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Abstract  

    The increase in cloud computing services and the large-scale construction of data 

centers led to excessive power consumption. Datacenters contain a large number of 

servers where the major power consumption takes place. An efficient virtual 

machine placement algorithm is substantial to attain energy consumption 

minimization and improve resource utilization through reducing the number of 

operating servers. In this paper, an enhanced discrete particle swarm optimization 

(EDPSO) is proposed. The enhancement of the discrete PSO algorithm is achieved 

through modifying the velocity update equation to bound the resultant particles and 

ensuring feasibility. Furthermore, EDPSO is assisted by two heuristic algorithms 

random first fit (RFF) and random best fit (RBF) to produce hydride algorithms 

termed RFF-EDPSO and RBF-EDPSO. The proposed algorithms are evaluated and 

compared with recent algorithms to minimize power consumption. Simulation 

results showed the effective performance of RFF-EDPSO and RBF-EDPSO in 

minimizing the number of operating servers.  

 

Keywords: Particle swarm optimization, Virtual machine placement, Cloud 

computing, Metaheuristic algorithms.  
 
 

 الجسيمات مجرى   تحسين باستخدام السحابية البيانات مراكز  في للطاقة  موفر  افتراضي جهاز وضع
المحسن  المعزز المنفصلة  

 
 سيماء عبدالله صاحب*, ندا عبد الزهرة عبدالله 

العراق ,  بغداد,  دجامعة بغدا, العلوم ,كلية قسم علوم الحاسبات  
 

  الخلاصة 
أدت الزيادة الهائلة في خدمات الحوسبة السحابية والبناء واسع النطاق لمراكز البيانات إلى استهلاك مفرط      

البيانات عددًا كبيرًا من الخوادم حيث يتم استهلاك الطاقة بشكل كبير. تعد خوارزمية وضع  للطاقة. تضم مراكز  
الآلة الافتراضية الفعالة أمرًا جوهريًا لتحقيق تقليل استهلاك الطاقة وتحسين استخدام الموارد من خلال تقليل عدد  

(. يتم تحسين  EDPSOالخوادم العاملة. في هذا البحث ، تم اقتراح تحسين محسن لسرب الجسيمات المنفصل ) 
الجدوى.    PSOخوارزمية   الناتجة وضمان  الجسيمات  السرعة لربط  تحديث  تعديل معادلة  المنفصلة من خلال 

( وأفضل  RFFمن خلال خوارزميات إرشادية عشوائية أول ملائمة )   EDPSOعلاوة على ذلك ، يتم مساعدة  
 ( عشوائية  تسمى  RBFملاءمة  هيدريد  خوارزميات  لإنتاج   )RFF-EDPSO    وRBF-EDPSO  تقييم يتم   .
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الأداء   المحاكاة  نتائج  تظهر  الطاقة.  لتقليل استهلاك  الحديثة  الخوارزميات  المقترحة ومقارنتها مع  الخوارزميات 
 في تقليل عدد خوادم التشغيل. RBF-EDPSOو  RFF-EDPSOالفعال لـ 

1. Introduction 

     Recently, cloud computing has gained the attention of many global enterprises and cloud 

users due to its significant impact on global IT technology. Cloud computing can broadly be 

defined as an emerging technology based on the internet where cloud users can access 

shareable computing resources. Those resources are provisioned to cloud users on-demand 

rules. Cloud computing has overcome the drawback of local computation and replaced it with 

remote computing. With this facility, cloud users do not need to become involved in what 

happens behind the scene to provide computing services. 

  

    Datacenter (DC) is where cloud physical resources, termed physical machines (PMs), are 

hosted and provide services. Due to the excessive use of the internet, new virtualization 

technology has been developed to be the essential concept of cloud computing functionality 

[1]. Virtualization is the process of splitting physical machines into multiple virtual 

computing units known as virtual machines (VMs). Each VM can provide a service at a time 

individually. As a result of virtualization, throughput, cost reduction and performance will be 

improved. 

 

     Demands on cloud computing resources, are increasing and dynamically fluctuating with 

cloud users' demands. Managing these resources between different cloud users became a 

critical issue. Therefore, it is necessary to develop an efficient resource management 

procedure to sustain both user and provider satisfaction. Efficient resource management can 

be accomplished by placing VMs on PMs effectively and optimally. Providing an efficient 

placement technique for mapping VMs on PMs has a significant impact on both cloud 

providers and users. From the user’s perspective, the service is improved. While from the 

provider's perspective, profits, energy, and labor productivity are enhanced [2].  

 

     Mapping virtual machines to physical machines are termed Virtual Machine Placement 

(VMP) problem. This optimization problem is considered an NP-hard problem where 

different VMs are placed on different PMs to satisfy a certain objective(s). One of the main 

objectives of an efficient VMP algorithm is to reduce data center power consumption [3]. In 

2021, according to statistical analysis of several data centers worldwide, 2,670 data centers 

are located in the U.S., 452 in the U.K., Germany ranked third with 443, while China has 416 

[4]. 

  

     According to studies produced by the department of energy in the US, the power 

consumed by cloud data centers is about 1.5 from the global power consumption of the U.S. 

and this percentage has increased every year [5]. The high energy consumption of data centers 

results in environmental pollution through carbon emission (CO2) [6]. Servers and cooling 

systems are the main components that consume energy in data centers. The efficient VMP 

technique, can minimize the number of operating servers through optimal resource utilization, 

as result, reduce power consumption. In cloud computing, VMP techniques can be classified 

based on the complexity of the algorithm as a heuristic, meta-heuristic and hybrid virtual 

machine placement [7][8]. Examples of heuristic algorithms used for VMP are Best Fit (BF), 

Best Fit Decreasing (BFD), First Fit (FF), First Fit Decreasing (FFD), Next Fit (NF), and Any 

Fit (AF) [9]. Since VMP is an NP-hard optimization problem, a meta-heuristic is the optimal 

choice for such a combinatorial optimization problem. Such meta-heuristic algorithms include 

Genetic Algorithm (GA) [10], Particle Swarm Optimization (PSO) [11], Grey Wolf 

Optimization (GWO) [12][13], Slap Swarm Optimization (SSD) [14]. While hybridized 
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algorithms use a combination of two algorithms such algorithms are: genetic and tube search 

algorithms [5], genetic and BF algorithms [10].  

The conventional PSO algorithm is commonly used in a continuous optimization problem 

with design vectors having real numbers. However, the most common optimization problems 

are discrete, and an example of such problems is VMP in the cloud environment.  

In this paper, an enhanced discrete PSO (EDPSO) algorithm is proposed. Enhancing the 

discrete PSO algorithm is achieved through modifying the velocity update equation to bound 

the resultant particles and ensuring feasibility. Furthermore, EDPSO is assisted by two 

heuristic algorithms: random first fit (RFF) and random best fit (RBF). These are used to 

produce hydride algorithms termed RFF-EDPSO and RBF-EDPSO. The main contributions 

of this paper are:  

 

▪Formulating the problem of heterogeneous virtual machine (VMs) placement and defining 

the mathematical modelling for optimal resource usage with minimum energy consumption.  

▪Enhancing the discrete PSO to adopt such discrete optimization problem, by modifying the 

velocity and position update equations to validate the solution and reduce the penalty of 

replacing infeasible solutions. 

▪Utilizing heuristic algorithms (RFF and RBF) to improve the initialization starting search 

points of PSO particles. In addition, the RFF and RBF are used to replace infeasible solutions 

during the update process.     

▪Evaluating the performance of the two proposed algorithms (RFF-EDPSO and RBF-EDPSO) 

and comparing it with two recent and algorithms VMP. The evaluation is performed based on 

the total energy consumption of the operating servers. 

The rest of this paper is organized as follows: In Section 2, the most relevant related works 

are presented. The mathematical modelling and formulation of the VMP problem are 

described in Section 3. The proposed algorithm (EDPSO) and its hybrid versions (RFF-

EDPSO and RBF-EDPSO) are explained in Section 4. The simulation results of the proposed 

algorithms are discussed in Section 5. lastly, conclusions are presented in Section 6. 

 

2.    Related Work 

     The major issue that attracts many researchers' attention and concerns in cloud computing 

is data center energy consumption management [6]. Managing such critical issue is 

significantly affected by exploring the optimal VM placement. The VMP placement problem 

involves mapping a set of VMs to an available server called PMs subject to specific 

constraints. The aim behind efficient mapping is to optimize one or more objectives. Those 

optimization objectives measure the VMP technique effectiveness. Commonly, these 

optimization criteria are categorized into two demands based on cloud service: cloud users' 

demands and cloud service provider’s demands. The user’s demands are makespan, response 

time, cost. On the other hand, minimizing energy consumption, improving throughput and 

reliability are the provider’s demands [15]. 

  

     Many researchers and companies attempt to solve the VMP problem using various 

methods and algorithms. Those algorithms can be classified as: heuristic, meta-heuristic, and 

hybrid algorithms. Ammar et al. [16] proposed a heuristic algorithm called balanced resource 

consumption and imbalance VM with minimum migration time (BRC-IBMMT) to balance 

resource consumption with minimum resource wastage and migration time. Mollamotalebi 

and Hajireza [17] proposed another heuristic algorithm to minimize energy and SLAV rates 

called Energy-reduction and SLAV-reduction dynamic run-time replacement (ESDR). In 

addition, Moges and Abebe [9] suggested a modified heuristic bin-packing algorithm called 

Medium-Fit (MF) by providing an efficient balance between energy and SLA violation.  
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Meta-heuristic algorithms have also been suggested to solve the VMP problem. For example, 

Soltanshahi et al. [18] proposed the Krill Herd algorithm to minimize power consumption and 

SLAV. Also, a multi-objective algorithm was presented by Satpathy et al. [19], to optimize 

data center power consumption and resource wastage called crow search VM placement 

(CSAVMP). On the other hand, some researchers used a hybridization between meta-heuristic 

algorithms. Abohamama and Hamouda  [10] proposed a hybrid genetic and BF algorithm 

(IGA- POP) to optimize usage of power and resource wastage. While Zhao et al. [5] 

employed a tabu search algorithm as a mutation operator to improve the exploitation search-

ability of GA and produced a hybrid algorithm called (GATA).    

Particle swarm optimization (PSO) is one of the common and widely used nature-inspired 

meta-heuristic algorithms. Simplicity, accuracy, and speed are what makes PSO preferable for 

researchers. PSO was initially designed for continuous optimizing problems. However, in 

problems with discrete domains, PSO needs to be modified to mimic such discrete 

optimization problems. Examples of discrete problems in cloud computing are task 

scheduling and virtual machine placement. There are many techniques used to convert PSO 

from continuous to discrete. Rezaee and Jasni [20] presented eight procedures for handling 

discrete problems in PSO such as rounding-off, trinary PSO, and penalty approach. Tasgetiren 

et al. [21] used another approach for transforming continuous value to discrete using the small 

positive value (SPV) rule. This procedure depends on three operations: sorting the continuous 

values, replacing the vector with its ranking values, and binding the solution using mod 

operation. 

Wu and Tsai [22] suggested an approach called local optimal list instead of using self-

influence and adding a round-off procedure for PSO modification. Furthermore, Kashan and 

Karimi [23] used different operators for generating a new position and velocity. The three 

operators were: subtract, multiply, and add operators. Miao et al. [24] presented a new PSO-

based static load balancing algorithm called adaptive Pbest discrete PSO (APDPSO) 

algorithm. The proposed algorithm is used to balance the load for the satisfactory 

performance of large-scale parallel and distributed simulations. Ibrahim et al. [11] proposed a 

Power-Aware technique using a discrete version of PSO named PAPSO to determine the 

near-optimal placement for migrated VMs. Different than the above-mentioned algorithms, 

Chitra et al. [25] offered a discrete PSO called Jumping PSO (JPSO) to update the position 

vector directly without velocity calculation. The particle is updated by jumping from its 

current position to a new one according to the influence of the personal and social experience. 

 

3.  VMP Problem Formulation 

     The VMP problem in cloud computing can be defined as the assignment or mapping of 

virtual machines (VMs) on servers or physical machines (PMs). This problem is considered a 

multi-dimensional bin packing problem where the bins represent the servers and the items are 

the VMs. The dimensions of VMs represent the requirements of resources, such as (CPU, 

Memory, Bandwidth, etc.) that need to be provided by the bins (PMs). The optimal mapping 

should meet all VMs' demands (resources requirements) and minimize the number of active 

servers to reduce the energy consumption of the data center. This problem can be modeled as 

follows: 

1. The set of virtual machines that need to be mapped is defined by 𝑉𝑀 =
{𝑣𝑚1, 𝑣𝑚2, … ,  𝑣𝑚𝑁𝑣𝑚

}, where 𝑁𝑣𝑚 is the total number of virtual machines. Each VM (𝑣𝑚𝑖) 

in VM has D-dimensional of resources such that 𝑣𝑚𝑖 = {𝑟𝑣𝑖
1, 𝑟𝑣𝑖

2, … . , 𝑟𝑣𝑖
𝐷} ,  where 𝑟𝑣𝑖

𝑑 

represents the amount of resource type-d required by the i-th VM. The number of resource 

dimensions of each VM is 𝐷. 

2. The set of physical machines required for VMs deployment is 𝑃𝑀 =
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{𝑝𝑚1, 𝑝𝑚2, … ,  𝑝𝑚𝑁𝑝𝑚
}, where 𝑁𝑝𝑚is the total number of physical machines. Each PM 

(𝑝𝑚𝑗) in PM can provide the same number of resources (D-dimensional of resources) such 

that 𝑝𝑚𝑗 = {𝑟𝑝𝑗
1, 𝑟𝑝𝑗

2, … . , 𝑟𝑝𝑗
𝐷}. 𝑟𝑝𝑗

𝑑 represent the available amount of resource type-d 

supplied by the j-th PM. 

3. Given the sets of VMs and PMs, the objective is to find an optimal placement or mapping 

set 𝑀 from 𝑉𝑀 to 𝑃𝑀 such that 𝑀 = {𝑚1, 𝑚2, … ,  𝑚𝑁𝑣𝑚
} where 1 ≤ 𝑚𝑖 ≤ 𝑁𝑝𝑚. 

4. The mapping set 𝑀, should satisfy the following constraints: 

●  A virtual machine (𝑣𝑚𝑖) should be placed only on one server (𝑝𝑚𝑗) at a time, i.e.: 

 ∑ 𝑥𝑖𝑗

𝑁𝑝𝑚

𝑗=1

= 1 where    𝑥𝑖𝑗 = {
1
0
     

𝒗𝒎𝒊 is assigned to 𝒑𝒎𝒋

otherwise
 (1) 

● For a given resource of type (d) in sever (𝑝𝑚𝑗), the total corresponding resource demands 

of the assigned VMs to that server should be less than or equal to the resource capacity. i.e.: 

 ∑

𝑁𝑣𝑚

𝑖=1

𝑥𝑖𝑗𝑟𝑣𝑖
𝑑  ≤ 𝑟𝑝𝑗

𝑑 
∀ 𝑑 ∈ {1,2, … , 𝐷}  

∀ 𝑗 ∈ {1,2, … ,𝑁𝑝𝑚}  
(2) 

The optimal placement can be achieved based on one or more of the objectives: minimizing 

power consumption, reducing resource wastage, and/or maximizing resource usage balance. 

 

3.1. Power Consumption Modeling    

     Globally, cloud data centers consume a massive amount of energy. According to the 

United States data center energy usage report, data centers consumed an estimated 70 billion 

kWh representing about 1.8% of total U.S. electricity consumption. In 2020 and based on 

historical trends, it is estimated that the U.S. data centers are projected to consume 

approximately 73 billion kWh [26]. Servers are the major entities of energy consumption in 

data centers. All server resources (CPU, memory, disk, bandwidth, etc.) contribute to energy 

consumption, however, CPU resource is considered the main contributor [27]. The power 

consumption is directly proportional to CPU utilization and can be modeled as a linear 

relationship [5]. In general, servers can have one of three energy consumption modes: sleep, 

busy, and idle. In sleep mode, the server is shut down with zero energy consumption. In this 

mode, the server has no assigned VMs to serve. When the server is on with a fully utilized 

CPU, the server enters the busy mode and has the maximum energy consumption E^max. 

When the server is on with a CPU utilization approaching zero, the server is in the idle mode 

consuming an energy of (E^min) equal to 60-70% from E^max [15]. The total energy 

consumption E_T of the data center is given by:   

 

 𝐸𝑇 = ∑ 𝑦𝑗𝐸𝑗

𝑁𝑝𝑚

𝑗=1

 (3) 

where, 

 𝑦𝑗 = {
1
0
     

 Server j is ON
Server j is OFF

 , (4) 

 𝐸𝑗 = 𝐸𝑗
𝑚𝑖𝑛 + (𝐸𝑗

𝑚𝑎𝑥 − 𝐸𝑗
𝑚𝑖𝑛)𝑈

𝑗

𝑑𝑐𝑝𝑢
, (5) 

 𝑈
𝑗

𝑑𝑐𝑝𝑢 =
∑  𝑥𝑖𝑗  𝑟𝑣𝑖

𝑑𝑐𝑝𝑢    
𝑁𝑣𝑚
𝑖=1

𝑟𝑝
𝑗

𝑑𝑐𝑝𝑢
 (6) 

      In equation (4), 𝑦𝑗 is a binary variable indicating whether server j is powered on or not. 𝐸𝑗 
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is the energy consumed by the j-th server. 𝑈
𝑗

𝑑𝑐𝑝𝑢
 is the CPU utilization of server j, which is 

equal to the summation of all VMs CPU utilization assigned to server j. Equation (6) can be 

generalized to calculate the utilization of any resource in server j (𝑈𝑗
𝑑) by setting 𝑑𝑐𝑝𝑢 = 𝑑 

and the set of server utilization from D resources is defined by 𝑈𝑗 = {𝑈𝑗
1, 𝑈𝑗

2, …… , 𝑈𝑗
𝐷 }. 

 

3.2.   Resource Wastage Modeling 

     An optimal mapping is significantly affected by the efficient resource utilization of 

servers. Wastage is one of the metrics used to evaluate the effectiveness of a given mapping. 

It determines the total amount of the unused resources of a server in all dimensions. 

Maximizing resource utilization in a balanced manner has an effective effect in reducing the 

wastage of resources. Thus, minimizing the number of active servers which in turn reduces 

data center energy consumption. The D-dimensional wastage of server j (𝑊𝑗) can be 

calculated as follows: 

 

𝑊𝑗 =
𝑈𝑚𝑎𝑥 − 𝑈𝑚𝑖𝑛 + 𝜖

∑ 𝑈𝑗
𝑑𝐷

𝑑=1

=
𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛 + 𝜖

∑ 𝑈𝑗
𝑑𝐷

𝑑=1

 (7) 

where 

 𝑈𝑚𝑎𝑥 = max  {𝑈𝑗
1, 𝑈𝑗

2, …… , 𝑈𝑗
𝐷 } , (8) 

 𝑈𝑚𝑖𝑛 = min  {𝑈𝑗
1, 𝑈𝑗

2, …… , 𝑈𝑗
𝐷 } (9) 

 𝐿𝑚𝑎𝑥 = 1 − 𝑈𝑚𝑖𝑛, (10) 

 𝐿𝑚𝑖𝑛 = 1 − 𝑈𝑚𝑎𝑥 (11) 

     In equation (7), the numerator represents the balance usage among all resources, which is 

equivalent to the difference between the maximum and minimum utilizations. While in the 

denominator, the sum of all resource utilizations is used to reflect the total amount of resource 

usage. The larger the sum of resource utilizations, the lower the wastage. The epsilon 

parameter (ϵ) is a small positive real number added to distinguish which server wastage is 

greater when all resources utilizations are equal and hence, balanced in usage. L is the 

complement utilization of U. 

To illustrate the behavior of the wastage function concerning different resource utilizations a 

two-dimensional resource server case is used. Figure 1 depicts the graph of equation (7) 

setting D=2 and ϵ=0.001. 

 
a) Top view  
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b) 3-D view   

Figure -1 This figure depicts 2-D wastage function graph with two views:  a) Top view, b) 3-

D view.  

 

     The server j is considered to have two resources utilizations CPU (𝑈𝑗
𝑐𝑝𝑢) and memory 

(𝑈𝑗
𝑚𝑒𝑚). Both utilizations are varied within the range [0-1]. As can be seen from the wastage 

plot, the graph is symmetric about the line 𝑈𝑗
𝑐𝑝𝑢 = 𝑈𝑗

𝑚𝑒𝑚. On the line of symmetry, the 

wastage decreases as both utilizations increase evenly. This is due to the increase of the 

denominator term in equation (7) with a fixed constant numerator equal to 𝜖. As the 

utilization points (𝑈𝑗
𝑐𝑝𝑢, 𝑈𝑗

𝑚𝑒𝑚) roll away from symmetry line, the wastage of the resources 

increases approaching maximum wastage at the boundaries. This increase in wastage is due to 

the unbalance resource utilizations represented by the numerator term (𝑈𝑚𝑎𝑥 − 𝑈𝑚𝑖𝑛). The 

minimum wastage value can be achieved when both resources are fully utilized and this value 

equals to  𝑊𝑗
𝑚𝑖𝑛 =

𝜖

𝐷
= 0.0005. 

 

     Figure 2 shows different cases of VMs allocation on one PM. In case 1, the server contains 

only two VMs, the residual area of resources represented by the yellow rectangle, shows that 

there is a large unused amount of CPU and memory resources. The residual resources are 

almost equal due to balance placement. Although there is a wastage in both resources, it is 

still possible to add more VMs. However, in case 2, the memory resource is fully utilized 

while only about 50% of CPU resource is utilized. In this case, the wastage is worse as there 

is no viable way to allocate any VM in the future.  In case 3, a near-optimal mapping is 

achieved through satisfying both balance and full resources occupation resulting in a small 

wastage.  
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Figure 2: This figure depicts wastage in different VMP cases. 

 

3.3.  Multi-resource Balance Modeling 

     The other metric used for VMP is to achieve a balance resource usage. Balance resource 

utilization can highly influence wastage reduction and hence, minimizing energy 

consumption.  

      In data centers, servers include milt-dimensional resources such as (CPU, memory, 

storage, bandwidth, etc.). The diversity of resources requirements in VMs needed for 

allocation on servers, result in unbalance of server resources utilizations. Balancing multi-

resources utilizations is one of the major challenges for cloud providers. Efficient balance 

mapping takes into consideration avoidance of fragmentation problem between servers’ 

resources. Fragmentation is due to the intensive usage of one resource that prevents other VM 

allocation even if other resources are underloaded. If fragments among resources are 

minimized, maximum resources balance can be obtained. A three-dimensional balance index 

has been introduced in [28] to quantify the equilibrium state of multi-resources usage. The 

balance index of server j (𝐵𝑗) can be generalized to D-dimensional as: 

𝐵𝑗 = 𝐷(𝐵𝑗
𝑈 + 𝐵𝑗

𝐿)/2 (12) 

Where  

𝐵𝑗
𝑈 =

 √∏𝐷
𝑑=1 𝑈𝑗

𝑑𝐷

𝜖 + ∑𝐷
𝑑=1 𝑈𝑗

𝑑  , 
(13) 

𝐵𝑗
𝐿 =

 √∏𝐷
𝑑=1 𝐿𝑗

𝑑𝐷

𝜖 + ∑𝐷
𝑑=1 𝐿𝑗

𝑑  , 
(14) 

𝐿𝑗
𝑑 = 1 − 𝑈𝑗

𝑑  (15) 

𝐵𝑗 is affected by the balance of both utilized and non-utilized resources 𝐵𝑗
𝑈and 𝐵𝑗

𝐿 

respectively. The parameter 𝜖 is added to avoid division by zero at 0% (empty server) and 

100% (All fully utilized servers). 𝐿𝑗
𝑑 is the complement utilization of resource d in server j. In 

the perfect balance case,  𝑈𝑗
1 = 𝑈𝑗

2 = 𝑈𝑗
𝑑 = ⋯ = 𝑈𝑗

𝐷 and 𝐿𝑗
1 = 𝐿𝑗

2 = 𝐿𝑗
𝑑 = ⋯ = 𝐿𝑗

𝐷 in 

this case 𝐵𝑗
𝑢 = 𝐵𝑗

𝐿 = 1/𝐷 as 𝜖 → 0.  

To illustrate the behavior of the balance index as a function of the D-dimensional utilizations, 

a server with a 2-dimensional resource will be considered. Figure 3 depicts the graph of the 

balance index 𝐵𝑗 by setting D=2 and 𝜖=0.001. The server j is considered to have two 
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resources utilization: CPU (𝑈𝑗
𝑐𝑝𝑢) and memory (𝑈𝑗

𝑚𝑒𝑚). Both utilizations are varied within 

the range [0-1].  

 

 
a) Top view 

 
b) 3-D view 

 

Figure 3: This figure depicts the graph of a 2-D Balance index function with two views: a) 

Top view, b) 3-D view. 

To show the advantage of using balance index we have the flowing two mapping cases (a) 

and (b) shown in Figure 4. 
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Figure 4: This figure depicts balance index with two mapping cases: case (a), case (b). 

 

      In Figure 4, case (a) has 𝑈1 = 0.9, 𝑈2 = 0.4, 𝐿1 = 0.1, and 𝐿2 = 0.6 and case (b) has 

𝑈1 = 0.45, 𝑈2 = 0.2, 𝐿1 = 0.55, and 𝐿2 = 0.8.  According to equation (7), the wastage index 

of the case (a) is comparable to that of case (b) (𝑊𝑎 = 0.385 and 𝑊𝑏 = 0.386). However, 

according to equation (12), the balance index of the case (b) is greater than that of case (a) 

(𝐵𝑎 = 0.811 and 𝐵𝑏 = 0.953). This confirms our conception that the mapping of case (b) is 

better than that of the case (a). 

 

4. Enhanced Discrete PSO algorithm 

     Particle Swarm Optimization (PSO) is one of the most widely used Swarm Intelligence 

and population-based techniques. PSO can be employed in solving hard_NP problems. This is 

due to its adaptation capabilities in large search spaces. PSO is an evolutionary technique that 

simulates the social behavior of species having specific activity movement in a swarm. This 

type of behavior is found in shoals of fish and flock of birds [29].  

 

     The mathematical modeling of the PSO algorithm is based on the interaction between 

members in a set of the population called a swarm. Those members are called particles or 

agents. The movement of each particle in the swarm is influenced by two guiders derived 

from self and global history search experience. Each particle represents a solution to the 

optimization problem. The goal of particles is to find an optimal solution within a large search 

space. Finding an optimal solution process is based on the interaction and cooperation 

between particles. Particles can share information about their current situation to update their 

new position. The update equation of the new particle position is given by: 

 𝑃𝑘
𝑡+1 = 𝑃𝑘

𝑡 + 𝑉𝑘
𝑡+1 (16) 

     Where 𝑃𝑘
𝑡+1 is the updated position of the k-th particle in the swarm at iteration (𝑡 + 1). 

Accordingly, the new velocity of the updated particle position (𝑉𝑘
𝑡+1) is defined by: 

 𝑉𝑘
𝑡+1 = 𝜔𝑉𝑘

𝑡 + 𝑐1 𝑟1(𝑃𝑘
𝑏𝑒𝑠𝑡 −  𝑃𝑘

𝑡) + 𝑐2 𝑟2(𝑃
𝑔𝑏𝑒𝑠𝑡 −  𝑃𝑘

𝑡) (17) 

 

     The updated velocity 𝑉𝑘
𝑡+1 is affected by three components termed inertia, personal 

influence, and social influence. 𝜔 is an inertia factor used to control or balance the exploring 
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and exploiting of the PSO algorithm. 𝑃𝑘
𝑏𝑒𝑠𝑡 is the best position that k-th particle reached so 

far. The last term represents the component that has a global effect on all particles termed as 

the social influence component. The best global position found between all best positions 

particles is termed as  𝑃𝑔𝑏𝑒𝑠𝑡 . 𝑐1 and 𝑐2 are acceleration constants, 𝑟1 and 𝑟2 are random 

numbers between (0 and 1).  

In the virtual machine placement (VMP) problem, the PSO parameters are defined as follows: 

𝑆 = {𝑃1, 𝑃1, … . , 𝑃𝑁𝑠
 },  where 𝑃𝑘 is the k-th particle in the swarm and represents a solution. 𝑁𝑠 

is the total number of particles. The structure of each particle is represented by 𝑃𝑘 =

{𝑝𝑘
1,  𝑝𝑘

2, … , 𝑝𝑘
𝑁𝑣𝑚} of size (1 × 𝑁𝑣𝑚), where 𝑝𝑘

𝑖  is a server index holding the i-th VM and can 

have an integer value within the interval [1,𝑁𝑝𝑚]. One of the optimizations goals or 

objectives is to minimize the maximum value inside 𝑃𝑘, which represent the total number of 

powered servers. 

  

     Similar to the swarm matrix, the velocity is represented as 𝑉 = {𝑉1, 𝑉2, … , 𝑉𝑁𝑠
}, and each 

particle velocity is given by 𝑉𝑘 = {𝑣𝑘
1,  𝑣𝑘

2, … , 𝑣𝑘
𝑁𝑣𝑚} of size (1 × 𝑁𝑣𝑚), where 𝑣𝑘

𝑖  is 

corresponding velocity value of 𝑝𝑘
𝑖 . The general PSO algorithm is configured to optimize 

problems with continuous real number solutions. However, in cloud computing, virtual 

machine placement (VMP) is a discrete optimization problem. Therefore, a modification of 

the original PSO is required to solve such a problem.  

 

    Many researchers exert potential efforts to adjust the original PSO for different discrete 

optimization problems. For example, in the application of cloud computing, a binary PSO is 

adopted for task scheduling [15]. Another approach for converting PSO to discrete using 

truncated to the nearest integer [20]. In scheduling parallel machines, [23] use different 

operators, for example: Subtract, multiply, and add operators to convert regular PSO to 

discrete one.  

 

     Figure 5 shows an example of a VMP solution (a swarm particle) with 𝑁𝑣𝑚 = 𝑁𝑝𝑚 = 7. In 

this example, the upper row represents the VM index number and the lower row represents 

the PM index number. 

  

1 2 3 4 5 6 7 

1 1 2 1 3 2 3 
 

Figure 5: This figure depicts the particle structure in a swarm. 
 

    Thus, for example 𝑣𝑚1, 𝑣𝑚2,  and 𝑣𝑚4 are mapped to 𝑝𝑚1while 𝑣𝑚3, and 𝑣𝑚6 are 

mapped to 𝑝𝑚2. Here, the capacities of the server resources constraints are taken into 

consideration in mapping. When updating this particle using PSO, the solution stripe may 

become invalid having a PM index number greater than 𝑁𝑝𝑚. If such a case occurs as shown 

in Figure 6, where 𝑣𝑚7 is assigned to 𝑝𝑚8, the new stripe becomes invalid (infeasible 

solution). 

 

1 2 3 4 5 6 7 

1 1 2 1 3 2 8 
 

Figure 6: This figure depicts the invalid particle. 
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     The proposed enhanced discrete PSO, solves this type of an invalid situation by using mod 

operation in the original PSO velocity equation to become: 

 𝑉𝑘
𝑡+1 = 𝑉𝑘

𝑡 + 𝑏1𝑘(𝑃𝑘
𝑏𝑒𝑠𝑡 −  𝑃𝑘

𝑡) + 𝑏2𝑘(𝑃𝑔𝑏𝑒𝑠𝑡 −  𝑃𝑘
𝑡) (18) 

Equation (18) can be detailed in vector form as:  

 
[
 
 
 
 

𝑣𝑘,1
𝑡+1

𝑣𝑘,2
𝑡+1

⋮
𝑣𝑘,𝑁𝑣𝑚

𝑡+1
]
 
 
 
 

=

[
 
 
 
 

𝑣𝑘,1
𝑡

𝑣𝑘,2
𝑡

⋮
 𝑣𝑘,𝑁𝑣𝑚

𝑡
]
 
 
 
 

+

[
 
 
 
 

𝑏1𝑘,1
𝑡

𝑏1𝑘,2
𝑡

⋮
𝑏1𝑘,𝑁𝑣𝑚

𝑡
]
 
 
 
 

[
 
 
 
 𝑝𝑘,1

𝑝𝑏𝑒𝑠𝑡

𝑝𝑘,2
𝑝𝑏𝑒𝑠𝑡

⋮

𝑝𝑘,𝑁𝑣𝑚
𝑝𝑏𝑒𝑠𝑡

−

𝑝𝑘,1
𝑡

𝑝𝑘,2
𝑡

⋮
 𝑝𝑘,𝑁𝑣𝑚

𝑡
]
 
 
 
 

+

[
 
 
 
 

𝑏2𝑘,1
𝑡

𝑏2𝑘,2
𝑡

⋮
𝑏2𝑘,𝑁𝑣𝑚

𝑡
]
 
 
 
 

[
 
 
 
 𝑝1

𝑔𝑏𝑒𝑠𝑡

𝑝2
𝑝𝑏𝑒𝑠𝑡

⋮

𝑝𝑁𝑣𝑚
𝑔𝑏𝑒𝑠𝑡

−

𝑝𝑘,1
𝑡

𝑝𝑘,2
𝑡

⋮
 𝑝𝑘,𝑁𝑣𝑚

𝑡
]
 
 
 
 

 

(19) 

After modifying the velocity, it must be validated using the mode operation as follows: 

 𝑣𝑘,𝑖
∗(𝑡+1)

= {
mod (𝑣𝑘,𝑖

𝑡+1, 𝑁𝑝𝑚)

𝑁𝑝𝑚                        
    

𝑖𝑓 𝑣𝑘,𝑖
𝑡+1 ≠ 𝑛𝑁𝑝𝑚  , 𝑛 = {∓1,∓2,∓3,… . . }

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                       
 (20) 

     Equation (20) shows the use of mod operation of the generated velocity. It will ensure that 

the new velocity index 𝑣𝑘,𝑖
(𝑡+1) values fall within the range 1 ≤ 𝑣𝑘,1 ≤ 𝑁𝑝𝑚. This operation is 

equivalent to bounding the velocity values to 𝑣𝑚𝑖𝑛 = 1 and 𝑣𝑚𝑎𝑥 = 𝑁𝑝𝑚.  

Similarly, for the position update, the modified velocity obtained from equation (20) is used 

as follows:  

 𝑃𝑘,𝑖
(𝑡+1)

= 𝑃𝑘,𝑖
(𝑡) + 𝑉𝑘,𝑖

∗(𝑡+1)
 (21) 

After modifying the position, it must be validated using the mode operation as follows: 

 
𝑝𝑘,𝑖

∗(𝑡+1)
= {

mod (𝑝𝑘,𝑖
𝑡+1, 𝑁𝑝𝑚)

𝑁𝑝𝑚                        
    

𝑖𝑓 𝑝𝑘,𝑖
𝑡+1 ≠ 𝑛𝑁𝑝𝑚  , 𝑛 = {1, 2, 3, . . . }

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                       
 (22) 

 

Equation (22) can be written in another form to validate the position as follows: 

 𝑝𝑘,𝑖
∗(𝑡+1)

= ⌊
𝑝𝑘,𝑖

(𝑡)

𝑁𝑝𝑚 + 1
⌋ + 𝑚𝑜𝑑 (𝑝𝑘,𝑖

(𝑡), 𝑁𝑝𝑚 + 1) (23) 

      A feasible solution should also satisfy the resource demands of the assigned VMs 

according to equation (2). At this point, the solution is checked for feasibility. If it’s not 

feasible (resource demands are greater than the available server recourse capacity), the 

solution must be replaced with a feasible mapping. Several approaches can be used for 

infeasible solution replacement. One approach is to use random mapping, which also requires 

a feasibility test for the newly generated particle. This approach suffers from time 

consumption affecting the speed of the algorithm convergence. Another approach is to use 

random permutation between 1 to 𝑁𝑝𝑚. This will guarantee the generation of a feasible 

solution; however, it will utilize all servers and hence, affect the power consumption.  

      A more efficient approach for infeasible particle replacement is to use a heuristic 

algorithm with random sorting. Two heuristic algorithms with random sorting are used: 

Random First Fit (RFF), and Random Best Fit (RBF). Furthermore, RFF and RBF are 

hybridized with EDPSO to improve the initialization through good starting points instead of 

random mapping. Utilizing heuristic algorithms in the PSO initialization phase shows a 

significant improvement on the algorithm performance and convergence [15]. In regular BF 
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and FF, all particles (solutions) have the same starting point. While, with RFF and RBF, a 

diversity of starting points population can be produced improving the exploring phase of the 

algorithm.  

     The pseudo-codes of RFF-EDPSO and RBF-EDPSO are presented in algorithm 1. In 

algorithm 1, the inputs are the sets of VMs and PMs that need to be mapped as in lines 2 and 

3. The output of the algorithm will hold the optimal VMP vector designated by (𝑀∗) in line5. 

In line7, the parameters of the proposed PSO are initialized (number of particles and 

iterations). In lines 8 and 9, the initial position of particles is initiated using a heuristic 

algorithm (RFF or RBF) instead of randomness. The Fitness of each particle is calculated and 

saved to be compared with the best solution found so far corresponding to the current position 

in lines 12 and 13. It is worth noting that the fitness calculation depends on the objective 

function being Energy, wastage, and/or balance index as given by equations (3), (7), and/or 

(12) respectively. 

 

Algorithm 1: Pseudo-code of RFF-EDPSO and RBF-EDPSO algorithms 

1 
2 
3 
 
4 
5 
 
6 
7 
8 
9 
 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

Input: 
Set of VMs (VM), 
Set of PMs (PM), 
 
Output: 
Optimal allocation (mapping) vector (𝑀∗) (VM to PM) of size 1 × Nvm 
 
Start: 
Initialize EDPSO parameters  
Initialize particles according to RFF algorithm for RFF-EDPSO, or 
Initialize particles according to RBF algorithm for RBF-EDPSO. 
 
For it=1 to no. of iterations 
For k=1 to no. of particles 
Calculate fitness value for each particle using equation (Energy) 

Find the best particle so far (𝑃𝑘
𝑏𝑒𝑠𝑡).  

Update velocity and position for the current particle according to equations (x and x). 
Test if the updated new particle is a feasible solution 
If (not feasible) 
       generate new solution using RFF or RBF  
End 
 End 
Find the global best particle among all best particles (𝑃𝑔𝑏𝑒𝑠𝑡).  
End  
Set the Optimal allocation vector (𝑀∗) to the global best particle (𝑀∗ = 𝑃𝑔𝑏𝑒𝑠𝑡) 

 

     In line 14, the velocity and position are updated according to equations (20) and (22). In 

line 16, 17 feasibility checking are performed after velocity and position updating according 

to equations (20) and (22). If the particle is infeasible, a new solution is generated using 

algorithms RFF or RBF in line 18. Finally, in line 21 the optimal global best solution is found 

as the best mapping between all other best solutions to be the optimal allocation vector (𝑀∗)  

in line 23. 
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5. Simulation Results and Discussion 

     The implementation of all experiments used to evaluate the proposed algorithm was 

performed using MATLAB software installed on a PC with Intel(R) Core (TM) i5-10210U 

CPU @ 1.60GHz, RAM 12.0 GB. The operating system was Windows 10 Pro. The 

performance of the proposed algorithm (EDPSO) was evaluated and compared with other 

related bin packing and swarm-based algorithms. A synthesis VMs configuration was chosen 

for simulation and based on Amazon EC2, which is one of the most common cloud service 

providers. The CPU and memory requirements of each VM were generated randomly from 

the following set: [1, 2, 4, 6, 8, 16, 32, 48, 64, 96, 128]. All servers were assumed to be 

homogeneous having equal CPU and memory capacities of size 128. The worst-case scenario, 

at which 𝑁𝑝𝑚 = 𝑁𝑣𝑚 was considered in all simulation experiments.  

     Figure 7 shows the simulation method structure of the algorithms chosen for comparison 

that were classified into heuristic (BF, BFD, FF, FFD) and meta-heuristic algorithms (RFF-

EDPSO, RBF-EDPSO, PAPSO, IGA-POP).  

 

Heuristic Algorithms

BF, BFD, FF, FFD

Comparison Algorithms

PAPSO, IGA-POP

VMP Algorithms

RFF-EDPSO, RBF-EDPSO

Meta-Heuristic Algorithms

 
Figure 7 : This figure depicts VMP Algorithms Simulation Structure. 

 

The PSO algorithm parameters are defined in Table 1.  

 

Table 1: PSO parameters 
Parameter Value 

Number of Iterations 100 

Population Size 50 

Velocity and Position bounds [0, 𝑁𝑝𝑚] 

 

     The performance of the two proposed algorithms (RFF-EDPSO and RBF-EDPSO) is 

based on the energy consumption metric (E) defined by equation (3). The energy consumption 

of the servers at the busy and idle modes were set to 117 and 86 respectively and it's linearly 

related to CPU utilization. In this section two simulation scenarios were performed to evaluate 

the proposed algorithms as follows:     

Scenario 1: In this scenario, the two proposed algorithms were compared to heuristic 

algorithms ( BF, BFD, FF, FFD). The comparison was conducted using three different cloud 

environments termed light-load (LL), medium-load (ML), and heavy-load (HL). In these 

environments (LL, ML, and HL), the number of VMs were varied in ranges; [20-100] with 
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step 20, [200-400] with step 50, and [500-900] with step 100, respectively. Figures 8, 9, and 

10 show the bar chart performance comparison between the algorithms in terms of energy 

consumption in LL, ML, and HL environments, respectively. Also, Tables 2, 3, and 4 depict 

the corresponding numerical value for Figures 8, 9, and 10. As can be seen from Figure 8, as 

the number of VMs increase more energy is consumed by all algorithms.  

 
Figure 8: This figure depicts the energy consumption comparison between VMP 

algorithms using LL in scenario 1. 

 

     The two proposed algorithms outperform the other algorithms through consuming the least 

energy. The proposed algorithms have the same energy consumption results in all light load 

cases except in case 60, where RFF-EDPSO gains a better result than the others. Also, BFD-

CPU and FFD-CPU have the same result and represent the two worst algorithms in energy 

consumption. 

 

Table 2: Energy consumption performance comparison in LL (scenario 1) 

 

Metric Algorithms 
Number of VMs 

20 40 60 80 100 

Energy 

Consum

ption 

(Joule) 

BF 948.058 1872.202 2852.856 3867.869 4460.827 

FF 956.658 1863.602 2827.056 3816.269 4478.027 

BFD-CPU 930.858 1949.602 3024.856 4082.869 4839.227 

FFD-CPU 930.858 1949.602 3016.256 4082.869 4839.227 

RFF-EDPSO 905.058 1777.602 2749.656 3713.069 4340.427 

RBF-EDPSO 905.058 1777.602 2758.256 3713.069 4340.427 

For the ML environment, as shown in Figure 9, RBF-EDPSO has the best performance 

among all other algorithms by achieving minimum energy consumption. RFF-EDPSO 

obtained a comparable result to RBF-EDPSO and ranked as second best algorithm. While the 

FFD-CPU algorithm has the highest energy consumption values at all medium load cases and 

hence ranked last.  
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Figure 9: This figure depicts energy consumption comparison between VMP 

algorithms using ML in scenario 1  

 

Table 3: Energy consumption performance comparison in ML (scenario 1) 
Metric Algorithm Number of VMs 

200 250 300 350 400 

Energy 

Consum

ption 

(Joule) 

BF 9073.145 11254.390 13694.288 15713.981 18086.859 

FF 9055.945 11237.190 13659.888 15645.181 18052.459 

BFD-CPU 9761.145 12122.990 14803.688 16995.381 19695.059 

FFD-CPU 9769.745 12122.990 14812.288 17012.581 19695.059 

RFF-EDPSO 8909.745 11039.390 13427.688 15430.181 17820.259 

RBF-EDPSO 8840.945 10987.790 13393.288 15361.381 17734.259 

 

The performance comparison using heavy load environments is shown in Figure 10. 

 

 
Figure 10: This figure depicts energy consumption comparison between VMP 

algorithms using HL in scenario 1 
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It can be observed from Figure 10, that RBF-EDPSO also consumes the least amount of 

energy in all cases. Similarly, in medium load case, RFF-EDPSO ranked the second-best 

performance among the algorithms. While the worst values of energy consumption were 

obtained by the FFD-CPU algorithm. 

 

Table 4: Energy consumption performance comparison in HL (scenario 1) 

Metric Algorithm 
Number of VMs 

500 600 700 800 900 

Energy 

Consumpt

ion (Joule) 

BF 22379.430 27112.341 31649.539 36031.193 41125.143 

FF 22250.430 27034.941 31546.339 35850.593 40987.543 

BFD-CPU 24452.030 29554.741 34427.339 39393.793 44599.543 

FFD-CPU 24452.030 29563.341 34435.939 39419.593 44608.143 

RFF-EDPSO 22026.830 26647.941 31185.139 35549.593 40591.943 

RBF-EDPSO 21932.230 26604.941 31124.939 35497.993 40531.743 

 

Scenario 2: In this scenario, the two proposed methods were compared with recent meta-

heuristic algorithms ( IGA-POP [10] and PAPSO [11]). To attain a fair comparison between 

the algorithms, simulation experiments were conducted using the same environment and 

parameters. Here, three different numbers of VMs from several types of environment loads 

were taken, they were: 60, 300, 700. Similar to scenario 1, the total energy consumption is 

considered for comparison as an objective to optimize the VMP process. Figure 11 shows the 

comparison of energy consumption between algorithms.  
 

 
 

Figure 11: This figure depicts the energy consumption comparison between VMP 

algorithms in scenario 2.   

 
      As can be seen from Figure 11, the RFF-EDPSO and RBF-EDPSO achieved optimum 

energy consumption values. In case 60, RFF-EDPSO achieves the least energy consumption 

values among the other algorithm while, in cases 300 and 700, RBF-EDPSO has the 

minimum energy consumption values. The proposed algorithms overcome the other 

comparative algorithms in all cases. Table 5, summarize the numerical comparison results. 
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Table 5: Energy consumption performance comparison in (Scenario 2) 
Metric Algorithms Number of VMs 

60 300 700 

Energy 

Consumptio

n (k-Joule) 

RFF-EDPSO 2749.656 13427.688 31185.139 

RBF-EDPSO 2758.256 13393.288 31124.939 

IGA_POP 3076.456 15629.288 34375.739 

PAPSO 5510.256 28692.688 66995.539 

 

6. Conclusion 

     In this paper, Enhanced Discrete PSO algorithms (EDPSO) are proposed with heuristic 

assistance for the virtual machine placement problem (VMP). The proposed EDPSO 

algorithms are hybridized with two heuristic algorithms: random first fit (RFF) and random 

best fit (RBF) and termed as RFF-EDPSO and RBF-EDPSO. Enhancing the discrete PSO 

algorithm is achieved through modifying the velocity update equation to bound the resultant 

particles and ensuring feasibility.  

 

     Furthermore, EDPSO is assisted by heuristic algorithms for two benefits. First, initializing 

the population swarm using RFF and RBF, which can significantly improve the convergence 

speed and performance of the algorithm. Second, reducing the effect of infeasible solutions 

replacement during the particles update phase. Compared to recent literature algorithms, 

simulation results demonstrate the effective performance of the proposed RFF-EDPSO and 

RBF-EDPSO algorithms in terms of energy consumption. 
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