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Abstract 
The ground state proton momentum distributions (PMD) and elastic charge form 

factors for some odd pf 21   shell nuclei, such as ,, 6359 CuCo  and Cu65  have been 

studied using the Coherent Density Fluctuation Model and formulated by means of 

the fluctuation function (weight function) .)(
2

xf  The fluctuation function has been 

connected to the charge density distribution of the nuclei and determined from the 

theory and experiment result. The feature of the long-tail behavior at high 

momentum region of the PMD has been calculated by both the theoretical and 

experimental fluctuation functions. It is found that the inclusion of the quadrupole 

form factors )(2 qFC
 in all nuclei under study, which are described by the 

undeformed pf 21   shell model, is necessary for obtaining a notable accord 

between the theoretical and experimental form factors.   
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 :الخلاصة
تطارة الالكترونية المرنة للحالة الارضية تم حساب كل من توزيعات زخم البروتونات و عوامل التشكل للاس

حيث تم التعبير عنها بدلالة دالة   1f-2p   59Co,  63Cu, 65Cuلبعض النوى الواقعة ضمن القشرة النووية 
التموج. ترتبط دالة التموج مع توزيعات كثافة البروتونات و تم حسابها من النتائج النظرية و العملية لتوزيعات 

ت. و قد تميزت نتائج توزيعات زخم البروتونات المعتمدة على دالة التموج النظرية و العملية كثافة البروتونا
الرباعية و التي عوامل التشكل ادخال  بصفة الذيل الطويل عند منطقة الزخم العالي. اظهرت هذه الدراسة بان

عوامل التشكل د بين الغير مشوة اساس للحصول على توافق جي 1f-2p تم وصفها من خلال نموذج القشرة
 . النظرية و العملية

 
Introduction 

The most accurate determination of the charge distributions in nuclei can be obtained from 

electron-nucleus scattering. The interest in charge densities results from the very important fact is 

reflected the behavior of wave functions of protons in nuclei, where the charge density distribution is 

the sum of the proton wave functions squared. Charge density distributions for stable nuclei have been 

well studied by [1- 3]. For the case of the unstable exotic nuclei the corresponding charge distributions 
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are planned to be studied by colliding electrons with these nuclei in storage rings, the GSI physics 

program [4] and the plan of RIKEN [5]. A number of interesting issues can be analyzed by the 

electron experiments. One of them is to study how the charge distribution evolves with increasing 

neutron number at fixed proton number or to what extent the neutron halo or skin may trigger sizable 

changes of the charge root-mean-squared radius and the diffuseness in the peripheral region of the 

charge distribution. The measurements of the charge form factor 
chF  of various nuclei in a range of 

momentum transfers has stimulated extensive theoretical work for the calculation of this quantity. In 

[6] the calculations of the charge form factors of exotic nuclei were extended from light (He, Li) to 

medium and heavy nuclei (Ni, Kr and Sn). For the He and Li isotopes the proton and neutron densities 

obtained in the large-scale shell-model (LSSM) method have been used, while for Ni, Kr and Sn 

isotopes the densities have been obtained in the deformed self-consistent mean-field Skyrme-Hartree-

Fock (HF)+BCS method [7]. In [6] the charge form factors calculated not only within the PWBA but 

also in DWBA by the numerical solution of the Dirac equation [8] for electron scattering in the 

coulomb potential on the charge density of a given nucleus. 

Another important characteristic of the nuclear ground state is the nucleon momentum distribution 

(NMD). In [9] the neutron and proton momentum distributions in some stable nuclei 

( FeCaOC 56401612 ,,,  and  Pb208 ) were calculated along with those of light neutron-rich isotopes of Li 

, Be, B and C using the natural –orbital representation (NOR) on the basis of the empirical data for 

)(kn  in He4 . It is importance to study the NMD not only in stable but also in exotic nuclei. In [10], 

the NMD of even-even isotopes of Ni, Kr and Sn have been calculated in the framework of deformed 

self-consistent mean-field Skyrme (HF)+BCS method, as well as of theoretical correlation methods 

based on light-front dynamics and local density approximation. The isotopic sensitivities of the 

calculated neutron and proton momentum distributions are investigated together with the effect of 

pairing and nucleon-nucleon correlations. Al-Rahmani and Hussein [11] have studied the charge 

density distributions CDD and elastic electron scattering form factors of some ds 12   shell nuclei 

utilizing the PWBA and illustrated that the inclusion of the higher pf 21   shell in the calculations 

leads to produce a good results in comparison with those of the experimental data. 

In the coherent density fluctuation model (CDFM), which is characterized by the work of Antonov 

et al. [12, 13], the local nucleon density distribution (NDD) and the NMD are simply linked and 

specified by an experimentally obtainable fluctuation function weight function 
2

)(xf . Also they 

studied the NMD of  He4(  and ),16O  C12
 and CaK 4039 ,(  and )48Ca  nuclei employing weight 

functions 
2

)(xf  specified by the two parameter Fermi (2PF) NDD [14], the data of Reuter et al. [15] 

and the model independent of the NDD [14], respectively. It is significant to remark that all above 

studies, employed the framework of the CDFM, proved a high momentum tail in the NMD. Elastic 

electron scattering from Ca40
 nucleus was also studied in Ref. [12], where the calculated elastic 

differential cross sections )( dd  were found to be in good agreement with those of 2PF [14]. 

   Nearly all the CDFM investigations are based on the use of weight functions originated in terms of 

the experimental NDD, are employed in the present study. The CDFM with weight functions 

originated in terms of theoretical CDD. In the present study, at first a theoretical form for the CDD is 

derived, which is applicable through out the lower region of the 1f-2p shell nuclei with Z   27, based 

on the use of the single particle harmonic oscillator wave function and the occupation numbers of the 

states. The derived form of the CDD is employed in determining the theoretical weight function 
2

)(xf , which is then used in the CDFM to study the PMD and elastic electron scattering charge form 

factors for  CuCo 6359 ,  and Cu65  nuclei. The effect of considering the quadrupole form factor in 

these nuclei is also studied. It is found that the theoretical weight function 
2

)(xf  based on the derived 

CDD is capable to give information about the PMD and elastic charge form factors as do those of the 

experimental data.  

Theory 
The charge density distribution CDD of the shell nuclei can be evaluated by means of the radial 

part of the wave functions of a harmonic oscillator, since [16] 
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)(  
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nlnlc rRlr 

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where )(rc  is the CDD of nuclei, nl  is the proton occupation probability of the state nl  ( nl = 0 or 

1 for closed shell nuclei and 0 < nl < 1 for open shell nuclei) and )(rRnl  is the radial part of the 

single-particle harmonic oscillator wave function. To derive an explicit form for the CDD of  

pf 21   shell nuclei, it is supposed that there is a core of filled s1  and p1  and 1d shells and the 

proton occupation numbers in ,2s f1  and p2  shells are equal to 21),2(   and 

),20( 12  Z  respectively, instead of  2, )20( Z  and 0 as in the simple shell model. Using 

this assumption in eq.(1),one can get:-  
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where Z  is the atomic number of nuclei, the parameter 1  characterizes the deviation of the proton 

occupation numbers from the prediction of the simple shell model ( 01  ), the parameter 2  is 

assumed as a free parameter to be adjusted in order to obtain the agreement with the experimental 

(CDD). After introducing the form of )(rRnl  with a harmonic oscillator size parameter b  in Eq.(2), 

an analytical form for the ground state CDD of the pf 21   shell nuclei is expressed as 
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The mean square charge radius (MSR) can be determined according to the following equation [12,13]  

,)(
4

0

42




 drrr
Z

r c


                                                                                                                       (4) 

where the normalization condition of the )(rc is given by [12,13]  





0

2)(4 drrrZ c ,                                                                                                                            (5) 

And the corresponding MSR is 
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The central )0( rc  is obtained from eq. (3) as 
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The parameter 1  is determined from the central CDD of eq. (6) as 

 )0(5
3

2 323

1 cb                                                                                                                         (8) 

In eq. (8), the values of the central density, )0(c , are taken from the experiments whereas the 

harmonic oscillator size parameter b is chosen in such away so as to reproduce the experimental root 

mean square charge radii 
21

exp

2r  of the considered nuclei. 

The PMD, ),(kn  for the pf 21  shell nuclei is studied using two distinct methods. In the first 

method, it is determined by the shell model using the single-particle harmonic oscillator wave 

functions in momentum representation and expressed as 
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whereas in the second method, the )(kn  is determined by the CDFM, where the mixed density is 

given by [12, 13] 
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is the density matrix for Z  protons uniformly distributed in the sphere with radius x  and density 
3

0 4/3)( xZx   . The Fermi momentum is defined as [12, 13] 
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and the step function ,  in Eq. (10),  is defined by 
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According to the density matrix definition of Eq.(10), one-particle density )(r  is given by its 

diagonal element as [12, 13] 
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In Eq. (14), )(rx  and 
2

)(xf  have the following forms [12, 13] 
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The weight function 
2

)(xf  of Eq. (16), determined in terms of the ground state ),(rc  satisfies the 

following normalization condition [12, 13] 

,1)(
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
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and holds only for monotonically decreasing )(rc , i.e. .0
)(


dr

rd c  

On the basis of Eq. (14), the PMD, ),(kn  is given by [12, 13] 
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3
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is the Fermi-momentum distribution of the system with density ).(0 x  By means of Eqs. (16), (18) 

and (19), an explicit form for the PMD is expressed in terms of )(rc [12,13] as  
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with normalization condition 
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The elastic monopole charge form factors )(0 qFC  of the target nucleus are also expressed in the 

CDFM as [12, 13]  
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where the form factor of uniform charge density distribution is given by [12,13] 
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Inclusion of the correction due to the finite nucleon size )(qf fs and the center of mass correction 

)(qfcm  in the calculations requires multiplying the form factor of Eq. (22) by these corrections. Here, 

)(qf fs is considered as free nucleon form factor which is assumed to be the same for protons and 

neutrons [17] 
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The correction )(qfcm  removes the spurious state arising from the motion of the center of mass 

when shell model wave function is used and is given by [17] 
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Multiplying the right hand side of Eq. (22) by these corrections yields:  
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It is important to point out that all physical quantities studied above in the framework of the CDFM 

such as )(kn  and ,)(0 qFC  are expressed in terms of the weight function .)(
2

xf  In the previous 

work [12, 13], the weight function was obtained from the NDD of the 2PF, extracted by analyzing 

elastic electron-nuclei scattering experiments. In the present work, the theoretical weight function 
2

)(xf  is expressed, by introducing the derived CDD of Eq. (3) into Eq. (16), as 
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Here, the quadrupole charge from factors are described by the undeformed fp shell model, 

where the ground state charge density distributions of these deformed nuclei are described by [18] 
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The normalization of the spherically symmetric part )(0 rch  gives   .)(4 2

0 Zedrrrch  here, the 

)(0 rch  is calculated by Eq. (3), i.e., ).()(0 rr cch    The quadrupole part of the charge density 

)(2 rch  is related to the electric quadrupole moment Q  by [18] 
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The quadrupole charge form factor, which contains the non-spherical part of the charge density 

distribution, is then given by [19] 
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where )(2 qrj  is the spherical Bessel function of order two, JP  is a quadrupole projection factor 

given by ),32)(1/()12(  JJJJPJ  and J  is the ground state angular momentum ( 2/7J  

for Co59
 nucleus and 2/3J  for both ( CuCu 6563 , ) nuclei). According to the undeformed 

fp shell model [20], where the qudrupole moment arises from protons moving in the fp shell of 

undeformed potential, the radial dependence of the quarupole charge density distributions )(2 rch  is 

assumed to be the same as that of the fp shell part ).(0 rch   In this study, the quadrupole moment 

Q  is considered as a free parameter so as to fit the theoretical form factors with those of experimental 

data.  

Results and Discussion 

The proton momentum distributions )(kn  and elastic form factors, F(q), for Co59
, Cu63

and 

Cu65
 nuclei are studied by means of the CFM. The PMD of Eq. (20) is calculated in term of the CDD 

and obtained firstly from theoretical consideration, as in Eq. (3) and secondly from the fit to the 

electron-nuclei scattering experiments, such as 2PF [14]. The harmonic oscillator size parameters b  

are chosen in such a way so as to imitate the experimental root mean square (rms) charge radii of 

nuclei. The values of 1  are determined by Eq. (8). In Table-1, we display the values of the 

parameters 1, b  and 2  together with the experimental values of the parameters zc, of 2PF 

distribution as well as the corresponding value of the central densities )0(2

exp

PF , the root mean square 

charge radii 
21

exp

2  r  and Q for Co59
, Cu63

and Cu65
 nuclei. 

 

Table 1- The Values of various parameters employed in the present calculations together With the value of 

)0(exp  and 
2/1

exp

2  r . 

Nucleus Model 
c  

[14] 
z  

[14] 

)0(exp  

[14] 

(
3fm ) 

2/1

exp

2  r  

[14] ( fm ) 

b  

( fm ) 1  2  Q  

Co59
 PF2  4.158 0.575 0.1646 3.864 2.0903 0.777623 6.40 150 

Cu63
 PF2  4.218 0.596 0.1672 3.947 2.1130 0.636387 8.336 290 

Cu65
 PF2  4.252 0.589 0.1695 3.954 2.1166 0.669720 8.220 300 

 

In Figure-1, we explore the dependence of the CDD (in 
3fm ) on r (in fm ) for Co59

 Figure-

1(a), Cu63
 Figure-1(b) and Cu65

 Figure-1(c) nuclei. The dashed and solid curves correspond to the 

calculated CDD, using Eq. (3) with ( 0, 21  ) and ( 0, 21  ), respectively whereas the dotted 

symbols correspond to the experimental data [14]. It is obvious that the dashed curves are in poor 
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agreement with the experimental data, mainly for small r. Introducing the parameter 1  and 2  (i.e., 

taking into account the higher orbitals) into our calculations leads to a good agreement with the 

experimental data as displayed by the solid curves. 
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Figure 1- Dependence of the CDD on r  for (a) Co59  (b) Cu63  and (c) Cu65
 nuclei. The dashed and solid 

curves are the calculated CDD of Eq. (3) when 021    and 021   , Table-1, 

respectively. The dotted symbols are the experimental of 2PF data taken from ref. [14]. 
 

In Figure-2, we demonstrate the dependence of the )(kn  (in )3fm  on k  (in )1fm  for Co59
 

Figure-2(a), Cu63
 Figure-2(b) and Cu65

 Figure-2(c) nuclei. The long-dashed curves correspond to 

the PMD’s of Eq. (9) evaluated by the shell model utilizing the single particle harmonic oscillator 

wave functions in the momentum space. The dotted symbols and solid curves correspond to the 

PMD’s obtained by the CDFM of Eq. (20) utilizing the experimental and theoretical CDD, 

respectively. It is clear that the manner of the long-dashed distributions obtained by the shell model is 

in dissimilarity with the distributions imitated by the CDFM.  The majer property of the long-dashed 

distributions is the steep slope mode, when k  increases. This behavior is in disagreement with the 

studies [12, 13, 21- 23] and it is recognized to the fact that the ground state shell model wave functions 

given in terms of a Slater determinant does not take into consideration the significant effects of the 

short range dynamical correlation functions. Therefore, the short-range repulsive features of the 

nucleon-nucleon forces are responsible for the high momentum behavior of the PMD [21, 22].  
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It is noted that the general structure of the dotted and solid distributions at the region of high 

momentum components is almost the same for Co59
, Cu63

and Cu65
 nuclei, where these 

distributions have the property of long-tail manner at momentum region .2 1 fmk  The property of 

long-tail manner obtained by the CDFM, which is in agreement with the studies [12, 13, 21- 23], is 

connected to the presence of high densities )(rx  in the decomposition of Eq. (14), though their 

fluctuation functions 
2

)(xf are small.  
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Figure 2- Dependence of PMD on k  for (a) Co59  (b) Cu63  and (c) Cu65
 nuclei. The solid curves and dotted 

symbols are the calculated PMD obtained in terms of the CDFM of Eq. (20) using the theoretical 

CDD of Eq. (3) and the experimental data of ref. [14], respectively. The long-dashed curves are the 

calculated PMD of Eq. (9) obtained by the shell model calculation using the single-particle harmonic 

oscillator wave functions in momentum representation. 

 

The elastic electron scattering charge form factors from the considered nuclei are calculated in the 

framework of the CDFM through introducing the theoretical weight functions 
2

)(xfc  of Eq. (27) 

into Eq. (26).   In Figure-3, we present the dependence of the form factors )(qF  on the momentum 

transfer q  (in )1fm  for Co59
 Figure-3(a), Cu63

 Figure-3(b) and Cu65
 Figure-3(c) nuclei. Here, 

the effect of the quadrupole form factor )(2 qFC  is considered by the undeformed pf 21   shell 
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model as given in Eq. (30). The dashed and long-dashed curves correspond to the contributions of the 

monopole form factors 
2

0 )(qFC and quadrupole form factors ,)(
2

2 qFC  respectively, whereas the 

solid curves correspond to the total contribution, which is obtained as the sum of the monopole and 

quadrupole form factors. Figures-3(a) - 3(b), show that the contribution of the monopole form factors 

for the considered nuclei underestimated the experimental data [24] (filled circles symbols) at 

08.203.1 q  (for Co59
), 71.102.1 q  (for Cu63

) and 71.102.1 q  (for Cu65
) respectively. 

Inclusion the effect of quadrupole form factors in the calculations leads to improve the calculated 

form factors, especially at the regions where the experimental data are not explained by the dashed 

curve. The locations of the diffraction minima in Figures-3(a)-3(c) are approximately located in the 

correct places when the contribution of the quadrupole form factors is considered in the calculations. 

This figure gives the conclusion that the contribution of the quadrupole form factors gives a strong 

modification to the monopole form factors and brings the calculated values very close to the 

experimental data. 
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Figure 3- Dependence of the charge from factors on q  for (a) Co59 , (b) Cu63  and (c) Cu65
 nuclei. The dashed 

and long-dashed curves represent the contributions of the monopole form factors 
2

0 |)(| qFC  and the 

quadrupole form factors ,|)(| 2

2 qFC  respectively. The solid curves represent the total form factors 

for both contributions. The experimental data (filled circles) for CuCo 6359  and Cu65
are taken from 

ref. [24]. 



Al-Rahmani                                              Iraqi Journal of Science, 2016, Vol. 57, No.3A, pp:1688-1698 

1697 

Conclusions  

The PMD and elastic charge form factors ),(qF  which are evaluated by the CDFM , are 

formulated  via the weight function .)(
2

xf  The weight function, which is related with the local 

density ),(rc  is obtained from experiment and from theory. The property of the long-tail behavior of 

the PMD, which is in agreement with the other studies [12, 13, 22, 23], is achieved by both theoretical 

and experimental weight functions and is connected to the presence of high densities )(rx  in the 

decomposition of Eq. (14), though their weight functions are small. It is found that the contribution of 

the  quadrupole form factors in CuCo 6359 ,  and Cu65
 nuclei, which are described by the undeformed 

pf 21   shell model, is essential in obtaining a  good agreement between the theoretical and 

experimental form factors. It is found that the theoretical CDD of Eq. (3) employed in the 

determination of  theoretical weight function of Eq. (27) is capable to reproduce information about the 

PMD and elastic charge form factors as do those of the experimental data. 
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