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Abstract

Let I' be any connected graph with vertices set V(I') and edges set E(I"). For any
two distinct vertices y and z, the detour distance between y and z which is denoted
by D(y, z) is a longest path between y and z in a graph T'. The detour polynomial of
a connected graph T is denoted by D(T;x); and is defined by ¥, ,eyry x°@2. In

this paper, the detour polynomial of the theta graph and the uniform theta graph will
be computed.
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1. Introduction

In a connected simple graph T, the detour distance [1] was defined as a length of a maximum
y — z path between two distinct vertices y and z in a vertex set V(I") of a graph I'. The Detour
Polynomial of a graph T is defined by D(T;x) = X, s1cvm) xPW2) The Detour index is
defined as the sum of the detour distances between unordered pairs of vertices of the graph T.
If D(y, z) equals to the standard distance between every pair of vertices y and z of a graph T,
the graph T is called a detour graph [2].
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The use of the detour index was analyzed and its application was compared by Trinajsti'c et
al. [3]. Along with that, they compared Wiener's index in structure-boiling point modeling.
Whereas the detour index was probed by Rucker [4] as a descriptor for boiling points of acyclic
and cyclic alkanes. The detour index was first defined by Amic and Trinajstic in [3] and then
the definition of detour polynomial was introduced by Ali and Gashaw in 2012 [2].

Hence, an algorithm was proposed by Lukovits and Razinger [5] for the detection of the
longest path between any two vertices of a graph. It was then used for derivation of analytical
formulas for the detour index of fused bicyclic structures. Collaboratively, computer methods
were proposed by Trinajsti' ¢ et al. [6] and Riicker and Riicker [4]for computing the detour
distances and hence for computing the detour index. There are several recent studies to find
detour indices with chemical applications, see [7]and [8]. In 2010 [9], the authors found the
detour Hosoya polynomials of some compound graphs, the detour polynomial of Ladder graph
and Corona graph was found by [2] and [10].

In this paper, the detour polynomial was found for the theta graph, and in order to obtain this
polynomial it was necessary to divide its graph in two cases and to give a general formula for
each of the cases.

Definition 1.1,[12] Theta graph is a simple graph which encompasses two vertices y and z
they are interlinked by three internally disjoint paths L,, L, and L5 of lengthm — 1,n — 1 and
k + 1 with common end vertices y and z as m,n and k + 2 as the number of vertices on
respective paths, denoted by 6(k, m, n) as depicted in Figure 1.

For k = 1, we denote the graph by 6(m, n) as depicted in Figures 1(b) and 1(c).
Definition 1.2,[11] Generalized theta graph is a graph includes of two vertices y and z are
interlinked by a number of internally disjoint paths Ly, L, ..., L,, with common end vertices each

of length > 1 denoted as B(LI,LZ,...,L :nl,nz,...,np) with ny,n,,...,n, the number of
vertices on respective paths, as depicted in Figure 2. Theta graph is called a uniform theta graph,
ifn; =n, = =n, = nand denoted as O (p: n).
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Figure 2: Generalized theta graph

In [12], Herish and lvan obtained the restricted detour polynomial of the theta Graphs. In
this article, the detour polynomial of the theta graph and the uniform theta graph will be
computed.

2. Detour Polynomial of the Theta Graph 6(m, n)

In this section, we determine the detour polynomial of the theta graph 6(m, n), where m <
n, and m and n both are even, both are odd or m = n.
Theorem 2.1 If m and n are both even (or both odd) and m,n > 6, then

D(O(m,n);x) = ZzlmJ lm2+1] xmAn+i—(j+2) + 22[ J ln+ll xmAn+i-(j+2)

J i+1 ] i+1
lmJ lmJ n—3+(i+j) + Z_Tm j;:"‘l—i xn+1—(i+j)
n n+1 E . .
+Zl L Zl_lﬂ_,_z_i xm+l+] -3 +Zl I nm lz] xm+1+}—3
+2 Zlml l J xmin- (i+)) +2 Zlm+1l ZlnﬂJ m+n+1-(i+j) _ X1 xn+2m_

Proof. We start the proof when m and n are both even. There are two main cases that can be
distinguished for u and v as in the following discussion:
1. If the two vertices are on the same path, then we have the following four subcases

(@ If u=w; and u = w;, then for i =1, ?— 1,j=i+ 1% , then we have the path
Piiu = u;,Uig, o, Uy = Vg, Vp, .., Vg = U, Uy, ..., U = v isalongest u — v path, and
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D(u,v) = D(ui,uj) =m+n+i—j—2

By the same way, if u = uj and v = uj for i = 1, %— 1,j=i+1, % then

the polynomlal in thls case, is given by

F() =282, $2,,, ammhioi

() If u=w and v=uji=1, %] =1, % then we have the path P,iu =
Ujy Ujmy oy Uy = Uy, Vp, e, V3, V1 = U, ., U = v iS a longest path, and

D(u,v) = d(ui,uj) =n— 3+ (i +j), and we get the polynomial

Fz(x) — ]z L xn—3+i+j

) f u=v and v =y, fori= 1,...,%— 1,j=i+1, g then we have the path Py:u =
Vi) Vimg, vy Vg = Uy, Uy, o, Uy = V5, Vp, ..., = v is a longest path, and

D(u,v) = D(vi,vj) =m+n+i—j—2

By the same way, ifu = v/ and v = vj for=1,...,> —1,j =i + 1,...,=, then

the correspondlng polynomlal in this case is given by

F3(x) _ 22 ] l+1 xm+n+l (]+2)

d) Ifu=v; and v = vj and since m < n, then we have the following two subcases
i. For i=1,. n-m and j=1,. T+1—L then the path Ppu=

2
Vi, Vi, e U, vn, ..., v = v is alongest u — v path and D(v;, vj) =n+1— (i + ) and for

> ]
i=1,..,— ™ and j= (%) +2—1i, ...,2, then the path Ps:u = v, v;_q, .., Uj oo, Uy =
vi,...,vj = visalongestu — v pathand D(v;, v)) =m+i+j — 3.
ii.Fori="""+1,..,2,j = 1,..,2 thenthe path Ps: u = vy, ;_1, .., Uy, ..., U} = V1, ..., V] =
visalongestu — v pathand D(u,v) = D(v;,vj) =m+i+j—3.

Notice that the edge v, v is counted twice.
Hence, case (d) leads to the following polynomlal

nm n-m

—+1- -
F4(X) =32 1 i n+1 (i+)) +Z- Zz xm+1+1—3

Jj= 1 =1 j=M+2_i

n n ’

2 2 m+i+j-3 _ ,n—-1
+ Z.=%+1 j=1 X X .
2. If the vertices u and v are on different paths, then we consider the following cases:
(@ If (u=1w; and v = ;) or (u =} and v = v}), then for i = 2, %] =2, g the path
Py = Uj, Ujyq, oy Ufy e, UG = VY, Uy, .., V) = v is alongest u — v path and
D(u,v) = D(ui,vj) = D(uj,uf) = m+n —i —j. This leads to the following polynomial
F5(x) _ j , xm+n—(i+j)_
(b) If (u=1uy; and v= vj) or(u=uy;and v = vj), then for i = 2, ...,%,j =2, ,g the path
Pgill = Uy, Ujyq, ooy Uy vy Uy = Vg, Vq, Vg, e, Uiy ...,v]f = v is alongest u — v path and
D(u,v) = D(u;, v]’) =D(uj,v;) =m+n+1—(i+j). This leads to the following
polynomial

n

F6(x) — 22 2 m+n+1—(i+j).

Now, if m and n both are odd positive integers (see Figure 1c), then the proof of all cases are
similar to the technique of proof when m and n are even and we get the following polynomial
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m-1  m+1 m-1  m-1
. — 2 2 m+n+i—(j+2 2 n—3+(i+j
D(O(mn);x) =222 X2, X U+2) 1 3 2 i1 X (+))
n-1  nt1 m-1 1 n-1
2 2 m4n+i—(j+2) 2 "2 min—(it+j))
F22 Xl X +3.2 T2, x
m+1 n_+1 n-m n—m+1_i
2 2 m4n+1-(i+j) 2 2 n+1—(i+j)
+2%,2, jZa X +2,2 i1 X
n-1 n-1 n-1 L.
+Z Z zn m xm+l+]—3 + len_m '31 xm+l+j—3 _ xn—l
—+2 —i l=T+1 J=

Comblnmg and simplifying the polynomials of m and n both even and both odd in previous
cases we obtain the detour polynomial of 6(m, n) as given in the statement of the theorem.

Now, putting m = n from Theorem 2.1, we get the following interesting result.
Corollary 2.2. The detour polynomial of 8(n,n), for n > 6 is given by
D(@(Tl n) x) — 42ln+1 J lnHJ x21‘L+l (+2) + 22[ J l I X" 3+i+j

j =i+1

42 Zl J an 2n (i+)) + ZzlnHJ ZEY;TjJ x2n—(1+1—1) )

Proof. From Theorem 2.1, suppose that n = m, we will get the formula D(8(n,n); x) after
making some algebraic simplifications.

The next two corollaries are direct consequences of Theorem 2.1.
Corollary 2.3. If n >m = 6, m is an even integer and n is an odd integer, then the detour
polynomial of 8(m, n) is given by

LU o n-1  n+1 o
D(B(m,n);x) = ZZZ 12 i1 xmnti=(+2) o 22;1 jii+1 xmAn+=(j+2)
7 o [E:ﬁq+1—i o
+Z 2 x" MR DY IR I X H1-(+))
[n m] L n-1 o
2 xm- 3+i+j + 2 2 xm—3+1+]
Z [n ]+ 2-i Z, i=[1=m]4 21
n n-1 m n+1
T2 m+n—(i+j) 2 2 man+l—(i+)) _ n—1
+22i=2 j=2 x + 22i=2 j=2 X X .

Proof. We get the previous formula in the same way as proof Theorem 2.1.
Corollary 2.4. If n >m = 6, m is an odd integer and n is an even integer, then the detour
polynomial of 8(m, n) is given by

m—1 m+1 n

2y oz -1 .
D(Q(m, n);x) = 221‘:21 jii+1 xm+n+l U+2) + 22 ] it1 xm+n+l—(]+2)

m1 m1

+2 2 XM= 3+l+]+2[n m] Z[n ]+1 -1 n+1 i+
77. n— m

_l_zz_[n m]+ 2= xm- 3+i+j +Zl 2 22 [n m]+2 . xm- 3+i+j

m 1 n m+1 TL
+22 J _, xmin- @i+)) +Z ] ) xm+n+1—(l+]) — xn 1

Proof. We get the above formula in the same Way as proof Theorem 2.1.

The next theorem computes the detour polynomial of the theta graph 6(m, n, k) depicted in
Figure 1(a).
Theorem 25. Ifn>m >k > 6 and m,n and k all are even positive integers (or all are odd
positive integers), then
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m m+1 n+1
D(Q(k m, n) x) — 22[ J E i+J1 xm+n+1 (J+2) + 22[ J E HL xm+n+i—(j+2)
lmJ lmJ n—3+(1+]) Z% %4_1_1' xn+1—(1+j)
j=
+Z an xm+1+] -3 +Zln+1 EJ xm+i+j—3

B yo—i

+2 Zl J an xmAn- (i+)) + 22[ J ZE :-Jl xn+k+i—j

llch llch n+1+] 1 lmJ ln (k+2)J m+n—(i+j)
+2%:2,

n—(k+2)

xmrk+j— 1+2lm+1l l J xmHn- (i+))

+2§ﬂ S

j= ln (k+2)J+1

m+1J lnHJ m+k+j—i lmJ ln;LlJ min+k+1—(i+j)

+ i’ L P a + 22 j =2 X !
m+1 n ] l J+1 m-— (k+2) k

+Zz 2 J Zl J MR- (i+)) _I_Zl H xm+n+j—(i+1)

lmJ Z o (ka btk (i+1)
_lm (k+2)J 3 j=1
+ Z m+1J Zl’;J n+m+j—(i+1)
|t j=i_lm—(k+2)l X
lm (k+2)J lk+1J 2
2 2 xm+n+i—(j+1)

+Zl 2 j=1

m+1 . |m—(k+2)
+y _[mJ = Z] [172 [+1 (k= (+1)

m+1 k+1

J l J n+m+j—(i+1)
+Z lm (k+12()+J:'3 Z lm (k+2)J x . k
m m

+2 Zl J l J m+n+k (i+)) +Zl J F:Jl xm+n+k —(+))

ln (k+2)J lkJ
+Zz 5 .2=1 xm+n+j—(i+1)

i n—(k+2) o

+Zl Jln (k+2)J , Z] ll I+1 xm+k+l—(}+1)

Zl & e
+Z N le . XMt (i+1)
n-— l(k+i’:+2)1+3 k+]1=l_l¥J
l J Zl 2 J m+n+j—(i+1)

+Zl 2 j:l x
ln+1 ._ln—(k+2)J 1 o
+Z ln (k+2)l+3 2] 1 xMtk+i=(+1)

‘n+1J k+1]

n+m+j—(i+1)

l |
+2, _|reter) 5 & X =t x
T

m+n+k —(i+j) _ Zx(n—l)
Jj=1 )

X

Proof. We start the proof for m, n and k all are even positive integer.
Let u and v, then there are two main cases which can be distinguished for u and v.
Case 1. If u and v are on the same path, then we have six subcases which can be highlighted
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(@) Ifu =w; and v = u; (or u = u; and = u; ), the same as Case 1 (a) of Theorem12..

(b) If u = u; and v = u;, the same as Case 1 (b) of Theorem2.1.

(c) If u = v; and v = v; (or u = v; and = v} ), the same as Case 1 (c) of Theorem2.1.

(d) If u = v; and v = v}, the same as Case 1 (d) of Theorem 2.1.

(e) Ifu = w; and v = w; (oru = w; and = w; ), thenfori = 0,1, S— 1,j=i+1, % the
path Py:u = wy, Wi_q, ..., Wo = V1, V2, Vj, ..., V3 = Wy, ..., w; = v. is a longest u — v path and
then D(u,v) = D(Wi, Wj) =n+k+i—j.

In the same way, ifu = w; and v = wj’.

Then, from this case obtain the polynomial
k

Fl(x) — 22 ] i1 xn+k+i—j_
B Ifu=w; and v=wj, fori=0, S} =0, g then the path P,:u = w;, w;_q, ..., wg =
V1, V2, ey Vi, o, W) = v, P is alongest u — v path, and then
D(u,v) = D(Wl-,Wj’) =n+i+j—1
Notice that the detour distance between w, and w,, is counted in case (b) with length n — 1.
Then, the corresponding polynomial in this case is

k

Fy(x) = 2 j . xnHiH—1 _ 4n-1

Case 2. If the two vertices u and v are on different paths, then we have six subcases as follows
(@) If u=w; and v = v; (or u = uj and = v} ), then for i = 2, %] =2, 2 we have two
subcases,
(Fori=2,.,%j=2."=
v, is the longest u — v path and then D(w,v) = D(u;, v;) = m+n — (i + ).

(iFori=2,..,7,j ="
2 2

v is the longest u — v path and then D(u,v) = D(u;,vj) =m+k +j —i.
In the same way, all cases are repeated if u = uj and v = v/, for i = 2, %1 =2, %
From this case we get a polynomial given by

n—k-2

m n
F3(x) = 22 2 2 xmtn=(+j) 4 2%, ijn_k k=i
2

I ’ 1
U= U Ujpqy ey U = Vg, e, Vg, ...,Uj =

,2; thenthe path P: u = w;, u 4, ..., Uy = Wy, ..., w;, U =

241
(b) If u = w; and v = v/ (or u = uj and = v; ), then for i = 2, %] =2, g then the path
Psiu = Uj, Ujpq, o, Up = Wo, oo, Wi, Ug = Uy, Uy, ., V) = D, IS @ longest u — v path and then
D(w,v) =D(u,vj)) =m+n+k+1—(+)).
In the same way, all cases are repeated if u = uj and v = v;, for i = 2, %] =2, % From
this case we get the correspondlng polynomial given by
F4(X) — 22 m+n+k+1 (l+])_
) fu=u; and v =w; (or u =u; and v = wj), then for i = 2, ...,%,j =1, ...,g, we have
three subcases
(i) For i=2,.., +2 and j=1, % the path Pg:u = u; ujpq, - U, oo, Uy =
V1, V3, ey Wo, ..., Wj = v is a longest u — v path and then
D(u,v) = D(ul,wj) =n+m+j—(i+1).
(i) For i—m 243, % and j = 1% if j= 1,...,i—(m_§_2+1), then the path
Py:u = u;, ui_l, iy Wo = Uy, Vg, e, U, oo, V1 = Wy, ..., W; = v is alongest u — v path and then

m—k—2
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m—k—2

D(w,v) = D(upw;) =n+k+i—(+1),andif j=i— ("==+2),...,%, then the path
Pg:u = Uj, Ujiq, ey Uy = W0, ey U, o, U, Vg = Wo, oo, W = VS a longest u — v path and then
D(u,v) = D(ui,wj) =n+k+i—(G+1).

All other cases are repeated if u = u; and v =

From this case we get the corresponding polynomlal given by

m-(k+2) k j_m=(k+2)

Fs(x) = Zzizz j’:l xmAntj-(+1) 22 o), Z]:l 2 xHk+i=(+1)

2
m

+2 22 m—(k+2) 2-_i_m—(k+2) xmAntj—(+1)
i=—7p—*3 jEi———

(d) Ifu=wu; and v=w; (or u=wu; and = w; ), and for i = 2%] =1, % the path
Dgil = Uy, Ujyq, oy Up, UG = W, V3, Uy oo, V1 = Wo, Wy, ..., Wj = V. iS alongest u — v path and
then D(u,v) = D(u, w/) =m+n+k— (i +)).

The case is similar if u = uj and v = w; for i = 2, %,j =1, %
The correspondlng polynomlal in this case is given by

F6(x) — 22 2 xm+n+k (l+]).

(e) Ifu=vy and v =wj (oru =v; and = w; ) then, for i = 2, %1 =1, % we have two
subcases

Q) If =2,. +2 and j=1,. g then the path Py:u = v, viq, ..., v, wy =
uj, uy, ...,u{,ul, . u1 wo, W1, w; = v is a longest u — v path and then

D(w,v) =D(v;,w;)) =m+n+j—(i+1).

n— (k+2)

) If i=% UHZ) +3,..,7 and j=1,..,i- (” -2 + 1) then the path Pjo:u =
Vi) Viog, oy Wo = Uy, Up, v, Uy, o, V3 = Wo, Wy, ..., W; = v is a longest u — v path and then
Dwv)=D(vpw) =m+k=i—-(G+1). If i=""C2Dy3 %and j=i- 222

then the path Pji:u = v;,vipq, ..., Vi, W) = Uj, uj, ...,ul,ul, WUl = Wo,Wp,Wj =v IS a
longest u — v path and then D(w,v) = D(v;,w;) =m+k =i— (j + 1).
Similarly all cases are repeated if u = v; and v = w

!
j .
So, this case leads to the following polynomial
n—(k+2) k . n—(k+2)

+1

i- o
Fr(x) =2%,_7 j’:z xmAn+j-(+1) 4 222 e, Zj=1 2 xMHk+i=(j+1)
2

n
2 2 m4n+j—(i+1
+22i=n—(k+2)+ Zj=i—n_(k+2) X J-(@+1)
2

M fu=v;and v=w; (or u=v; and = w; ), for i = 2%] =1, S then the path
P12:U = Vi, Vigq, vy Ufy wen, V1 = Wo, ey Ujy oo, Uiy -, W) = V. i @ lOngest u — v path, and then
D(u,v) = D(v;, wj') =m+n+k—({+)).

If u = v; and v = w; then the case is similar for i = 2, % andj =1, g

The correspondir;g polynomial in this case is given by

Fg(x) _ j ) xm+n+k—(i+j)_

If n,m and k all are odd positive integers as shown in Figure 1(e), then the technique proof
of all cases are similar as the technique proof where n, m and k are even positive integers.
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Now, the result is a consequence of combining and simplifying the polynomials of n,m and k
which are obtained, odd or even.

The next result computes the detour polynomial of the theta graph in which the three paths
have the same order.
Corollary 2.5. If n > 6, we have

D(Q(n . n) x) _ 62 n+1 2&?:!1 x2n+l (+2) + 32[ J E Jl+1 xn+i+j—3
43 Zlnl - 2(n D+i—j + 32[ I l J 2(n—1)+j—i
+3 ZlnHJ Zl— 2(n D+i—j + SZIHHJ ZlnHJ 2(m-1)+j-i

ln+1

+3 Zl J ZEHJ:J 2n—(i+)) + 32 J Zl J 3n—(i+j) _ an—l_

Proof. Put k = m = n in Theorem 2.4 and simplifying, then we get the result.
The Detour polynomial of a uniform theta graph 6(p: n) is given in the next result. From the
definition of a uniform theta graph, we have p disjoint paths each of order n, and by Corollary
2.5, we get the result.
Corollary 2.6. If n > 6, we have

n+1 ln+1

D@(p:n)x)=pX; 2 ] L §2nHi=(+2) +p(19 l)ZH H xHi+j—3

p(p Dzlj —1 y2(-1D)+i-j +p(p 1)211 lJ 2(n—1)+j—i
]

n+1

P(P D l J (-1 x2(n-D+i-j P(” D Inﬂl Inﬂl x2(n=1)+j—i
+EE 2y 2 yis T N X

n+1

P(p 1)Zlnl lTJ x2n—(+)) 4 p(p— UzlnHI Zy;;r;l x3n-0+) _ (p — 1)xn—1 .

Proof: For every two vertices that are on the same path or are on different paths, all cases of
Theorem1 are repeated and using Corollary 2.5 we get the result.

Conclusion:

It is difficult to find a detour polynomial for graphs that have multiple separate paths
internally between any two distinct vertices, and for the purpose of obtaining a general formula,
we split all the proof that can be given to the theta graph, and multiple results are obtained for
special cases depending on the general formulas.
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