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Abstract

This work aims to analyse the dynamic behaviours of the forest pest system. We
confirm the forest pest system in plane for limit cycles bifurcating existence from a
Hopf bifurcation under certain conditions by using the first Lyapunov coefficient
and the second-order of averaging theory. It is shown that all stationary points in this
system have Hopf bifurcation points and provide an estimation of the bifurcating
limit cycles.
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1. Introduction

Characterizing the existence of periodic solutions is a classic problem in the qualitative
theory of real polynomial differential systems. The Hopf bifurcation theorem is the simplest
requirement for a family of periodic solutions to bifurcate from a known family of stationary
solutions in a dynamic system. However, in this study, we attempt to examine this
phenomenon using Hopf bifurcation theory [1, 2]. Moreover, the method of averaging is
another tool for studying the behaviour of non-linear planer differential systems, especially
when investigating a periodic solution [3, 4].

Two simple age-structured forest pest system have been presented in [5, 6], which the
insect pest attacks one of young or old trees. Thus, for the case where the pest feeds on
undergrowth, it will be investigated that the Hopf bifurcation of the current system after some
modifications and transforming it to the form below:

x=by—(y—12x—ax=P(xy), 1)
y=x—dy=0(xy),

where x is the young tree and y is the old tree, a, b and d are compound parameters. In [6]

the authors studied the easiest models of mathematics for non-even-aged forests which can be
affected by insect pests. Moreover, the authors in [6] used analytical methods such as the
bifurcation theory and the numerical methods to study qualitative behaviours and dynamics of
non-linear forest pest systems. For more information and details about the system, we refer to
these references [7, 8, 9, 10, 11, 12, 13, 14] and references therein. Using the Hopf bifurcation
theorem will be considered for finding the limit cycle (isolated closed orbits) of the forest pest
system using the first Lyapunov coefficient and averaging theory of the first order and the
second order.
The rest of this paper falls into these sections. In Section 2, basic definitions and results that
are needed for this paper are introduced. In Section 3, the local stability of stationary points is
discussed, as well as we prove that the system (1) has no limit cycles for some particular
cases. In Section 4, we study Hopf bifurcations by using the first Lyapunov coefficient and
first and second order of averaging theory, the direction of Hopf bifurcation and bifurcating
periodic solutions stability are completely studied with numerical examples. Finally,
conclusions of the paper are given.

2. Some basic definitions
2.1 The first Lyapunov coefficient
To begin our analytical investigation, we first recall some basic analytic facts form
dynamical theory, for more details see [1].
Let C* be a linear space that can be well-defined on the complex number field C. The
scalar (x, y) for all x,y € C™" satisfies the following properties:
L (x,y)= (y,x) where (x,y) =x"y =3, %,y
2. (x,ay+Bz)= a{x,y)+ B{(x,z), foreacha,f € C,and x,y,z € C",
3.(x,x) 20and(x,x) =0 & x=0.
If one introduces the norm ||x|| = /{ x, x ) in C™, then the space C™ becomes Hilbert space.
Now, a review of the projection method is described in [1, 2] for the calculation of the first
Lyapunov coefficient associated with Hopf bifurcation.
Assume that the following continuous-time dynamical system
x=Ax+Nx), A=(a;j)nxn, XxER" (2)

where N (x) = 0(||x]|?) is smooth function. Suppose that N(x) is written as
N = 5B, x) + < C(x,x,x) + 0(|[x][*), 3)
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that B( x, y) and C( x, y, z) are bilinear and trilinear functions. In coordinates, we have

32Ni(§) n 3°Ni(§)
B;(x,y) = 3", _ Vi, Ci(x,y,2) =37 o i) ViZ)- 4
i(6y) = k=1 0801, %Y, Ci(,y,2) = Xfji=1 28,0894l YY1 (4)

Suppose that A contains two complex eigenvalues on the imaginary axis:A;, =
tiw(w > 0), and these eigenvalues are the only eigenvalues with Re(4) = 0. Suppose that
q € C™ be a complex eigenvector corresponding to 4, = iw:

Aq =iwq, Aq =—-ing. (5)
Include the adjoint eigenvector as well p € C™* admitting the properties:
ATp = —iwp,  ATp = iwp, (6)

and satisfying the normalization (p,q) = 1. The first Lyapunov coefficient at the origin is
defined as

£,(0) = — Re(i 920 g11 + wg21), (7)
where
920 =(p,B(q,9) ), 911 =(p,B(q,9) ),921 =(p,C(9,9,3) ).
We know #,(0) <0 (#,(0) > 0), the Hopf bifurcation is supercritical (subcritical),
respectively.

2.2 Averaging theory of first and second order

A summary of essential results concerning the averaging theory that is needed for proving
the existence of periodic solutions for the system is presented (1). We can see [3] for further
reading on averaging theory.

Theorem 1. Consider the differential equation

X =¢cfor+ €% for +3M(L, x,€), (8)
where  fo1, fo2: RX U > R", M:R X U X (—¢&,&) > R" are continuous functions, T-
periodic in t (T is independent of €) and U c R™ is an open subset. Suppose that the
following hypotheses
a. fo1(t,.)ect(U)forall teR, fo1, fooand M are locally Lipschitz with respect to x.
The function M is twice differentiable with respect to x.
b. Define Fy;: U —» R™ for i = 1,2 by

1 T
For = TJ fo1 (s,z)ds,
0

1T :
Foz = ff [fo.z(S, z) + D, fo1(s,2) ff0.1(t' z) dt] ds,
0
0

where D, f, 4 is the Jacobian determinant matrix of components of f, ; with respect to z.

c. For V bounded and an open set in U, for e € (—¢;&)\{0} there is 7. € V such that
For + Fo, = 0 and dg(Foq + €Fyz) # 0.

Then, for |e| > 0 is sufficiently small, there exists a T-periodic solution ¢(t, €) of the system
such that ¢(t,e) — r, as € —» 0. Moreover, the stability of the periodic solution ¢(t, ) is
given by the stability of the stationary point r.

The term dg(Fy, + €Fy,) # 0 denotes the Brouwer degree of the function Fy, +

eFy,:V — R™ at its stationary point r which is not zero. Inequality is true when a sufficient
condition of function’s Jacobian (Fy; + £F,,) at 7, is not to be zero.
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If Fy; # 0, then the zeros of F,, + €F,, are mainly the zeros of F,, for ¢ sufficiently small.
In this situation, we have the method of averaging of the first order. If F,; is identical to zero
and F,, # 0, then the zeros of F,; + €F,, are the zeros of F,, for & sufficiently small. In
this case, we have the method of averaging of the second order.

For other applications of averaging theory to the study limit cycles for systems, see for
instance [3, 15].

3. Dynamical Analysis of the Forest Pest System and non-existence of Limit Cycles
3.1 Stability analysis and stationary points of the forest pest system

The stability analysis and persistence of system (1) are investigated. That is simple to get
the system has only one isolated stationary point E,(0,0),if d # 0,d(b — ad) < 0; and if
d#0, d(b—ad) >0, it has three isolated stationary points E,(0,0) and E;,(xq,Yo),

0

wherex, =d +/d(b—ad),y, = %. The analysis of the corresponding linearized system

is concentrated on determining the local stability of these stationary points. The Jacobian
matrix of system (1) at the point E'(x, y) is computed as:

Case 1: Stationary point at E(0, 0)
The system (1) at E,(0,0), the Jacobian matrix is

_[—(a+1) b
I A
The characteristic equation of ], is
A2 —AT+D =0, 9)
where
T=tr(J,) =—(a+d+1) and D =det(J,) =d(a+ 1) —b.
The Jacobian of system (1) has the corresponding eigenvalues, linearized at (0, 0), they are:
hz=(-(a+d+DFfla—d+DZ+4b)/2.
According to Eq. (9), we have the following conclusions:
I.If d(a + 1) < b, then the stationary point E;(0,0) is saddle point.

[.1f _{azd+1)® <b<d(a+1) and —(a+d) > 1, then the stationary point E;(0,0) is
unstable node point.

IIf —W <b<d(a+1) and —(a+ d) < 1, then the stationary point E;(0,0) is
stable node point.

VA G > b and —(a + d) > 1, then the stationary point E,(0,0) is unstable focus
point.

vif - -’ > b and —(a + d) < 1, then the stationary point E,(0,0) is stable focus
point.

VILIf b = _lazd+1y and a #= —(d + 1), then the E;(0,0) is either unstable improper node if

(a+d + 1) < 0 orstable improper node if (a +d + 1) > 0.

Remarkl: Since the arguments of the stationary points E; and E, are very similar, we only
use the stationary point E; throughout this paper.

Case 2. Stationary point at E4
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Now, we move the stationary point E; of system (1) to the origin under the following
transformation,

{xl =X — Xy,

W1 =Y Yo ) _
this transforms the system (1) into the variant below:

iy =—2x + (2ad — b - 2/d(b — ad) ) y; - HAOZ0D vy, — 1, yF - (d +d(b —ad)) Yi(10)

) ) Y1 =X~ dy;.
The Jacobian matrix for system (10) at E; is given by

b
Je. = |~z 2ad—b—2/d(b~ad)
) .
—d

1
The characteristic equation of Jg_ is

2+ (d+2)2+2(b—ad+d(b—ad)) = 0. (11)

According to Routh-Hurwitz criteria [16] all roots of eq.(11) have negative real part if and
only if (d+3)>0and (b-ad+/d(b—ad)) > 0.For the system (10) if (d +>) >0
and (b —ad++/db - ad)) > 0, then E; is asymptotically stable.

3.2 Non-existence limit cycles
First, the Bendixson-Dulac criteria are used to investigate the non-existence of limit cycles in
system (1). For more details see [17].

Proposition 2. (i) If a +d =0, 0or a,d > 0, then the system (1) has no limit cycles.
(ii) If b > 0, then the system (1) has no limit cycles in a region D = {(x, y): xy # 0}.

Proof: We find that the divergence of system (1) is

. P 9
div(P, Q) =a+£=—a—d—(y—1)2.

If a+d=0ora,d> 0, we obtain that sign div(P, Q) < 0, by Bendixson’s criterion [18].
Then, it cannot be limit cycles of the system (1) contained within plane.

1

(i) Construct the Dulac function as follows B(x,y) = -’ then we have
a(BP) 9(BQ) x% + by?
div(BP,BQ) = = — <O0.
iv( Q) dx + dy x?y?

Also, if b > 0, we have sign div(P, Q) < 0 ,so that by the Dulac Theorem [18] the system (1)
has no limit cycles in D. O

4. Hopf Bifurcation of forest pest system
4.1 Hopf bifurcation analysis by the first Lyapunov coefficient
We now show that the system (1) has limit cycles arising from Hopf bifurcation.

Proposition 3: The forest pest system (1) at the origin stationary point with eigenvalues +iw,
w € Rtifand only if d =d, = —(a+ 1) and b = —(a + 1)? — w?, where (a + 1)2+ b <

0. Also, in the Eq. (9), which satisfy (%gd))) = % # 0, then the forest pest system (1)
d=dp

displays a Hopf bifurcation.

Proof: At the origin point the characteristic polynomial of the linear part of the forest pest
system (1) is
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PAD=22+@+d+1A+d(a+1)—b.

In order to have a Hopf stationary point, we impose that P(1) = 2> + w? ,so0 we obtain the
system
a+d+1=0, w?=d(a+1)-b
When d = d;, = —(a + 1), the Eq. (9) at the point E,(0,0) can be rewritten into

A —(a+1)?+b)=0. (12)
Clearly, the Eq. (12) has a pair of purely imaginary conjugate roots, namely 2;, = +iw,
when o = /—(a + 1)2 — b, where ((a + 1)? + b < 0).
Let 4 = A(d), we define the following relation from the characteristic Eq. (9)

fA(d),d) = A(d)? = A(d)T +D = 0. (13)
Differentiation of (13) with respect to d yields,
o o
91 d(d) '
We can obtain
di(d) __of (af)‘1 _ A+a+1 "
d(d) ~ ad\or) = 22+a+d+1 14)
Taking the root A(d) = iw, evaluating d = d;,, and substituting it into (14), we have
dRe(A(d)) 1 <0 15
d(d) /,_, 2 ' (15)

Obviously, the first two conditions of Hopf bifurcation are satisfied so that the Hopf
bifurcation theorem holds. Therefore, by Guckenheimer and Holmes [19], we know that
system (1) undergoes a Hopf bifurcation in stationary point at E£,(0,0) when d = d;. &

Theorem 4: If the conditions of Proposition 3 hold and a? + 2a + b + 1 < 0, then the first
Lyapunov coefficient of system (1) at stationary point E,(0,0) is given by
2,(0) = a’-2a+b-3 ,

24/ (-a%2-2a-b-1)3
when a > —1, we have ¢,(0) <0, so the Hopf bifurcation at E,(0,0) is supercritical.
Whereas, when a? — 2a + b > 3, we have #,(0) > 0, therefore the Hopf bifurcation at
E(0,0) is subcritical.

Proof: The Jacobian matrix A for system (1) at E,(0,0) when d = —(a + 1), we can write in
the form
—(a+1)
A= . 16
[ 1 a+ 1] (16)
Suppose that g € C? is an eigenvector of matrix A corresponding to the eigenvalues. Also, let
p € C2 be an eigenvector of the transposed matrix AT corresponding to conjugate eigenvalues.
We derive the four vectors via tedious calculations,
_(—(a+D+iw __(—(a+1)-iw
- ( 1 ) q= ( 1 )

1 1 _ 1 1 (17)
p_E((a+1)—iw)’ p_%((a+1)+iw)’
Where g is the conjugate vector of q. Which satisfies
Aq = iwq, ATp = —iwp, and ,(p,q)=1. (18)

In system (1) there will be bilinear and trilinear functions. Then, the B(¢,n),and
C(&,n, Q) define planar vectors
§=(u&)T ERY = (,m2)" € R? and { = ({1,{2)" € R?, the values

5501



Othman and Amen Iragi Journal of Science, 2022, Vol. 63, No. 12, pp: 5496-5509

B(E,n) = (2(51712(;‘ 77152)), C(E Q) = (_2(51772(2 + 56772(1 + 52771(2))_ (19)
From (16), (17) and (19), the straightforward and tedious calculation yields

2(w+i(a+1) _ .

920 = (p,B(q,q)) =22 119 =< B(q,7) > = ned),
_ w+3i(1+a)

921 =(p,C(q,9,9)) =— — .

The substitution of g20,g11 and g21 into the first Lyapunov coefficient £,(0) in Eq.
(7), we obtain
a’-2a+b-3

£,(0) = —Re(i g20g11 + wg21) = e

From the first Lyapunov coefficient #,(0), since a® + 2a+ 1+ b < 0, then a? —2a + b —
3<—4a-4.

Then, if a = —1, we have ¢,(0) < 0, the Hopf bifurcation is supercritical. Although, when
a’ —2a + b > 3, we have £,(0) > 0, the Hopf bifurcation is subcritical. &

From Theorem 4, we should be noted that there are possible results where the first Lyapunov
coefficient will not provide outcomes, this means that £,(0) = 0,the Hopf bifurcation is
degenerate, when

() b =—a?+ 2a + 3.

In the previous case the higher-order Lyapunov’s coefficient would be necessary to
describe the existence of a periodic solution rising from stationary point E,(0,0) .
The Hopf bifurcation at E; occurs, and the stability of E; depends on the value of the first
Lyapunov coefficient £,. We have the next Proposition.

Proposition 5: The forest pest system (10) at E,(0,0) stationary point with eigenvalues +iw,
w €RJf and only if b=b,=-d? w?=2(-b-ad+d(b—ad)) such that

(z (~d@a+ )+ @+ d))) > 0,and (a + d) < 0. Also, in the Eq. (11), which

dRe(14+(b))

satisfy ( 20)

) = ;—; # 0, then the forest pest system (1) displays a Hopf bifurcation.
b=bp

Proof: At the E; point the characteristic polynomial of the linear part of the forest pest system
(1) is

P =2+ (d+2)1+2(b - ad +/d(b — ad)).

In order to have a Hopf stationary point, we impose that P(1) = A% + w? ,we obtain the
system

(d+2)=0, w?*=2(b-ad+d(b - ad)).

When b = by, the Eq. (11) at the point E; can be rewritten into

22+ Q2(—d(a+ d)++/—-d?(a+ d))) =0.

Clearly, Eq. (11) contains two purely imaginary conjugate roots, 2;, = +iw, when w =

\/2(—d(a+ d) +y=d*(a+ D), (2(-d(a+ d) +{=d2@+d)) > 0).

Let A = A(b), define the relation from the characteristic Eq. (11)

F(A(b),b) = A(b)? + ((d + g)) A(b) + 2(b — ad + \/—d (b — ad)) = 0. (20)
Differentiation of (20) with respect to b yields,
of d_ of
aAdm) b
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We can obtain

dA(b) _ of (af)‘l _ AJd(b - ad) + 2d\/d(b — ad) + d? 21)
d(b) db \04 (2dA+d? + b)\Jd(b —ad)
Taking the root A(b) = A, (b) = iw, evaluating b = by, and substituting it into (21), we have

dRe(1, (b)) -1
(—d(b) >b=bh =-2#0. (22)

Obviously, the first two conditions of Hopf bifurcation are fulfilled, and the Hopf bifurcation

theorem holds. Therefore, by Guckenheimer and Holmes [19], we know that system (1)
undergoes a Hopf bifurcation at stationary point at E; when b = by,. O

Theorem 6: If the conditions of Proposition 5 hold, then the first Lyapunov coefficient of
system at stationary point E; satisfying b = by, is given by

£,(0) =282 D 5,

when d < 0, we have #;(0) <0, so the Hopf bifurcation at E; is nondegenerate and

supercritical. Although, d > 0, we have #,(0) > 0, consequently the Hopf bifurcation at E; is
nondegenerate and subcritical.

Proof: The Jacobian matrix A for system (10) at E; when b = —d?, we can write in the form

. [iz 2ad +d — w/d—dZ(a ¥ d)]. 29)

Suppose that g € C? is an eigenvector of matrix A corresponding to eigenvalues. Also, let
p € C% be an eigenvector of the transposed matrix AT corresponding to conjugate eigenvalues.
We derive the four vectors via tedious calculations,

_(d+iw __(d—-iw 1 1 —_ 1 1
q_( 1 )’ q_( 1 )' p_—Ziw(—d—iw)'p_Ziw(—d+iw)' (24)
Where g is the conjugate vector of g. Which satisfies
Aq = iwq, ATp = —iwp, and ,(p,q)=1. (25)

In the system (10) there will be bilinear and trilinear functions. Then, the B(¢,n),and
C(&,n, Q) define planar vectors
'S = (8;1' fZ)T € Rz! n= (771' UZ)T € RZ, and Z = ((1' (Z)T € RZ' the ValueS

[ —d? d
BE,n) = _2< (da 9 (d §2mz + 1281 +1m12) + dfznz)

0

CE ) = (T2EmG T Eanah L))
From (23), (24) and (26), the straightforward and tedious calculation yields

_ 2/-d2(a+ d) e <(d+3 —d?(a+ d))>’

(26)

920 = (p.B(q,q)) = y >

_ i(d+3y—-d%2(a+d)
gl1 = (p,B(q,q)) = ( ),

w

_ w — 3id

The substitution of g20,g11 and g21 in to the first Lyapunov coefficient £,(0) in Eq.

(7), we obtain
£,(0) = —Re(i g20g11 + wg21) =

2w?

2d(a+d)
-
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From the above #,(0), mustbe (a+ d) < 0and w > 0.

Hence, when d > 0, we have #,(b,) > 0 , so the Hopf bifurcation is nondegenerate and
subcritical. while, when d < 0, we have ¢, (b;) < 0, so the Hopf bifurcation is nondegenerate
and supercritical. @

4.2 Numerical results on Hopf bifurcation

We give examples for the stationary point E,(0,0) about phase portrait forest pest system
(1), respectively. Firstly, according to Theorem 4, for the Hopf bifurcation at the stationary
point at E,(0,0), we fix a=-0.2 and b=-5 so that d,=-—0.9 with initial
conditions x(0) = 0.01 and y(0) = 0.3. Likewise, #,(0) = —0.4541365201 < 0, then the
Hopf bifurcation is supercritical. Here, we see that it is unstable when d = —0.7 > —0.9 =
dy. While, d = —1.1 < —0.9 = d,,. Therefore, stable limit cycles yield, the result is shown in
Figure 1.
Secondly, according to Theorem 6 for the Hopf bifurcation at the stationary point at E; we fix
a=-2and d=1, so that b, = —1 with initial conditions x(0) = y(0) = 0.3. Also,
£,(0) = 0.25 > 0, then the Hopf bifurcation is subcritical. Here, we see that it is stable when
=—-13< —1=b, . While, b = —-0.8 > —1 = b, unstable limit cycles yields, the result is
shown in Figure 2.

T e e e e e e e e e e e e e e e B L
e e e e e | e e e e e e e e e,

e e e e e e e e e e e e e e e e e
T T T T T e T T e T e e T T T T T e e i g L
T e e e e e e e e e e e e e N, Y, Y Y, ™

T e e T S e e e e e e e e e e e e
[ e e e e e e e e e _,,____..____...,__-..}:__-.___‘“_.w-h_.w-h_.m_\\m\ T

b e e e N e L L

N A N

] FENERETER SINNTTES) ) ENENE NN,

- = »)J.* I‘ X\ M M . - — -\"h__‘:____ ‘ 1\‘ N Y e
e Il A W N Mg NN NN
- - - I __1./\ e e T M, M o e e e S, e, e, e, e | e, e e e e e W e
e T e e N N N W e i i i e i i | i e, e e
e T e e e e e T e iy i, ™ty i, ity i, S, ™ e N —————

\ A}

e | e e e A s | e ——
B e S AU NNy P ——

- i i Ty o e e e e e e e e, e, i =
() (ii)
Figure 1: Phase portraits of system (1) at the stationary point at E,(0,0), we fix a = —0.2,
and b = —5. (i) d > d, and (i) d < d,.

N T i U —
SN
— ‘-.‘, | e e e e e e
NV e ——
- I'r I / b T T e e e e e e e e e e
A e A i —
AL S e

f/////xx/x HFE.QQQ\\\
g//////4/;: TH/)/////

Figure 2: Phase portraits of system (1) at the stationary point at E;, we fix a = —2, and
d=1.(1)) b > by and (ii) b < by.
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4.3 Hopf bifurcation analysis by Averaging theory
In the next results, we show that the averaging method can be used to find sufficient
conditions on parameters of the system (1) has a limit cycles.

Theorem 7: Consider the forest pest system (1), if d = —(a+ 1)+ ed; + £2d, and

b=—(a+1)? — w? with w > 0, —2— < 0, with £ > 0 is a sufficiently small parameter.
w*+4a+4

Via averaging theory of second-order has one limit cycle bifurcating from the Hopf stationary
point at the origin. The limit cycle is stable if d, < 0 and unstable if d, > 0.

Proof: Let the parameters for perturbations (b,d) = (—(a+ 1)? —w? —(a+ 1) +ed; +

£2d,), then the forest pest system (1) becomes
x=—(a+1D)x—((a+1?*+wd)y+2xy— xy?
y=x+(a—ed; —%dy, + 1) y.

Doing the rescaling of variable (x,y) = (&X, €Y), the system (27) in the new variable (X,Y)

is

(27)

X=—(a+ DX - ((a+1)?*+ w?)Y + 2eXY — £2XY?,
Y =X+ (a—ed, —€%d, + 1)Y.
Now, the linear can be written at the stationary point E, of system (28) when € = 0, into its
real Jordan normal form

(28)

(o o)
This change of variables is verified as, where w? = —(a + 1)% — b,
) =C“"" 2)6) @9)

In the new introduced variables (U, V) , the system (28) is written as follows:

U=—-wV—edU~—e%d,U,
: 30
V=wU +%(2(wV+ U+al)+di(a+1)) —%”((a + DU+ UV —(a+1) dz).( )

Therefore, using angle 6 and we write the system (30) in the polar coordinates as follows:
U =rcosfand V = r sin 8, and we can apply the averaging theory, we obtain

r cos 6

7= —sT(er cos?0 +cosB (—2r(a+1)sinf + wd,) — (a+ 1) cos0d; — 2rw) —

Z—Zr cosO (r?(a+ 1)sinf cos? 0 — wr?cos® 0 + w(r? + d,) cosd — d,(a + 1) sin ),

(31)

0=w +£(cos€ (27rcosB +dy)(cosO (a+ 1) + wsinh)) —Z—Z(COSH (r?cos? 6 —
d,)(cos6 (a+ 1)+ wsin 9)).

We apply the averaging theory to the angular variable 8 as the new independent variable.
We compute Z—; and develop the new equation for the system (31) in the variable & up to the

second order in the form
dar

Ezgfo.l'i‘gz for +0(%), (32)
where
r cos 6 ) )
fo1=— o2 (2rw cos?8) — 2rsinf cos @ (a + 1) + wd, cosf — d; sinf (a + 1)
- 2rw),
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T cos 6
foz = " (472 cos* 6 sin O (w? — a? — 4a) + 8wrd, cos? O + 2awd? cos §

— a%d? sin @ cos? 6 + w?d?sin 0 cos? O — 4rd, sin cos> @

— 2ad? sin 6 cos? 0 + 8wr? cos® 6 + w3r? cos® 6

— 8wr? cos? 6 + 8awr? cos® 8 — 8awr? cos3 § — 5w?r?sin @ cos? O

— 6wrd, cos? 8 — ar?w? sin O cos? § — 6awrd, cos? 8 — 2w?rd, sin O sin O

+ aw?d, sin @ — awd? cos  — wd? cos 6 — dyw3 cos O + w?d, sin f

— w3r? cos O — 4r?sin 6 cos* 6 + 2wd? cos® @ — d? sin O cos? 6

— 4a%rd, sin @ cos® 0 + 4w?rd, sin O cos® 8 — 8ard, sin O cos3

+ 8awrd, cos* 9).

We shall apply the averaging differential system of the first order for system (32). Via

the notation of Theorem 1, we have t =6,T = 2r andx =r. Also, we have interval
I ={r:0 <r <r}forsome 7 > 0, given the following result by Theorem 1 formula (b)

For = 1f2n dg = -4
01 = 50 . foa(r) do = W

Hence, F,,(r) has no solution in the interval I. We move to the second-order averaging
theory F,; = 0. This makes d; = 0 and by Theorem 1 formula (b) after the same calculation
for the f;, to

r(r?(w? + 4a + 4) + 4w?d,)
8w3 '

0
Foo=gm | [fa)+ (5501) Of for(r) 0| d6 = -

Therefore, since F,, = 0 has one positive real root r* = 2w /— > L __in the interval I. If
w t+4a+4

—%2__ 0, then the derivative of F, at r* is ——2 = %2 = 0. Moreover, we obtain that the
w?+4a+4 ar(r*) w
small limit cycle is stable if d, < 0, and unstable if d, > 0. For € > 0 is sufficiently small,

Theorem 1, guarantees the existence of a 2w —periodic solution r* such that r*(6,¢) -

2w /— > 2z , When & - 0. Now we shall look at the system (28), similarly, the current
w“+4a+4

system has the periodic solution (x(t,€),y(t,€)) bifurcating from the origin with a period
tends to 2t when € —» 0. O
We translate the stationary point E; to the origin, can you see the above result system (10).

Theorem 8: Consider the forest pest system (10), if b = —d? + €28, w?> =2 (d(a +d) +

JEa@+d), with w>0, (2 (da+d)—y=d*Ca+ d))) > 0,and d*(a + d) < 0

with § > 0 with € > 0 is a sufficiently small parameter. Only one limit cycle bifurcates from
the Hopf stationary point at E; using the averaging theory of the second order. The limit cycle

is stable if (a+d)(—2y/—d?(a+d)+d(a+d—1)<0, and it is unstable if (a+

d)(—2/—d2(a+d) +d(a+d—1) > 0.

Proof: Let the parameters for perturbations b = —d? + £2, then the forest pest system (10)
becomes

%= —J=dad + a2 — e2p) (2y + 22 + y?) + (d — Z£) x + (2ad + d* — £2B)y -

dy? — xy?, (33)

y=x—dy.
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Doing the rescaling of variable (x,y) = (X, €Y), then the system (33) in the new variable
X,Y)is

X =—J=d(ad + > = 2p) (2¥ + 22 + ev?) + (d — ZL) X + (2ad + d? - £2B)Y -
edY? — £2XY, (34)
Y=X-dY.

Now, the linear can be written at the stationary point E; of the system (34) when € = 0, into
its real Jordan normal form
(0 )
w 0/
This change of variables is verified as,
X d —w\/u
(Y) o (1 0 )(v) (35)
In the new variables (u, v), the system (34) is written as follows:

U=-wv,
(36)

_3/—d(d(atrd)-e2p) - - 3
(d—3+—-d(d(a+d) szﬁ)uz +2 d(d(a+d) ezﬁ)uv 4 g2 (2Bu+du 2 _Ev)'
w d w a
Therefore, using angle 8 and we write the differential system (36) in polar coordinates as
follows: u = rcos 6 and v = rsin 6, we can apply the averaging theory, and we obtain

7=

srzsinecose(

1'7=a)u+s(

(d-3/-d(d(a+d)—€2pB) N 2y/-d(d(a+d)-£2B) sin 6) _
w d
— 12 sin 0 cos? 6) + 0(e3), (37)

2B cosO+dr?cos36 PBsinb
w d

€%rsin@ (

0 =
w + &1 cos? O (2\/—d(d(a +d) — £2) (5129 _ 3CZ,SB) + dcosg) B

2
: ;(;SG (—wsin @ (dr? cos? 6 + B)+d?r? cos® 6 + 2Bd cos 8) + 0(&3).

w

We applying the averaging theory to the angular variable 6 as the new independent
variable. We compute Z—; and develop the new equation for the system (37) in the variable &

up to the second order in the form
dar

rr i € for + €% fo, +0(e%), (38)
where
_ r%sinfcosé > . 2
foa = -2 ﬂim+dhm9+w+dam0@—3—d(a+®),
fo.z =

rsin@

- w (12ar?sin@ cos* @ + 12r?d3sin O cos* 6 +
dz(d(a2+2ad+d2—a—d+2\/ —d2(a+d)(a+ d)) ( (

4r2d\[—d?(a + d) sin 6 cos* @ — 2ar?d? sin 6 cos? 6 — 2r2d3sin 6 cos? 6 —
2r2d\/—d?(a + d) sin 8 cos? 8 — 2Bad sin @ — 2d? sinf — 2B./—d?(a + d) sin 9) +
J—d?(a + d)(4Bd cos 6 + 8ar?d cos? 6 — 14r2d? cos® 6 — 8ar2d cos® 0) +

r2d3 cos® 0 — 8a?r2d? cos® 6 — 25ar?d® cos® 0 — 17r%d* cos® 6 + 8a?r?d? cos3 6 +
18ar?d3 cos® 0 + 10r2d* cos® 6 + 4Bad? cos 6 + 4Bd3 cos 9).

We shall apply the averaging differential system as represented in Theorem 1 to the
differential system (38). This is done by using Theorem 1, we have t = 6,T = 2mand x = r.
Also, we have interval I = {r:0 < r < 7} for same 7 > 0,given the following results
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2T

1
For = % . foa(r)d6 = 0.

Foz =
= [T [for () + (3 fou) [y foa(r) d6] do = -

rTw _ — 2
8(—2\/m+d(a+d—1)>(d2(a+d)) ( 2py—d*(a+d) +d(dr 2p)(a+ d))

2ﬁ(ad+d2—\/—d2(a+d))

d?(a+d) !

when

Therefore, since F,, = 0 has one positive real root r* = \]

d?(a+ d) < 0and B > 0, then derivative of F,, at r* is

iFy, _ —Bo(ad+d?+2{-d%(a+d))
dr(r)  2d2(a+d)(—2y—d2(a+d)+d(a+d—1)
Moreover, we obtain that the small limit cycle is stable if (a+ d)(2{/—d?*(a+d) +
d(a+d—1) <0, and it is unstable if (a + d)(2y—d?(a+d)+d(a+d—1)>0. For
€ > 0 is sufficiently small, Theorem 1 guarantees the existence of a 2w —periodic solution r*
such that

#0, and must be a>0,d<0 or a<0,d > 0.

2,8(ad+d2—\/—d2(a+d))

d?(a+d)

r*(0,¢) = , when ¢ —» 0. Now we have to look back to system (28),
it also has periodic solution (x(t, €), y(t, €)) bifurcating from the origin with a period tends to
2mrwhene - 0. O

5. Conclusions

This paper sheds light on the analysis of stability and bifurcation of the forest pest
system. In this system, we have shown that the Hopf bifurcation occurs at stationary points E,
and E;,. We studied the limit cycles bifurcating from these stationary points via the first
Lyapunov coefficient and averaging theory of the first order and the second order. Moreover,
it is shown that six limit cycles can bifurcate from stationary points and provide an estimation
of the bifurcating limit cycles with the direction of Hopf bifurcation and bifurcating periodic
solutions stability are completely studied. Moreover, the local stability of stationary points is
discussed, as well as we prove that this system has no limit cycles if either a +d = 0, or
a,d >0 orb > 0intheregion D = {(x,y): xy # 0},via the Bendixson-Dulac criteria. Also,
some numerical results are presented.
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