepts; cosemi-essential submodules and cosemi-uniform modules respectively.
Also, we verify that these concepts form generalizations of two well-known classes;
coessential submodules and couniform modules respectively. Some conditions are
considered to obtain the equivalence between cosemi-uniform and couniform.
Furthermore, the relationships of cosemi-uniform module with other related
concepts are studied, and some conditional characterizations of cosemi-uniform
modules are investigated.

Keywords: Semi-essential submodules, P-small submodules, Cosemi-essential
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1. Introduction

Throughout this article, all rings are commutative with non-zero identity, and all modules are
unitary left R-modules. "A submodule V of an R-module U is called essential (denoted by V<.U),
provided that for each non-zero submodule L of U, VNL#0 [1]". In 2009 Mijbass and Abdullah
introduced the class of semi-essential submodule as a generalization of essential submodule. "A
submodule P of U is called prime, if whenever ru e P for r eR and u €U, then eitheru e P orr €
(P:U) [2], where (P:U)={reR| rUcP}, and a non-zero submodule V of U is said to be semi-essential, if
V N P # 0 for each non-zero prime submodule P of U [3]. A non-zero module U is called uniform, if
every non-zero submodule V of U is essential; that is VNL#0 for every non-zero submodule L of U
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[1], and a non-zero R-module U is called semi-uniform if every non-zero submodule of U is semi-
essential [3]. A submodule V of U is called small (denoted by V«U), if V+W=#U for every proper
submodule W of U [1]". Hadi and Ibrahiem introduced the class of P-small submodule, where "a
proper submodule V of an R-module U is called P-small (simply V«<pU), if V+P#£U for every prime
submodule P of U [4]".

The latter definition motivates us to construct the class of cosemi-essential submodules and cosemi-
uniform module as dual notions of semi-essential submodules and semi-uniform module respectively.

A non-zero submodule A is said to be cosemi-essential submodule of V in U if% is a P-small
submodule of %. A non-zero R-module U is called cosemi-uniform, if every proper submodule V of U

is either zero or there exists a proper submodule S of V such that\—sl <p %

This article consists of four sections; in section 2; we dualize the notion of semi-essential
submodule; named it cosemi-essential submodule, we dualize some main properties of semi-essential
submodules which appeared in [5] and [3]; see the results (2.10), (2.11), (2.12) and (2.13). Also, more
other useful results are investigated, for example; we give condition under which cosemi-essential and
coessential be equivalent, see proposition (2 8), where "a submodule S is called coessential submodule

of V in U (denoted by S<V in U), |f K= [6]" Section 3; is devoted to introduce a class of modules

named cosemi-uniform module as a dual notion of semi-uniform modules, various properties of
cosemi-uniform modules are given. This class of modules contains properly the class of couniform
modules, "where a non-zero module U is called couniform, if every proper submodule V of U is either

(0) or there exists a proper submodule S of V such that% 1G4 % [6]"; that is for each proper submodule

V of U, either VV = (0) or there exists a proper submodule S of V such that S is coessential submodule
of V in U. We investigate some conditions under which the class of cosemi-uniform coincides with
the class of couniform modules; see propositions (3.8), (3.10), (3.11) and (3.12). Furthermore, in
corollary (3.13), we verify that in the category of rings there is no difference between the two concepts
cosemi-uniform and couniform. In section 4; we study the relationships of cosemi-uniform with other
related concepts such as hollow, Pr-hollow and epiform modules, where an R-module U is called

epiform, if every nonzero homomorphism f: U — % with K a proper submodule of U is an

epimorphism [6], and a non-zero R-module U is called hollow if every proper submodule of U is small
[7]. A non-zero module U is called Pr-hollow, if every prime submodule of U is small [7]". The
concept of Pr-hollow modules is a generalization of hollow modules. "A non-zero R-module U is
called semi-uniform, if every non-zero submodule of U is semi-essential [3]". The hollow module is a
dual notion of the uniform module; we will see that Pr-hollow module is a dual notion of semi-
uniform module. Also we give some characterizations of cosemi-uniform modules under certain
conditions; see theorems (4.11), (4.12), (4.13).

2. Cosemi-essential Submodules

This section is devoted to introduce the class of cosemi-essential submodules as a dual notion of
semi-essential submodules. Before that we need to recall the following definition.
Definition (2.1): [4]

"A proper submodule V of an R-module U is called P-small (simply V«<pU), if V+P#U for every
prime submodule P of U".

This definition together with the concept of coessential submodule has been a motivation to
introduce the following new concept.
Definition (2.2): A submodule A of an R-module U is called cosemi-essential submodules of V in U

(simply A<cosmV in U), if ¥ <<p . An ideal | of a ring R is cosemi-essential of J in R if | is a cosemi-

essential R-submodule ofJ in R
Examples and Remarks (2.3):

1. For the Z-module Z,, (0) < cosm (2) in Z, since E ; <p (? In fact the only prime submodule

of 2= (2) and &L ©) (2);&

(0) (0) (0) ©®" ©°
2. (0) £cosm (2) in Zg, since there exists a prime submodule (3) of Zs such that == (2, 6 -

() © (0)
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3. For any submodules A and B of U such that AcBcU; if A<,B in U, then A<ys,B in U. We
think the converse is not true in general, but we don’t have example verifying that.
Proof (3): Itis clear, since every small submodule is P-small.
4. A submodule V of an R—module Uis P small if and only if (0) <¢smV in U.

Proof (4): Since V<LpU, then <<1>( ok , that is (0) <esmV in U. The converse is clear.

5. Consider the Z-module of the ratlonal numbers Q. Note that every submodule V of Q is P-
small [4], so according to (2.3)(4), we get (0) <CosmV in Q for every submodule Vv of Q

6. Forany submodule V of U, v<cosmv in U, since - <<p . In fact smce—~ 0) and +— Lk < for
each prime submodule v W of 2 v

7. Consider the set of rational number Q. Since every submodule of% is a P-small [4, Prop.(1.3)],

then Z <.,sm L in Q, for every submodule L of Q.
8. If Uisan R-module such that A< B< V< U, and B <csmV in U, then A <cosmv inU.

%
Proof (8): Let A< B, and B <,V in U, so= <<p . This implies that ;B <p B B[4, Prop.(1.3)],

hence ¥ <<p , thus A <cosmV in UL

9. A sem|3|mple module has no cosemi-essential submodule.

In the following property we prove the transitive property of cosemi-essential submodules by using
the class of coessential submodule.
Proposition (2.4): For any chain of submodules A< B< C< U of an R-module U, if A<,s»B in U and
B <. Cin U, then A<, C in U.

Proof: Suppose there exists a prime submodule of such that— + X = then C+P = U. This implies

P+B B
thal t_+T__' Since B <. C in U, thereforeT—E, and so that P+B = U. HenceX+X—K. But

A<.sm B in U, so we have a contradiction, therefore A<.sm C in U.

For the converse of the proposition (2.4), we have the following, before that we need the following
lemma.

Lemma (2.5): [4]

"Let U and U; be R-modules, and f: U— U; be R-homomorphism. If A<«pU, then f(A)<pU;".
Proposition (2.6): For the chain of submodules A< B< C< U of an R-module U. If A<.,snC in U, then
A<ismB in U and B <.,nC in U.

B

. . C U B _C U .
Proof: Since A<,smC in U, then + <p But; < thusX <p o [4, Remark (1.2)(3)]. That is

A<eosmB in U. Now define h: E ag by h(u+A) = u+B Yu+Ae H It is clear that h is an epimorphism,

therefore h( ) == On the other hand, by lemma (2.5) we get h( ) <pg 2 thus < <<p . That is B <¢sm C
inU.
We need the following lemma.

Lemma (2.7): [4, Cor. (1.10)]

"Let U be an R-module, and A be a finitely generated proper submodule of U, then A«pU if and
only if AKU".
Proposition (2.8): Let U be an R-module and Ac Bc U such that B is finitely generated, then
A<esmB in U if and only if A<, B in U.

Proof: Assume that A is a cosemi-essential submodule of B in U, then E <p %. Since B is a finitely

generated of U, so cIearIyE is also finitely generated. By lemma (2.7), ; < %, that is A is a coessential

submodule of B in A. The converse is clear.

Proposition (2.9): For any chain of submodules AcBcU, the following statements are satisfied:

1. If A<,smB in U, then B&KpU, provided that A contained properly in any prime submodule of U.
2. If B=A+T and T<pU, then A<csmB in U.

Proof:
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1. Let X be a prime submodule of U such that B+X=U. By assumption AEX, so that% is a proper

submodule of %, and by [2, Prop.(3.8)], % is a prime submodule of %. But A<,sm B in U, therefore §+

X %which is a contradiction. This implies that B+X+#U, hence B&KpU.

A

2. Let% be a prime submodule of U. Assume that§+ % = %, then B+V=U. By assumption A+T=B,
then A+T+V=U. Since AcV, so that T+V=U which is a contradiction since T«pU and V is a prime
submodule of U. Thus % + % # % for every prime submodule % of %, and hence A<gsmB in U.

The following proposition shows that the quotient of cosemi-essential submodule is cosemi-
essential.

Proposition (2.10): For any submodules A and B of an R-module U, if A<qsmB in U then %Scosmg in

9 for every submodule L of A.

A

Proof Assume that A<smB in U, then 2 <<p —. For every submodule L of A, we have — <r <§, and

=
Ud

/L B
, A /. L &p gk AL That is 2 = Zcosm T | E’ and we are done.

Under a certain condition, we can generallze proposition (2.10), as the following proposition shows.
Proposition (2.11): Let f: U— U’ be an R-homomorphism, where U and U’ be R-modules. If A<;,smB
in U, then f(A) <eosm f(B) in U, prowded that Ac rad(U) where rad(U) is the pnme radical of U.

Proof: Assume that A<gm

by lemma (2. 5)

L
f(A A) OMTON
f(A) Then f(B)+ L' = U’. We claim that B+ (L") = U. To see that, let ucU, then f(u)e U'= f(B) +
L', so JteL’ and 3beB such that £(u) = f(b) + t. This implies that f(u-b)=t, hence u-b= f™(t), that is
ueB+ f(L’). Now, since L' is a prime submodule of U, then f*(L") is also prime submodule of U [2,
Prop.(3. 8)] On the other hand, Ac rad(U), so by definition of rad(U) we have Ac f*(L'). Now, E +

:\(L) =—. Again by [2, prop.(3.8)] —— r ( I Wis a prime submodule of— But A<,smB in U, therefore
:\( ) = —whlch is a contradiction since L% 1( i proper, thus f(A) <esm f(B) in U’

"Recall that an R- module U is called multlpllcatlon if every submodule V of U can be written as
the form V=IU for some ideal | of R [8]".
Theorem (2.12): Let U be a finitely generated faithful and multiplication module. Then A<.,sm B in R
if and only if AU<s» BU in U, for all ideals A and B of R.

Proof: Assume that A<Cosm Bin R and we have to show thatE <p 3 1 If that is not true, then there

\%4

exists a prime submodule — of — such that > E s hence BU+V U. By [2, Prop.(3.8)], Visa

prime submodule of U, and smce U is multiplication, so there exists a prime ideal C of R such that

V=CU [8, Cor.(2.11)]. Now, (B+C)U=RU. Since U is finitely generated, faithful and multiplication, so

B+C=R [8, Th.(3.1)]. This implies that > += = = But A<cum B in R, thus 7 = = which is a

contradiction since 9 is proper. Therefore % 5 <p Al that is AU<;sm BU in U Conversely, we have

to show that = <<p Assume that A<osm B in R, so there exists a prime ideal = of % such that:
B,C_R

A + T R R R R LT LT T T P P TP PP TP PPRETPPRRTRPPR (D)
Hence B+C=R, this implies that (B+C)U=RU, that is:
BUFCUTRUTU . ...t (2)

Note that CU#RU since otherwise, we get C=R which is a contradiction. Moreover, since U is a
faithful and multiplication module, then CU is a prime ideal of R [8, Cor.(2.11)]. Now by using (2),
we can write (1) as follows:

BU CU_ U
D T AT TRD ettt 3)
But AU<cosmBU in U, then — <<p E Thus by using (3) we getm ZEWhICh is a contradiction,

since E is proper submodule of E' Thus 2 n Lp K’ that is A<csm B INR.
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"Recall that a submodule A of an R-module U is called a supplement of B, where B is a submodule
of U; if A is a minimal with the property B+A=U [1]".
Proposition (2.13): Let A be a supplement of B in an R-module U. If there exists a submodule T of B
such that U=A+T, then T <y B in U.

Proof: In order to prove T <Cosm B in U, we must show that— <<P . Assume that— be a prime

submodule of;such that ; + ;— ? Then U=B+L=B+(UNL). But U—A+T, then U=B+((A+T)NL).
Since TcL, so by Modular Law U=(B+(ANL)+T), hence U=B+(ANL). Since A is a supplement of B
in U, therefore ANL=A, hence AcL. Thus U=L+T=L. This implies that % = % which is a contradiction

since % is a proper submodule, thus T <.sm B in U.

3. Cosemi-uniform modules
Following [6], Hadi and Ahmed introduced a dual notion for uniform modules named couniform
modules, where "a non-zero module U is said to be couniform, if every proper submodule V of U is

either zero or there exists S = V such that\—; K g "

In this section we introduce a dual notion of semi-uniform modules, which is analogue of couniform
module, named a cosemi-uniform module.
Definition (3.1): A non-zero R-module U is called cosemi- uniform if every proper submodule V of U

is either zero or there exists a proper submodule S of V such that - <<p . Aring R is called cosemi-

uniform if R is a cosemi-uniform R-module.

Examples and Remarks (3.2):

1. It is clear that every couniform module is cosemi-uniform. The converse is not true in general as
we will see later; see example (4,8).

2. The Z-module Z is a cosemi-uniform module, since Z is a couniform module [6].

3. According to remark (2.3)(9), A semisimple module U is not cosemi-uniform module In fact every

non-zero proper submodule V of U doesn’t have a proper submodule S such that - <<p , since Vis a

direct summand of U and the only small submodule of U is (0).
4. Every chained module is cosemi- uniform module In fact if A is a proper submodule of U, then A

is either A=(0) or A#(0). If A#(0), then @ <p U In particular, Zgis cosemi-uniform Z-module. Note

that Zg is also couniform [6].

5. Q as Z-module is a cosemi-uniform module, "where Q is the field of rational numbers". Since in Q
every proper submodule is P-small, and the result follows by lemma (2.5).

6. Every simple module is a cosemi-uniform module.

7. An epimorphic image of cosemi-uniform module need not be cosemi-uniform module for

example; consider the natural epimorphism m: Z—>— from Z-module Z to the quotlent— Note
that Z is cosemi-uniform module, while m(Z) = —= Z,, , and by (3), Zy is not cosemi-uniform since it
is semisimple

The following proposition is about the direct summand of cosemi-uniform modules.
Proposition (3.3): Let U=U;®U, be R-module, where U; and U, are R-modules. If U is cosemi-
uniform, then U, and U, are cosemi-uniform modules.
Proof: Let 0 # L = U;, so L=U. But U is a cosemi-uniform module, then there exists a proper

submodule Sl of L such that:

U ®U,_ U S;+U
<<P 5 U,©U, 2_ Y1 1TY2
1

S, S, S,
Therefore
L Uy . S1+U,
s, <p S, @ Sy T (D)
The step (1) can be written as follows:
L @ (0) <<P CH Lo T et ©)

But S— c S— ) from (2) and by [4, Remark (1.2)(4)], we conclude the following:
1 1
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Thus U, is a cosemi-uniform module. In similar way we can prove that U, is a cosemi-uniform
module.
Remark (3.4): The direct sum of cosemi-uniform module may not be cosemi-uniform, for example
both of Z, and Z; are cosemi-uniform module, but the direct sum of them is isomorphic to Zswhich is
not cosemi-uniform since Zg is a semisimple module, see remark (3.2)(3).

The following theorem gives the hereditary of the cosemi-uniform property.
Theorem (3.5): Any finitely generated faithful and multiplication R-module U is cosemi-uniform if
and only if R is a cosemi-uniform ring.
Proof: =) Assume that U is a cosemi-uniform R-module, and let A be a non-zero proper ideal of R.

To find a non-zero proper ideal A; of R such that such that Ai <p AE. Put AU=V, then V is a non-zero
1 1

proper submodule of U. Since U is a cosemi-uniform module, then there exists a submodule V; of V
such that such that:

Vll <p % ......................................................................................................... (1)
Now, since U is multiplication then U=RU, and since V;< V< U, thus V; = A;U for some ideal A; of
R [8]. So we can put (1) as follows:

AU RU

A1_U P Al_U ....................................................................................................... (2)
. A R . . . . C R A C

We claim that — «p —. If that is not true, then there exists a prime ideal — of — such that — + — =

Ay Ay Aq Ay A Ay

R .

™~ that is:

A+C_ R

AL AL T (3)

o (A+C)U _ AU+CU _ AU , CU _ RU
This implies that AU - AU " AU + AU AU hence
o o (4)
V1 V1 V1

Since A£ is a prime ideal of AE, so C is also prime ideal of R [2]. Note that CU#£U, in fact if CU=U, and
1 1
since U is finitely generated faithful and multiplication then C=R, which is a contradiction since C is a

proper ideal of R. Thus CU is a prime submodule of U [8]. Again by [2], f/—U is a prime submodule of

2 This implies that v <p 2 whichisa contradiction, thus A <p R,
Vi Vi Vi Aq Aq
<) Let V be a non-zero proper submodule of U, we have to find a non-zero proper submodule W of U
such that% <p % By assumption there exists an ideal A of R such that V = AU [8]. Since U is a
finitely generated multiplication module, then A is a non-zero proper ideal of R [8]. But R is a cosemi-

couniform ring, so 3 B£A such that% <p g. It is clear that BUZAU. We claim that% <p %. If

not, then there exists a prime submodule BLU of BLU such that:

A o (1)
BU BU BU

Hence:

AU HV = U e (2

Since U is a multiplication, so there exists a prime ideal C of R such that V=CU [8, Cor.(2.11)].
From (2) we get AU + CU = U, hence (A+C) U=U. Since U is a finitely generated faithful and
multiplication, therefore A+C=R [8]. This implies that%+§ =%. By [2], % is a prime ideal of %. So
A is not P-small submodule OfBWhiCh is a contradiction, thereforeA—U <p ﬂ. Put W=BU, thenl
B B BU BU w
«<p % thus U is cosemi-uniform.

The concept of fully essential submodules was appeared in [5], where "a non-zero module U is
called fully essential if every non-zero semi-essential submodule of U is essential”. We give analogue
concept named fully coessential.
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Definition (3.6): A non-zero module U is called fully coessential, if every non-zero proper cosemi-
essential submodule of U is coessential. That is for every 0#W= V<U, if W<V in U, then W<V
in U. Aring R is called fully co essential if R is fully coessential R-module.

Examples (3.7):

1. Every couniform module is fully coessential.

2. Zis fully coessential module, since Z is a couniform module [6].

3. Since every hollow module is couniform [6], so every hollow module is fully coessential.

4. Z4is a fully coessential module, see example (2.3)(1).

As we mentioned in remark (3.2)(1) that every couniform is cosemi-uniform, and we need some
information to verify the converse is not true in general; see example (4.8). However, the converse is
true under the class of fully coessential modules as the following proposition shows.

Proposition (3.8): Let U be a fully coessential module. Then U is a couniform module if and only if U
is cosemi-uniform.

Proof: The necessity is clear. Conversely, if U is a cosemi-uniform module then every proper
submodule V of U is either zero or there exists a proper submodule S of V such that S<c,nV in U.
since U is a fully coessential module, then S<.V in U, hence we are through.

"Recall that an R- module U is called fully prime if every proper submodule of U is a prime [5]". The
authors in [5] proved that for any fully prime module; the class of uniform modules coincides with the
class of semi-uniform module. As a dual of this statement we give the following, before that we need
to give the following useful lemma which can be easily proved.

Lemma (3.9): If U is a fully prime R-module, then % is fully prime module for every submodule V of

u.

Proposition (3.10): Let U be a fully prime module. Then U is a couniform module if and only if U is
cosemi-uniform module.

Proof: The necessity follows by remark (3.2)(1). For the sufficiency; suppose that U is a cosemi-
uniform module, and let V be a proper submodule of U. If V is zero, then we are done. If V£0, and

since U is a cosemi-uniform module, then there exists a proper submodule S of U such that % <p % ,

i.e % +§ # % for each prime submodule g of % But U is a fully prime module, so by lemma (3.9), % is

also fully prime module, that is all submodules of % are prime submodules. Thus % < % so that U is a

couniform module.

Proposition (3.11): For any multiplication R-modules; the class of cosemi-uniform coincides with the
class of couniform modules.

Proof: Assume that U is a cosemi-uniform, and let V' be a non-zero proper submodule of U, then there

exists a proper submodule S of V such that% Lp % Since U is multiplication and it is well-known that

the quotient of multiplication is also multiplication, then % < g [4, Prop.(1.4)]. That is U is a
couniform module. The converse is clear.
As consequence of proposition (3.11), we have the following.
Corollary (3.12): Any ring is a couniform if and only if it is a cosemi-uniform ring.
Proposition (3.13): Let U be a finitely generated R-module, then U is a cosemi-uniform module if and
only if U is a couniform.
Proof: Suppose that U is a cosemi-uniform module. Because in a finitely generated module there is no
different between small and P-small submodule [4, Prop.(1.4)], thus we are done.

"An R-module U is called Noetherian, if every submodule of U is finitely generated [1, P.55]". The
following proposition follows directly by proposition (3.13).
Corollary (3.14): Let U be a Noetherian R-module, then U is a cosemi-uniform module if and only if
U is couniform.
4. Cosemi-uniform module and related concepts

This section devoted to study the relationships between cosemi-uniform module and other well-
known related concepts such as hollow and Pr-hollow and epiform module.
Lemma (4.1): [4]

"If every prime submodule of an R-module U is small, then every proper submodule of U is P-
small”.
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Proposition (4.2): Every Pr-hollow module is cosemi-uniform module
Proof: Let U be a Pr-hollow module, and let V< U. If V=0, then we are done. If V£0, then by lemma

(4.1), V<pU. This implies that% Lp %for every proper submodule W of V [4, Prop. (1.3)]. Thatis U

is a cosemi-uniform module.

The converse is not true in general as the following example shows.

Examples (4.3): Consider the Z-module Z. By example (3.2)(2), Z is a couniform module. On the
other hand, Z is not Pr-hollow [7].

However, if U is fully prime then the convers is true, as the following proposition shows.
Proposition (4.4): If an R-module U is a fully prime and cosemi-uniform module, then U is Pr-
hollow.

Proof: Let V be a non-zero prime submodule of U. Suppose the converse; that is V is not small
submodule of U, so there exists a proper submodule K of U such that V+K=U. Since U is a cosemi-

uniform module, then there exists a proper submodule S of V such that\—sl <p g . It is clear that S#0,

since if S=0, then V<«<U which is a contradiction. Since V+K=U, then VAKHS _ % This implies that% +

S
S+K _ U . S+K . . i .
~< -3 By assumption — s a prime submodule, so we get a contradiction, thus V is a small

submodule of U, and hence U is Pr-hollow.

Theorem (4.5): Assume that U is a fully prime module, the following statements are equivalent.

1. U is a couniform module.

2. U is cosemi-uniform module.

3. U is a Pr-hollow module.

4. U is ahollow module.

Proof:

(1) = (2): By remark (3.2)(1).

(2) = (1): Proposition (3.10)

(2) = (3): By proposition (4.4).

(3) = (4): Let V be a proper submodule of U, if V is not small in U, then there exists a submodule L
such that V+L=U. Since U is a fully prime module, then L is prime. But U is a Pr-hollow, then L« U,
and so V=U which is a contradiction. Therefore V<«U. That is U is a hollow module.

(4) = (1): Itisclear.

"Recall that a non-zero module U is called coquasi-Dedekind if every proper submodule of U is
coquasi-invertible [9]. A proper submodule V of U is called coquasi-invertible, if Homg(U,V) =0 [9]".
We need the following lemma.

Lemma (4.6): [6, Th.(2.9)]
If an R-module U is epiform, then U is a couniform and coquasi-Dedekind module.
Corollary (4.7): Every epiform module is cosemi-uniform.
Proof: By remark (3.2)(1) and lemma (4.6).
In the following example we verify that the class of couniform modules is contained properly in
the class of cosemi-uniform modules.
Example (4.8): We mentioned in example (3.2)(5), that Q is a cosemi-uniform module. But we can
easily show that Q is not couniform. In fact, if we consider the negation of the lemma (4.6), which is:
if an R-module U is not couniform module or not coquasi-Dedekind, then U is not epiform. Note that
Q is coquasi-Dedekind and not epiform module [6, P.247], thus according to lemma (4.6), Q must be
not couniform module.
Theorem (4.9): Let U be a multiplication module. Consider the following statements:
1. Uis a hollow module.
2. U is a Pr-hollow module.
3. U is cosemi-uniform module.
4. U is a couniform module.
Then (1) (2)=(3)=>(4).
Proof:
(D)= (2): Itis clear.
(2)= (1): Let V be a proper submodule of U. If V is not small submodule of U, then there exists a
submodule W of U such that V+W=U. Since U is a multiplication module, so there exists maximal
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(hence prime) submodule P of U such that Wc P [8, Th.(2.5)]. This implies that V+P=U. Since U is
Pr-hollow, and P« U, so V=U which is a contradiction. Thus V<« U and so U is a hollow module.

(2) = (3): By proposition (4.2).

(3) = (4): Since U is a multiplication module, so by proposition (3.11), U is couniform.

It is well known that if U is a finitely generated, then every proper submodule contained in a
maximal submodule of U. By using this fact instead of [8, Th.(2.5)], and in similar way of the proof of
theorem (4.9), we have the following.

Theorem (4.10): Assume that U is a finitely generated R-module, consider the following statements:
1. U is a hollow module.

2. U is a Pr-hollow module.

3. U is a cosemi-uniform module.

4. U is a couniform module.

Then (1) (2)<(3)=(4).

"Following [9], an R-module U is called self-projective if for every submodule V of U, any
homomorphism f: U—>% can be lifted to a homomorphism g: U—U".

Theorem (4.11): For any self-projective R-module U, the following statements are equivalent:

1. U is an epiform module.

2. U is a coquasi-Dedekind module.

3. U is a cosemi-uniform and coquasi-Dedekind module.

Proof:

1) = (3): It follows by lemma (4.6) and remark (3.2)(1).

3) = (2): Itisclear.

2 = (1): Since U is self-projective and coquasi-Dedekind, then U is an epiform module [6, Prop.
(2.11)].

Following [9, Th.(1.2.16)], Yasseen proved that if U is self-projective module with J(End(U)) = 0,
then a submodule V of U is small if and only if V is coquasi-invertible, where J(End(U)) is the
Jacobson radical of the endomorphism of the ring R. For that reason, we can easily prove the
following.

Theorem (4.12): If U is self-projective R-module U with the property J(End(U))=0, then the
following statements are equivalent:

1. U is an epiform module.

2. U is a hollow module.

3. U is a coquasi-Dedekind module.

4. U is a cosemi-uniform and coquasi-Dedekind module.

Proof:

1) = (2): [6].

(2) = (3): [9, Th.(1.2.16)].

(4) = (3): Itis clear.

(4) © (1): Since U is self-projective module and coquasi Dedekind, then U is an epiform module [6,
Prop.(2.11)].

Proposition (4.13): For any multiplication R-module U, the following statements are equivalent:

1. U is an epiform module.

2. U is a coquasi-Dedekind module.

3. U is a couniform and coquasi-Dedekind module.

Proof:

()= (2): By lemma (4.6).

(2) = (2): Since U is coquasi-Dedekind, so every proper submodule V of U is quasi invertible [9,
Th.(1.2.13)]. But U is multiplication, then V is corational [9, Th.(1.2.7)], hence U is epiform [6].

(1) = (3): By lemma (4.6).

(3) = (2): Itisclear.
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