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Abstract

In a recent study, a special type of plane overpartitions known as k-rowed plane
overpartitions has been studied. The function ﬁk(n) denotes the number of plane
overpartitions of n with a number of rows at most k. In this paper, we prove two
identities modulo 8 and 16 for ﬁz(n),the plane overpartitions with at most two

rows. We completely specify the ﬁz(n) modulo 8. Our technique is based on
expanding each term of the infinite product of the generating function of the
ﬁz (n) modulus 8 and 16 and in which the proofs of the key results are dominated

by an intriguing relationship between the overpartitions and the sum of divisors,
which reveals a considerable link among these functions modulo powers of 2.

Keywords: Partitions, Overpartitions, Plane overpartitions, Congruences, Sum of
divisors function.
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1. Introduction
A partition of a positive integer n is a non-increasing sequence of integers which are called
parts that sum to n [1]. As an example, there are seven partitions of n=5 denoted by
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(5),(4,1),(3,2),(3,1,1),(2,2,1),(2,1,1,1),(1,1,1,1,1).
It is possible to impose restrictions on the parts of a partition. In the given example, there are
three partitions of n=5 with only odd parts given by
(5),(3,1,1),(1,1,1,1,1).

The concept of partition is generalized to overpartitions. An overpartition of a positive
integer n is a partition of n such that the first occurrence of a part may be overlined [2]. The
overpartition function of n is denoted by p(n) and p(0) = 1. As an example, for n=3, there
are eight overpartitions that are identified by

(3),(3),(21),(2,1),(2,1),(2,1), (1,1,1),(1,1,1).

Partitions with all parts overlined are partitions with distinct parts, whereas partitions with no
overlined parts are ordinary partitions. As a result, the generating function of overpartitions
has the following algebraic formula:

_ 1+wt
P(w)=1+Z§(t)wt=n1_wt=1+2w+4w2+8w3+14w4+--- (1)

teN teEN
The one row partition was extended by MacMahon [1] to a 2-dimensional array partition

known as a plane partition. A plane partition y;; of a positive integer t is a 2-dimensional
array with weakly decreasing entries

Hiv1,j < Hijr Hij+1 = Hijs

ij

The concept of plane overpartitions was introduced as a natural extension of the
overpartitions and plane partitions [3]. In [4], the author defined the concept of k-rowed plane
overpartitions, which is plane overpartitions with the number of rows at most k, as a restricted
variant of plane overpartitions for a fixed number k of rows. The k-rowed plane overpartitions
generating function is represented by

PL(w)=1+) Pl (Ow!

teN
(1 +w t)min{k,t}

= (1 — Wt)min{k,t} ’ (2)
- - - . - tEN - . -
In [5], various identities modulo 4 and 8 for restricted plane overpartitions were established

and proved. Congruences modulo 4 between overpartitions and plane overpartitions have also
been demonstrated. As a result, we are motivated to investigate additional modulo 8 and 16
identities for the 2-rowed plane overpartitions, and perhaps the same work can be pursued for
larger powers of 2. One may notice that PL,(w) has a close structure to the generating

function of overpartition pairs PP (w) since

and

1-w)—- _(1-w)
arw’ Y =Trw

PLy(w) = PP(w). (3)

2. Preliminaries
The sum of divisors function, denoted by o(t) is an arithmetic function that sums all
positive divisors of an integer t, including 1 and t itself. Thus,
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o(t) =Zd

dre

twt
z o(t)wt = Tt (4)
teN teN

which is generated by

Note that

1 d /1 d , , 5
m:a(me D=1 aw 3w

t=0

that leads to the following useful lemma.

Z o(t)wt = Z(l—w—\:/t)z

teN teN

Lemma 2.1. ([6])

Note that the only divisors of a prime p are 1 and p itself which implies o(p) = 1 + p and
a a+l __

. 1
G(Pa)=ZP] =ppT- (5)
=0

Two integers are called coprime if one is the only positive divisor for both numbers. For
any coprime integers n and m, c(nm) = o(n)o(m). Thus, for a positive integer n with prime

factorization
k
a;
i=1
and we find by the multiplicity of a(n),
k

k
a(n) =1_[0(pf”) =l_[(1+pi+---+pf“') (6)

i=1
If n is a square, all powers o4, a,, ..., . must be even. Replacing these powers by 2a;s, we
find,

G(plfli) = 1 (mod 2).

Since the finite product of odd numbers is odd, thus
o(n) =1 (mod 2).

The same argument can be demonstrated if n is twice a square. As a result, the product in
(6) is odd as long as n = m? or n = 2m? for some integer m.

The following two lemmas are fairly basic, and the proofs are provided for the sake of
completeness.
Lemma 2.2. Let n be a nonnegative integer. The following holds for any integer m > 1,

(4n + 3)?™ = 1 (mmod 8). (7)

Proof. By induction on m. Clearly, (7) is true for m=1. Suppose (7) holds for m=k-1 which
provides
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(4n + 3)2k-D =8¢ + 1,
for some integer t. Then,
(4n+3)%% -1 =(Un+3)2¢DU4n+3)2-1=B8t+1)(16n* +24n+9) -1
= 8(16n?%t + 2n? + 24nt + 3n + 9t + 1) = 0 (mod 8).

Lemma 2.3. Forall t > 0,
o(4t +3) =0 (mod 4).
Proof. Let p be a prime of the form 4t+3 and o an odd integer. By (5),
N p(x+1 -1 (4t + 3)(x+1 -1
o(p®) = =
p—1 4t + 2

Since

a+1=0(mod?2),
by Lemma 2.2, (4t + 3)**1 — 1 is divisible by 8. Also, 2 is the highest power of 2 dividing
p — 1. Therefore, o(p®) is divisible by 4. It is known that any integer of the form (4t+ 3) has
at least one prime divisor congruent to 3 modulo 4 with an odd power. Let nhow n be an
integer of the form 4t + 3. With no loss of generality, consider the prime factorization of n is
given by

n= p(xpgz p;:k’
where p is congruent to 3 modulo 4 and « is odd. Since a is multiplicative, we obtain

o(n) = o(p*)o(ps?) -+ o(py*),

which is divisible by 4 since 4 divides o(p®) and the proof is completed.

3. Main Results and Proofs

In this section, we apply a method that is based on expanding the infinite product modulo 8
and 16 for the 2-rowed plane overpartitions along with calling Lemma 2.1. Two results for the
2-rowed plane overpartitions modulo 8 and 16 will be stated and proved. The first result
completely specifies all 2-rowed plane overpartitions modulo 8 as follows:

Theorem 3.1. For all positive integers t,
oL (£) = {2 (mod 8) ift = (2j + 1)%ort = 2j # i*2i*for some i,],
() =

6 (mod 8) otherwise.

Proof. Recalling the generating function for 2-rowed plane overpartitions,

2
PL,( )_(1—W> 14+ wt
2\W) = 1+w tENl_Wt

= <1 + zi(—l)t+1 wt> 1_[ <1 + 12_W‘:/t>2
t=1

teN

B 1t 4wt 4w?t
N 1+22(—1) w 1+Zl_wt+(1_m2 (mod 8)
teN teN
Wt W2t
=1 zz —1)tHwt 42
+2) (DWW ) ks
teEN teN
Wt
—1+ 22(—1)"+1 wt + 42—
(1—wt)?
teN teEN
=1+ 62 w2t-1 4 ZZ w2t + 42 o(t)wt (mod 8).
ten teEN ten
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Note that o(t) is odd as long as t = j2? or t = 2j2 for some j. Reducing the last
equivalence modulo 8, we obtain

ﬁz(w)z1+6zw2f—1+zzw2f+4 Z wt  (mod 8) - (8)

ten teEN t=j2,2j2=1

To finish the proof, we check the exponents of w in the right side of (8) as follows:
Case 1: if t is odd but not a square, then the coefficient of w! is obtained only from the series

6 z WZt—l’

teN
and hence pl,(t) = 6 (mod 8).
Case 2: if t is odd and a square then the coefficient of wt is obtained from the series

62 w2t=1 4 2 wt,
teN t=j22j221

and so pl,(t) = 6 + 4 = 2 (mod 8).
Case 3: if t is even but not a square or twice a square, then the coefficient of wt is obtained
only from the series

2 z w?t,

teN
which implies pL, (t) = 2 (mod 8).
Case 4: if t is even and a square or twice a square, then the coefficient of wt is obtained from

the series
2 Z w2t 4 Z wt,
. teN t=j%2j2=1
andso pl,(t) =2 +4 =6 (mod 8).
By Case 2 and Case 3,

ﬁz(t) = 2 (mod 8).

Otherwise, by Case 1 and Case 4,
ﬁz(t) = 6 (mod 8),
Therefore, we get the results.

Theorem 3.2. For all positive integers t,
‘ t
2+40(t) + 82 o(j) (mod 16) if tis an odd number,

pl,(t) = e

t
14 + 40(t) + 82 o(j) (mod 16) if tis an even number.
\ j:l

Proof. Using a similar argument in the proof of Theorem 3.1,

ﬁ()_(l—W) 1+w’52
2WJ) = 1+w t>11—wt

4414



Al-Saedi Iragi Journal of Science, 2022, Vol. 63, No. 10, pp: 4410-4416

= <1 +2 Z:(—l)t+1 Wt> (1 + 42 O'(t)Wt> (mod 16)

t=1 t=1

_1+zZ( 1Lyt +4ZG(t)W +8z Z( D+t | g(Hwt (mod 16)

t=1 t=1 t=1 \j=1
=1+2 Z w?t=1 4 142 w2t + 42 o(t)wt + 82 z o(j)wt (mod 16).
t=1 t=1 t=1 t21 j=1
For odd integers 2t — 1 > 1, we extract the terms w?‘~1 and obtain modulus 16
2t—-1
pl(2t—1) =2+ 40(2t—1) +8 Z ()).
j=1

Otherwise, for even integers 2t > 2, we extract the terms w?¢ and obtain modulus 16

Pl (2t) = 14 + 40(2t) + 82 (),
j=1
which completes the proof.

Let S, (t),S,(t) be the number of squares, double squares in the interval [1, t], respectively.
Thus, we have the following result because of reducing Theorem 3.2.

Corollary 3.3. For all positive integers t,
— _{ 2 (mod16) if S1(t) +S,(t) =0 (mod 2),
ply(4t+3) = { 10 (mod 16) otherwise.

Proof. Note that

82 o(j) = 8 Z o(j) + 8 Z 6(j) = 8(5,(t) + 5,(t)) (mod 16)
J#i%2i2 j=i%2i2
Since 4|0(4t + 3), thus we find by Theorem 3.2,
pl, (4t +3) = 2+ 8(S5;(t) + S,(1)) (mod 16),
as desired.

4. The Conclusion

Even though PL,(t) appears to be quite like the generating function of overpartition pairs,
we could not identify any congruences modulo 8 and 16 that are similar to those known for
overpartition pairs. Also, greater powers of 2 can be used to obtain congruences modulo 32,
64, and so on, but this technique can be time-consuming when we work with higher powers of
2. Furthermore, if there exist any congruences for plane overpartitions modulo primes such as
3, 5, and 7, they have yet to be discovered. Plane overpartitions with no more than 3 or 4
rows may be considered; however, we recommend working on plane overpartitions with an
odd number of rows when looking for congruences modulo primes, and plane overpartitions
with an even number of rows when looking for congruences modulo even numbers or powers
of 2. It is worth noting that there is a deep connection between overpartitions and the number
of ways to represent an integer as a sum of two squares, three squares, and so on.
Congruences for a higher power of 2 necessitate the investigation of a larger sum of squares.
Such an idea can be generalized to consider other questions, such as representing integers, for
example, as a sum of the forms ax? + by?, ax? + by? + cz? for fixed integers a, b and c.
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Looking through the literature, one may find that many of these problems had been studied by
famous mathematicians, such as Fermat [7], who investigated integers of the form x? + y?2.
He also considered integers of the form x2 + 2y?2 in which from a geometric standpoint, the
case x2 + 2y% = x2 + y% + y? corresponds to asking what integers the sums of three squares
are, where at least two of the squares are of the same size. By the 2-adic expansion series for
p(n), we notice that various problems occur, which may need to look into arithmetic
properties for the sum of squares. For example, p(n) = 0 (mod 64) for n = 7(mod 8) which
cannot be represented as a sum of three squares. Generally, Gauss (1801) [8] established for
the first time that any positive integer that is not of the form 4%(8n + 7) can be represented
as a sum of three squares. Furthermore, there is a significant relationship between
overpartition type functions and the sum of divisors functions, as well as having an interesting
relationship with square integers. We believe that investigating such problems may lead to the
discovery of congruences for overpartition-type functions modulo higher powers of 2. The
readers may be interested in further partitioning concepts contained in [9] and [10].
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