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Abstract   

     The purpose of this paper is to introduce dual notions of two known concepts 

which are semi-essential submodules and semi-uniform modules. We call these 

concepts; cosemi-essential submodules and cosemi-uniform modules respectively. 

Also, we verify that these concepts form generalizations of two well-known classes; 

coessential submodules and couniform modules respectively. Some conditions are 

considered to obtain the equivalence between cosemi-uniform and couniform. 

Furthermore, the relationships of cosemi-uniform module with other related 

concepts are studied, and some conditional characterizations of cosemi-uniform 

modules are investigated. 

 

Keywords: Semi-essential submodules, P-small submodules, Cosemi-essential 

submodules, Cosemi-uniform modules.  

 

 المقاسات الرديفة للمقاسات الجزئية شبه الجوهرية والمقاسات شبه المنتظمة
 

 منى عباس أحمد
 رياضيات، كلية العلوم للبنات، جامعة بغداد، بغداد، العراق

  الخلاصة
إن الهدف من هذا البحث هو إيجاد ردائف لمقاسات معروفة هي المقاسات الجزئية شبه الجوهرية      

. أطلقنا عليهما 9002والمقاسات شبه المنتظمة التي قدمت من قبل كل من مجباس وعبدالله في بحثهما عام 
لمقاسات الرديفة للمقاسات شبه المنتظمة . اسم المقاسات الجزئية الرديفة للمقاسات الجزئية  شبه الجوهرية وا

المقاسات الجزئية الرديفة للمقاسات  هما معروفين آخرينمفهومين كذلك بيَنا بأن هذين المفهومين أكبر من 
 couniform( والمقاسات الرديفة للمقاسات المنتظمة )coessential submodulesالجزئية الجوهرية )

modules) .على التوالي 
البرهنة على عدد من تم  ، كماالصنفينبرهنا عدد من القضايا التي تتعلق بالخصائص المهمة لهذين      

القضايا حول التكافؤ المشروط بين المقاسات الرديفة للمقاسات المنتظمة و المقاسات الرديفة للمقاسات شبه 
 المنتظمة ببعض المقاسات الأخرى.علاقة المقاسات الرديفة للمقاسات شبه درسنا إضافة الى ذلك  ،المنتظمة

 
1. Introduction 

     Throughout this article, all rings are commutative with non-zero identity, and all modules are 

unitary left R-modules. "A submodule V of an R-module U is called essential (denoted by VeU), 

provided that for each non-zero submodule L of U, V∩L≠0 [1]". In 2009 Mijbass and Abdullah 

introduced the class of semi-essential submodule as a generalization of essential submodule. "A 

submodule P of U is called prime, if whenever ru  P for r R and u U, then either u  P or r  

(P:U) [2], where (P:U)={rR| rUP}, and a non-zero submodule V of U is said to be semi-essential, if 

V ∩ P ≠ 0 for each non-zero prime submodule P of U [3]. A non-zero module U is called uniform, if 

every non-zero submodule V of U is essential; that is V∩L≠0 for every non-zero submodule L of U 
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[1], and a non-zero R-module U is called semi-uniform if every non-zero submodule of U is semi-

essential [3]. A submodule V of U is called small (denoted by V U), if V+W≠U for every proper 

submodule W of U [1]". Hadi and Ibrahiem introduced the class of P-small submodule, where "a 

proper submodule V of an R-module U is called P-small (simply V  U), if V+P≠U for every prime 

submodule P of U [4]".  

     The latter definition motivates us to construct the class of cosemi-essential submodules and cosemi-

uniform module as dual notions of semi-essential submodules and semi-uniform module respectively. 

A non-zero submodule A is said to be cosemi-essential submodule of V in U if 
 

 
 is a P-small 

submodule of 
 

 
. A non-zero R-module U is called cosemi-uniform, if every proper submodule V of U 

is either zero or there exists a proper submodule S of V such that 
 

 
    

 

 
.  

     This article consists of four sections; in section 2; we dualize the notion of semi-essential 

submodule; named it cosemi-essential submodule, we dualize some main properties of semi-essential 

submodules which appeared in [5] and [3]; see the results (2.10), (2.11), (2.12) and (2.13). Also, more 

other useful results are investigated, for example; we give condition under which cosemi-essential and 

coessential be equivalent, see proposition (2.8), where "a submodule S is called coessential submodule 

of V in U (denoted by S≤ceV in U), if 
 

 
   

 

 
 [6]". Section 3; is devoted to introduce a class of modules 

named cosemi-uniform module as a dual notion of semi-uniform modules, various properties of 

cosemi-uniform modules are given. This class of modules contains properly the class of couniform 

modules, "where a non-zero module U is called couniform, if every proper submodule V of U is either 

(0) or there exists a proper submodule S of V such that 
 

 
   

 

 
 [6]"; that is for each proper submodule 

V of U, either V = (0) or there exists a proper submodule S of V such that S is coessential submodule 

of V in U.  We investigate some conditions under which the class of cosemi-uniform coincides with 

the class of couniform modules; see propositions (3.8), (3.10), (3.11) and (3.12). Furthermore, in 

corollary (3.13), we verify that in the category of rings there is no difference between the two concepts 

cosemi-uniform and couniform. In section 4; we study the relationships of cosemi-uniform with other 

related concepts such as hollow, Pr-hollow and epiform modules, where an R-module U is called 

epiform, if every nonzero homomorphism f: U  
 

 
 with K a proper submodule of U is an 

epimorphism [6], and a non-zero R-module U is called hollow if every proper submodule of U is small 

[7]. A non-zero module U is called Pr-hollow, if every prime submodule of U is small [7]". The 

concept of Pr-hollow modules is a generalization of hollow modules. "A non-zero R-module U is 

called semi-uniform, if every non-zero submodule of U is semi-essential [3]". The hollow module is a 

dual notion of the uniform module; we will see that Pr-hollow module is a dual notion of semi-

uniform module. Also we give some characterizations of cosemi-uniform modules under certain 

conditions; see theorems (4.11), (4.12), (4.13).  

2. Cosemi-essential Submodules 
     This section is devoted to introduce the class of cosemi-essential submodules as a dual notion of 

semi-essential submodules. Before that we need to recall the following definition. 

Definition (2.1): [4]  

     "A proper submodule V of an R-module U is called P-small (simply V  U), if V+P≠U for every 

prime submodule P of U". 

     This definition together with the concept of coessential submodule has been a motivation to 

introduce the following new concept. 

Definition (2.2): A submodule A of an R-module U is called cosemi-essential submodules of V in U 

(simply A≤cosmV in U), if 
 

 
    

 

 
. An ideal I of a ring R is cosemi-essential of J in R if I is a cosemi-

essential R-submodule of J in R. 

Examples and Remarks (2.3): 

1. For the Z-module Z4, ( ̅) ≤ cosm ( ̅) in Z4, since 
  ̅  

  ̅  
    

  

  ̅  
. In fact the only prime submodule 

of 
  

  ̅  
 is 

  ̅ 

  ̅  
, and 

  ̅  

  ̅  
+ 

  ̅  

  ̅  
≠ 

  

  ̅  
. 

2.  ( ̅)  cosm   ̅  in Z6, since there exists a prime submodule   ̅  of Z6 such that 
   ̅ 

  ̅  
+ 

  ̅   

  ̅  
= 

  

  ̅  
. 
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3. For any submodules A and B of U such that ABU; if A≤ceB in U, then A≤cosmB in U. We 

think the converse is not true in general, but we don’t have example verifying that. 

           Proof (3):  It is clear, since every small submodule is P-small.  

4. A submodule V of an R-module U is P-small if and only if (0) ≤cosmV in U. 

           Proof (4): Since V  U, then 
 

   
    

 

   
 , that is (0) ≤cosmV in U. The converse is clear. 

5. Consider the Z-module of the rational numbers Q. Note that every submodule V of Q is P-

small [4], so according to (2.3)(4), we get (0) ≤cosmV in Q for every submodule V of Q. 

6. For any submodule V of U, V≤cosmV in U, since 
 

 
    

 

 
. In fact since 

 

 
  (0) and 

 

 
 +

 

 
  ≠ 

 

 
 for 

each prime submodule 
 

 
 of 

 

 
. 

7. Consider the set of rational number Q. Since every submodule of 
 

 
 is a P-small [4, Prop.(1.3)], 

then Z ≤cosm L in Q, for every submodule L of Q.  

8. If U is an R-module such that A≤ B≤ V≤ U, and B ≤cosmV in U, then A ≤cosmV in U. 

Proof (8): Let A≤ B, and B ≤cosmV in U, so 
 

 
    

 

 
. This implies that 

 
 ⁄

 
 ⁄

    
 

 ⁄

 
 ⁄

  [4, Prop.(1.3)], 

hence 
 

 
    

 

 
, thus A ≤cosmV in U. 

9. A semisimple module has no cosemi-essential submodule. 

     In the following property we prove the transitive property of cosemi-essential submodules by using 

the class of coessential submodule. 

Proposition (2.4): For any chain of submodules A≤ B≤ C≤ U of an R-module U, if A≤cosmB in U and 

B ≤ce C in U, then A≤cosm C in U. 

Proof: Suppose there exists a prime submodule 
 

 
 of 

 

 
 such that 

 

 
 + 

 

 
 = 

 

 
, then C+P = U. This implies 

that 
 

 
 + 

   

 
 = 

 

 
. Since B ≤ce C in U, therefore 

   

 
 = 

 

 
, and so that P+B = U. Hence 

 

 
 + 

 

 
 = 

 

 
. But 

A≤cosm B in U, so we have a contradiction, therefore A≤cosm C in U. 

For the converse of the proposition (2.4), we have the following, before that we need the following 

lemma. 

Lemma (2.5): [4] 

    "Let U and U1 be R-modules, and  : U U1 be R-homomorphism. If A PU, then  (A) P U1". 

Proposition (2.6): For the chain of submodules A≤ B≤ C≤ U of an R-module U. If A≤cosmC in U, then 

A≤cosmB in U and B ≤cosmC in U. 

Proof: Since A≤cosmC in U, then  
 

 
    

 

 
. But 

 

 
  

 

 
, thus 

 

 
    

 

 
 [4, Remark (1.2)(3)]. That is 

A≤cosmB in U. Now, define  : 
 

 
 

 

 
 by  (u+A) = u+B u+A 

 

 
. It is clear that   is an epimorphism, 

therefore  (
 

 
) = 

 

 
. On the other hand, by lemma (2.5) we get  (

 

 
)    

 

 
 thus 

 

 
    

 

 
. That is B ≤cosm C 

in U. 

We need the following lemma. 

Lemma (2.7): [4, Cor. (1.10)]  

     "Let U be an R-module, and A be a finitely generated proper submodule of U, then A  U if and 

only if A U". 

Proposition (2.8): Let U be an R-module and A B U such that B is finitely generated, then 

A≤cosmB in U if and only if A≤ce B in U. 

Proof: Assume that A is a cosemi-essential submodule of B in U, then 
 

 
    

 

 
. Since B is a finitely 

generated of U, so clearly 
 

 
 is also finitely generated. By lemma (2.7), 

 

 
  

 

 
, that is A is a coessential 

submodule of B in A. The converse is clear. 

Proposition (2.9): For any chain of submodules ABU, the following statements are satisfied: 

1.  If A≤cosmB in U, then B  U, provided that A contained properly in any prime submodule of U. 

2. If B=A+T and T  U, then A≤cosmB in U. 

 

Proof:  
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1. Let X be a prime submodule of U such that B+X=U. By assumption A X, so that 
 

 
 is a proper 

submodule of 
  

 
, and by [2, Prop.(3.8)],  

 

 
  is a prime submodule of 

 

 
. But A≤cosm B in U, therefore 

 

 
+ 

 

 
 = 

  

 
 which is a contradiction. This implies that B+X≠U, hence B  U. 

2. Let 
 

 
 be a prime submodule of U. Assume that 

 

 
 + 

 

 
 = 

 

 
, then B+V=U. By assumption A+T=B, 

then A+T+V=U. Since AV, so that T+V=U which is a contradiction since T  U and V is a prime 

submodule of U. Thus 
 

 
 + 

 

 
 ≠ 

 

 
 for every prime submodule  

 

 
 of 

 

 
, and hence A≤cosmB in U. 

     The following proposition shows that the quotient of cosemi-essential submodule is cosemi-

essential. 

Proposition (2.10): For any submodules A and B of an R-module U, if A≤cosmB in U then  
 

 
 ≤cosm 

 

 
 in 

 

 
 for every submodule L of A.  

Proof: Assume that A≤cosmB in U, then 
 

 
    

 

 
. For every submodule L of A, we have 

 

  
 ≤ 

 

  
 ≤ 

 

  
, and 

by lemma (2.5), 
 

 ⁄

 
 ⁄
    

 
 ⁄

 
 ⁄
. That is 

 

 
 ≤cosm 

 

 
 in 

 

 
, and we are done. 

Under a certain condition, we can generalize proposition (2.10), as the following proposition shows. 

Proposition (2.11): Let  : U U be an R-homomorphism, where U and U be R-modules. If A≤cosmB 

in U, then  (A) ≤cosm  (B) in U, provided that A rad(U), where rad(U) is the prime radical of U. 

Proof: Assume that A≤cosmB in U, and let 
  

    
 be a prime submodule of 

  

    
 such that 

    

    
 + 

  

    
 = 

  

    
. Then  (B)+ L = U. We claim that B+  -1

(L) = U. To see that, let uU, then  (u) U=  (B) + 

L, so tL and bB such that  (u) =  (b) + t. This implies that  (u-b)=t, hence u-b=  -1
(t), that is 

uB+  -1
(L). Now, since L is a prime submodule of U, then  -1

(L) is also prime submodule of U [2, 

Prop.(3.8)]. On the other hand, A rad(U), so by definition of rad(U) we have A  -1
(L). Now, 

 

 
 + 

      

 
 = 

 

 
. Again by [2, prop.(3.8)] 

      

 
 is a prime submodule of 

 

 
. But A≤cosmB in U, therefore 

      

 
 = 

 

 
 which is a contradiction since 

      

 
 is proper, thus  (A) ≤cosm  (B) in U.  

     "Recall that an R- module U is called multiplication if every submodule V of U can be written as 

the form V=IU for some ideal I of R [8]". 

Theorem (2.12): Let U be a finitely generated faithful and multiplication module. Then A cosm B in R 

if and only if AU cosm BU in U, for all ideals A and B of R. 

Proof: Assume that A cosm B in R, and we have to show that 
  

  
    

 

  
. If that is not true, then there 

exists a prime submodule 
 

  
 of 

 

  
 such that 

  

  
 + 

 

  
 = 

 

  
, hence BU+V=U. By [2, Prop.(3.8)], V is a 

prime submodule of U, and since U is multiplication, so there exists a prime ideal C of R such that 

V=CU [8, Cor.(2.11)]. Now, (B+C)U=RU. Since U is finitely generated, faithful and multiplication, so 

B+C=R [8, Th.(3.1)]. This implies that 
 

 
 +

 

 
 = 

 

  
. But A cosm B in R, thus 

 

 
 = 

 

  
 which is a 

contradiction since 
 

 
  is proper. Therefore 

  

  
    

 

  
, that is AU cosm BU in U. Conversely, we have 

to show that 
 

 
    

 

 
. Assume that A cosm B in R, so there exists a prime ideal 

 

 
 of 

 

 
 such that: 

 
 

 
 + 

 

 
 = 

 

 
 …………………………………………………………………………………………….. (1) 

 Hence B+C=R, this implies that (B+C)U=RU, that is: 

 BU+CU=RU=U……………………………………………………………………………………..  (2) 

Note that CU≠RU since otherwise, we get C=R which is a contradiction. Moreover, since U is a 

faithful and multiplication module, then CU is a prime ideal of R [8, Cor.(2.11)]. Now by using (2), 

we can write (1) as follows: 

     
  

  
 + 

  

  
 = 

 

  
 …………………………………………………………………………….………..  (3) 

But AU cosmBU in U, then 
  

  
    

 

  
. Thus by using (3) we get 

  

  
 = 

 

  
 which is a contradiction, 

since 
  

  
 is proper submodule of 

 

  
. Thus 

 

 
    

 

 
, that is A cosm B in R. 



Ahmed                                        Iraqi Journal of Science, 2018, Vol. 59, No.4B, pp: 2107-2116 

 

2111 

     "Recall that a submodule A of an R-module U is called a supplement of B, where B is a submodule 

of U; if A is a minimal with the property B+A=U [1]".  

Proposition (2.13): Let A be a supplement of B in an R-module U. If there exists a submodule T of B 

such that U=A+T, then T ≤cosm B in U. 

Proof: In order to prove T ≤cosm B in U, we must show that 
 

 
   

 

 
. Assume that 

 

 
 be a prime 

submodule of 
 

 
 such that  

 

 
 + 

 

 
 = 

 

 
. Then U=B+L=B+(U∩L). But U=A+T, then U=B+((A+T)∩L). 

Since TL, so by Modular Law U=(B+(A∩L)+T), hence U=B+(A∩L). Since A is a supplement of B 

in U, therefore A∩L=A, hence AL. Thus U=L+T=L. This implies that 
 

 
 = 

 

 
, which is a contradiction 

since 
 

 
 is a proper submodule, thus T ≤cosm B in U. 

3. Cosemi-uniform modules  

     Following [6], Hadi and Ahmed introduced a dual notion for uniform modules named couniform 

modules, where "a non-zero module U is said to be couniform, if every proper submodule V of U is 

either zero or there exists S   V such that 
 

 
   

 

 
 ".         

    In this section we introduce a dual notion of semi-uniform modules, which is analogue of couniform 

module, named a cosemi-uniform module. 

Definition (3.1): A non-zero R-module U is called cosemi-uniform, if every proper submodule V of U 

is either zero or there exists a proper submodule S of V such that 
 

 
    

 

 
. A ring R is called cosemi-

uniform if R is a cosemi-uniform R-module. 

Examples and Remarks (3.2): 

1. It is clear that every couniform module is cosemi-uniform. The converse is not true in general as 

we will see later; see example (4,8). 

2. The Z-module Z is a cosemi-uniform module, since Z is a couniform module [6]. 

3. According to remark (2.3)(9), A semisimple module U is not cosemi-uniform module. In fact every 

non-zero proper submodule V of U doesn’t have a proper submodule S such that 
 

 
    

 

 
, since V is a 

direct summand of U and the only small submodule of U is (0).   

4. Every chained module is cosemi-uniform module. In fact if A is a proper submodule of U, then A 

is either A=(0) or A≠(0). If A≠(0), then 
 

   
    

 

   
. In particular, Z8 is cosemi-uniform Z-module. Note 

that Z8 is also couniform [6]. 

5. Q as Z-module is a cosemi-uniform module, "where Q is the field of rational numbers". Since in Q 

every proper submodule is P-small, and the result follows by lemma (2.5). 

6. Every simple module is a cosemi-uniform module. 

7. An epimorphic image of cosemi-uniform module need not be cosemi-uniform module, for 

example; consider the natural epimorphism  : Z 
 

   
  from Z-module Z to the quotient 

 

   
 . Note 

that Z is cosemi-uniform module, while  (Z) = 
 

   
 Z10 , and by (3), Z10 is not cosemi-uniform since it 

is semisimple 

     The following proposition is about the direct summand of cosemi-uniform modules. 

Proposition (3.3): Let U=U1U2 be R-module, where U1 and U2 are R-modules. If U is cosemi-

uniform, then U1 and U2 are cosemi-uniform modules.  

Proof: Let 0 ≠ L   U1, so L U. But U is a cosemi-uniform module, then there exists a proper 

submodule S1 of L such that: 

 
 

  
    

 

  
 = 

    

  
= 

  

  
  

     

  
 

 Therefore: 

 
 

  
   

  

  
  

     

  
 …………………………………………………………………………...………. (1) 

The step (1) can be written as follows: 

 
 

  
       

  

  
  

   

  
 ………………………………………………………………………..…… (2) 

But  
 

  
  

  

  
 so from (2) and by [4, Remark (1.2)(4)], we conclude the following: 
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     Thus U1 is a cosemi-uniform module. In similar way we can prove that U2 is a cosemi-uniform 

module. 

Remark (3.4): The direct sum of cosemi-uniform module may not be cosemi-uniform, for example 

both of Z2 and Z3 are cosemi-uniform module, but the direct sum of them is isomorphic to Z6 which is 

not cosemi-uniform since Z6 is a semisimple module, see remark (3.2)(3). 

     The following theorem gives the hereditary of the cosemi-uniform property. 

Theorem (3.5): Any finitely generated faithful and multiplication R-module U is cosemi-uniform if 

and only if R is a cosemi-uniform ring. 

Proof: ) Assume that U is a cosemi-uniform R-module, and let A be a non-zero proper ideal of R. 

To find a non-zero proper ideal A1 of R such that such that 
 

  
  

 

  
. Put AU= V, then V is a non-zero 

proper submodule of U. Since U is a cosemi-uniform module, then there exists a submodule V1 of V 

such that such that:  
 

    
    

 

   
 ……………………………………………………………………………………………  (1) 

 Now, since U is multiplication then U=RU, and since V1≤ V≤ U, thus V1 = A1U for some ideal A1 of 

R [8]. So we can put (1) as follows: 
  

   
   

  

     
………………………………………………………………………………………….  (2) 

We claim that 
 

  
    

 

  
. If that is not true, then there exists a prime ideal 

 

  
  of 

 

  
 such that 

 

  
 + 

 

  
 = 

 

   
, that is: 

   

  
 = 

 

   
 ……………………………………………………………………………..………………..(3)  

    This implies that 
      

   
 =  

     

   
 = 

  

   
 + 

  

   
 = 

  

    
, hence: 

 

  
 + 

  

  
 = 

 

   
…………………………………………………………………………………………..  (4)   

Since 
 

  
 is a prime ideal of 

 

  
, so C is also prime ideal of R [2]. Note that CU≠U, in fact if CU=U, and 

since U is finitely generated faithful and multiplication then C=R, which is a contradiction since C is a 

proper ideal of R. Thus CU is a prime submodule of U [8]. Again by [2], 
  

  
 is a prime submodule of 

 

   
. This implies that 

 

   
   

 

    
 which is a contradiction, thus 

 

  
   

 

  
. 

) Let V be a non-zero proper submodule of U, we have to find a non-zero proper submodule W of U 

such that 
 

  
    

 

   
. By assumption there exists an ideal A of R such that V = AU [8]. Since U is a 

finitely generated multiplication module, then A is a non-zero proper ideal of R [8]. But R is a cosemi-

couniform ring, so  B A such that 
 

 
   

 

 
 . It is clear that BU≠AU. We claim that 

  

   
    

  

    
. If 

not, then there exists a prime submodule  
 

   
 of 

 

   
 such that: 

 
  

   
 +

 

   
 = 

 

  
  …………… ………………………………………………………………………...…(1) 

 Hence: 

 AU +V = U……………………………………………………………………………………………(2) 

      Since U is a multiplication, so there exists a prime ideal C of R such that V=CU [8, Cor.(2.11)]. 

From (2) we get AU + CU = U, hence (A+C) U=U. Since U is a finitely generated faithful and 

multiplication, therefore A+C=R [8]. This implies that 
 

 
 +

 

 
 = 

 

  
. By [2], 

 

 
 is a prime ideal of 

 

  
. So 

 

 
 is not P-small submodule of 

 

 
 which is a contradiction, therefore 

  

   
    

  

    
. Put W=BU, then 

 

  
 

   
 

   
, thus U is cosemi-uniform. 

     The concept of fully essential submodules was appeared in [5], where "a non-zero module U is 

called fully essential if every non-zero semi-essential submodule of U is essential". We give analogue 

concept named fully coessential. 
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Definition (3.6): A non-zero module U is called fully coessential, if every non-zero proper cosemi-

essential submodule of U is coessential. That is for every 0≠W  V U, if W cosmV in U, then W ceV 

in U. A ring R is called fully co essential if R is fully coessential R-module.  

Examples (3.7): 

1. Every couniform module is fully coessential. 

2. Z is fully coessential module, since Z is a couniform module [6]. 

3. Since every hollow module is couniform [6], so every hollow module is fully coessential.  

4. Z4 is a fully coessential module, see example (2.3)(1). 

     As we mentioned in remark (3.2)(1) that every couniform is cosemi-uniform, and we need some 

information to verify the converse is not true in general; see example (4.8). However, the converse is 

true under the class of fully coessential modules as the following proposition shows. 

Proposition (3.8): Let U be a fully coessential module. Then U is a couniform module if and only if U 

is cosemi-uniform. 

Proof: The necessity is clear. Conversely, if U is a cosemi-uniform module then every proper 

submodule V of U is either zero or there exists a proper submodule S of V such that S cosmV in U. 

since U is a fully coessential module, then S ceV in U, hence we are through. 

  "Recall that an R- module U is called fully prime if every proper submodule of U is a prime [5]". The 

authors in [5] proved that for any fully prime module; the class of uniform modules coincides with the 

class of semi-uniform module. As a dual of this statement we give the following, before that we need 

to give the following useful lemma which can be easily proved. 

Lemma (3.9): If U is a fully prime R-module, then 
 

 
 is fully prime module for every submodule V of 

U. 

Proposition (3.10): Let U be a fully prime module. Then U is a couniform module if and only if U is 

cosemi-uniform module. 

Proof: The necessity follows by remark (3.2)(1). For the sufficiency; suppose that U is a cosemi-

uniform module, and let V be a proper submodule of U. If V is zero, then we are done. If V≠0, and 

since U is a cosemi-uniform module, then there exists a proper submodule S of U such that 
 

 
     

 

 
 , 

i.e 
 

 
 +

 

 
 ≠ 

 

 
 for each prime submodule 

 

 
 of 

 

 
. But U is a fully prime module, so by lemma (3.9), 

 

 
 is 

also fully prime module, that is all submodules of 
 

 
 are prime submodules. Thus 

 

 
   

 

 
, so that U is a 

couniform module. 

 Proposition (3.11): For any multiplication R-modules; the class of cosemi-uniform coincides with the 

class of couniform modules. 

Proof: Assume that U is a cosemi-uniform, and let V be a non-zero proper submodule of U, then there 

exists a proper submodule S of V such that 
 

 
    

 

 
. Since U is multiplication and it is well-known that 

the quotient of multiplication is also multiplication, then 
 

 
   

 

 
 [4, Prop.(1.4)]. That is U is a 

couniform module. The converse is clear.  

As consequence of proposition (3.11), we have the following. 

Corollary (3.12): Any ring is a couniform if and only if it is a cosemi-uniform ring. 

Proposition (3.13): Let U be a finitely generated R-module, then U is a cosemi-uniform module if and 

only if U is a couniform. 

Proof: Suppose that U is a cosemi-uniform module. Because in a finitely generated module there is no 

different between small and P-small submodule [4, Prop.(1.4)], thus we are done. 

     "An R-module U is called Noetherian, if every submodule of U is finitely generated [1, P.55]". The 

following proposition follows directly by proposition (3.13).  

Corollary (3.14): Let U be a Noetherian R-module, then U is a cosemi-uniform module if and only if 

U is couniform. 

4. Cosemi-uniform module and related concepts 

     This section devoted to study the relationships between cosemi-uniform module and other well-

known related concepts such as hollow and Pr-hollow and epiform module. 

Lemma (4.1): [4] 
     "If every prime submodule of an R-module U is small, then every proper submodule of U is P-

small". 
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Proposition (4.2): Every Pr-hollow module is cosemi-uniform module  

Proof:  Let U be a Pr-hollow module, and let V≤ U. If V=0, then we are done. If V≠0, then by lemma 

(4.1), V PU. This implies that 
 

 
    

 

 
 for every proper submodule W of V [4, Prop. (1.3)]. That is U 

is a cosemi-uniform module. 

     The converse is not true in general as the following example shows. 

Examples (4.3): Consider the Z-module Z. By example (3.2)(2), Z is a couniform module. On the 

other hand, Z is not Pr-hollow [7]. 

     However, if U is fully prime then the convers is true, as the following proposition shows. 

Proposition (4.4): If an R-module U is a fully prime and cosemi-uniform module, then U is Pr-

hollow. 

Proof:  Let V be a non-zero prime submodule of U. Suppose the converse; that is V is not small 

submodule of U, so there exists a proper submodule K of U such that V+K=U. Since U is a cosemi-

uniform module, then there exists a proper submodule S of V such that 
 

 
    

 

 
 . It is clear that S≠0, 

since if S=0, then V U which is a contradiction. Since V+K=U, then 
     

 
 = 

 

 
. This implies that 

 

 
 + 

   

 
 = 

 

 
. By assumption 

   

 
 is a prime submodule, so we get a contradiction, thus V is a small 

submodule of U, and hence U is Pr-hollow. 

Theorem (4.5): Assume that U is a fully prime module, the following statements are equivalent. 

1. U is a couniform module. 

2. U is cosemi-uniform module. 

3. U is a Pr-hollow module. 

4. U is a hollow module. 

Proof: 

(1)   (2): By remark (3.2)(1). 

(2)   (1): Proposition (3.10) 

(2)   (3): By proposition (4.4). 

(3)   (4): Let V be a proper submodule of U, if V is not small in U, then there exists a submodule L 

such that V+L=U. Since U is a fully prime module, then L is prime. But U is a Pr-hollow, then L  U, 

and so V=U which is a contradiction. Therefore V U. That is U is a hollow module. 

(4)   (1): It is clear. 

     "Recall that a non-zero module U is called coquasi-Dedekind if every proper submodule of U is 

coquasi-invertible [9]. A proper submodule V of U is called coquasi-invertible, if HomR(U,V) = 0 [9]". 

We need the following lemma. 

Lemma (4.6): [6, Th.(2.9)]  
If an R-module U is epiform, then U is a couniform and coquasi-Dedekind module.   

Corollary (4.7): Every epiform module is cosemi-uniform. 

Proof: By remark (3.2)(1) and lemma (4.6). 

        In the following example we verify that the class of couniform modules is contained properly in 

the class of cosemi-uniform modules.  

Example (4.8): We mentioned in example (3.2)(5), that Q is a cosemi-uniform module. But we can 

easily show that Q is not couniform. In fact, if we consider the negation of the lemma (4.6), which is: 

if an R-module U is not couniform module or not coquasi-Dedekind, then U is not epiform. Note that 

Q is coquasi-Dedekind and not epiform module [6, P.247], thus according to lemma (4.6), Q must be 

not couniform module.  

Theorem (4.9): Let U be a multiplication module. Consider the following statements: 

1. U is a hollow module. 

2. U is a Pr-hollow module. 

3. U is cosemi-uniform module. 

4. U is a couniform module. 

Then (1)  (2) (3) (4). 

Proof: 

(1)   (2): It is clear. 

(2)   (1): Let V be a proper submodule of U. If V is not small submodule of U, then there exists a 

submodule W of U such that V+W=U. Since U is a multiplication module, so there exists maximal 
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(hence prime) submodule P of U such that W P [8, Th.(2.5)]. This implies that V+P=U. Since U is 

Pr-hollow, and P  U, so V=U which is a contradiction. Thus V  U and so U is a hollow module. 

     (3): By proposition (4.2).  

     (4): Since U is a multiplication module, so by proposition (3.11), U is couniform. 

     It is well known that if U is a finitely generated, then every proper submodule contained in a 

maximal submodule of U. By using this fact instead of [8, Th.(2.5)], and in similar way of the proof of 

theorem (4.9), we have the following. 

Theorem (4.10): Assume that U is a finitely generated R-module, consider the following statements: 

1. U is a hollow module. 

2. U is a Pr-hollow module. 

3. U is a cosemi-uniform module. 

4. U is a couniform module. 

Then (1)  (2) (3) (4). 

     "Following [9], an R-module U is called self-projective if for every submodule V of U, any 

homomorphism  : U
 

 
 can be lifted to a homomorphism  : UU". 

Theorem (4.11): For any self-projective R-module U, the following statements are equivalent: 

1. U is an epiform module. 

2. U is a coquasi-Dedekind module. 

3. U is a cosemi-uniform and coquasi-Dedekind module. 

Proof:  

(1)   (3): It follows by lemma (4.6) and remark (3.2)(1). 
             (2): It is clear. 

(2)   (1): Since U is self-projective and coquasi-Dedekind, then U is an epiform module [6, Prop. 

(2.11)]. 

  Following [9, Th.(1.2.16)], Yasseen proved that if U is self-projective module with J(End(U)) = 0, 

then a submodule V of U is small if and only if V is coquasi-invertible, where J(End(U)) is the 

Jacobson radical of the endomorphism of the ring R.  For that reason, we can easily prove the 

following.  

Theorem (4.12): If U is self-projective R-module U with the property J(End(U))=0, then the 

following statements are equivalent: 

1. U is an epiform module. 

2. U is a hollow module. 

3. U is a coquasi-Dedekind module. 

4. U is a cosemi-uniform and coquasi-Dedekind module. 

Proof:  

(1)   (2): [6]. 

(2)   (3): [9, Th.(1.2.16)].  

(4)   (3): It is clear.  

(4)   (1): Since U is self-projective module and coquasi Dedekind, then U is an epiform module [6, 

Prop.(2.11)].  

Proposition (4.13): For any multiplication R-module U, the following statements are equivalent: 

1. U is an epiform module. 

2. U is a coquasi-Dedekind module. 

3. U is a couniform and coquasi-Dedekind module. 

Proof:  

(1)   (2): By lemma (4.6). 

      (1): Since U is coquasi-Dedekind, so every proper submodule V of U is quasi invertible [9, 

Th.(1.2.13)]. But U is multiplication, then V is corational [9, Th.(1.2.7)], hence U is epiform [6]. 

 (1)   (3): By lemma (4.6). 

     (2): It is clear. 
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