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Abstract
The ground state proton momentum distributions (PMD) and elastic charge form

factors for some odd 1f —2p shell nuclei, such as >°Co, %*Cu, and ®°Cu have been

studied using the Coherent Density Fluctuation Model and formulated by means of
the fluctuation function (weight function) ‘f(x)‘z_ The fluctuation function has been

connected to the charge density distribution of the nuclei and determined from the
theory and experiment result. The feature of the long-tail behavior at high
momentum region of the PMD has been calculated by both the theoretical and
experimental fluctuation functions. It is found that the inclusion of the quadrupole

form factors F.,(q) in all nuclei under study, which are described by the
undeformed 1f —2p shell model, is necessary for obtaining a notable accord
between the theoretical and experimental form factors.

Keywords: density distributions; elastic electron scattering, quadrupole form
factors; momentum distributions; 2s —1d shell nuclei; root mean square radii.
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Introduction

The most accurate determination of the charge distributions in nuclei can be obtained from
electron-nucleus scattering. The interest in charge densities results from the very important fact is
reflected the behavior of wave functions of protons in nuclei, where the charge density distribution is
the sum of the proton wave functions squared. Charge density distributions for stable nuclei have been
well studied by [1- 3]. For the case of the unstable exotic nuclei the corresponding charge distributions
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are planned to be studied by colliding electrons with these nuclei in storage rings, the GSI physics
program [4] and the plan of RIKEN [5]. A number of interesting issues can be analyzed by the
electron experiments. One of them is to study how the charge distribution evolves with increasing
neutron number at fixed proton number or to what extent the neutron halo or skin may trigger sizable
changes of the charge root-mean-squared radius and the diffuseness in the peripheral region of the
charge distribution. The measurements of the charge form factor F, of various nuclei in a range of

momentum transfers has stimulated extensive theoretical work for the calculation of this quantity. In
[6] the calculations of the charge form factors of exotic nuclei were extended from light (He, Li) to
medium and heavy nuclei (Ni, Kr and Sn). For the He and Li isotopes the proton and neutron densities
obtained in the large-scale shell-model (LSSM) method have been used, while for Ni, Kr and Sn
isotopes the densities have been obtained in the deformed self-consistent mean-field Skyrme-Hartree-
Fock (HF)+BCS method [7]. In [6] the charge form factors calculated not only within the PWBA but
also in DWBA by the numerical solution of the Dirac equation [8] for electron scattering in the
coulomb potential on the charge density of a given nucleus.

Another important characteristic of the nuclear ground state is the nucleon momentum distribution
(NMD). In [9] the neutron and proton momentum distributions in some stable nuclei
(**C, 0, *Ca, **Fe and *°*Pb) were calculated along with those of light neutron-rich isotopes of Li
, Be, B and C using the natural —orbital representation (NOR) on the basis of the empirical data for
n(k) in “He. It is importance to study the NMD not only in stable but also in exotic nuclei. In [10],

the NMD of even-even isotopes of Ni, Kr and Sn have been calculated in the framework of deformed
self-consistent mean-field Skyrme (HF)+BCS method, as well as of theoretical correlation methods
based on light-front dynamics and local density approximation. The isotopic sensitivities of the
calculated neutron and proton momentum distributions are investigated together with the effect of
pairing and nucleon-nucleon correlations. Al-Rahmani and Hussein [11] have studied the charge
density distributions CDD and elastic electron scattering form factors of some 2s—1d shell nuclei
utilizing the PWBA and illustrated that the inclusion of the higher 1f —2p shell in the calculations
leads to produce a good results in comparison with those of the experimental data.

In the coherent density fluctuation model (CDFM), which is characterized by the work of Antonov
et al. [12, 13], the local nucleon density distribution (NDD) and the NMD are simply linked and

specified by an experimentally obtainable fluctuation function weight function |f(x)|2. Also they
studied the NMD of (*He and '°0), "*C and (*°K, “®Ca and *®Ca) nuclei employing weight

functions |f(x)|2 specified by the two parameter Fermi (2PF) NDD [14], the data of Reuter et al. [15]
and the model independent of the NDD [14], respectively. It is significant to remark that all above
studies, employed the framework of the CDFM, proved a high momentum tail in the NMD. Elastic
electron scattering from “°Ca nucleus was also studied in Ref. [12], where the calculated elastic
differential cross sections (do/ d€2) were found to be in good agreement with those of 2PF [14].

Nearly all the CDFM investigations are based on the use of weight functions originated in terms of
the experimental NDD, are employed in the present study. The CDFM with weight functions
originated in terms of theoretical CDD. In the present study, at first a theoretical form for the CDD is
derived, which is applicable through out the lower region of the 1f-2p shell nuclei with Z > 27, based
on the use of the single particle harmonic oscillator wave function and the occupation numbers of the
states. The derived form of the CDD is employed in determining the theoretical weight function

1£(x) ?, which is then used in the CDFM to study the PMD and elastic electron scattering charge form
factors for °°Co, ®*cu and ®cu nuclei. The effect of considering the quadrupole form factor in

these nuclei is also studied. It is found that the theoretical weight function \f(x)\2 based on the derived

CDD is capable to give information about the PMD and elastic charge form factors as do those of the
experimental data.
Theory

The charge density distribution CDD of the shell nuclei can be evaluated by means of the radial
part of the wave functions of a harmonic oscillator, since [16]
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1 2
pe()= -3 €22 + DR, () &

where p, (r) is the CDD of nuclei, £, is the proton occupation probability of the state nl (£,,=0or

1 for closed shell nuclei and 0 <& ;< 1 for open shell nuclei) and R (r) is the radial part of the

single-particle harmonic oscillator wave function. To derive an explicit form for the CDD of
1f —2p shell nuclei, it is supposed that there is a core of filled 1s and 1p and 1d shells and the

proton occupation numbers in 2s,1f and 2p shells are equal to(2-y,), y, and

(Z—-20—-y, +7y,), respectively, instead of 2,(Z —20) and 0 as in the simple shell model. Using
this assumption in eg.(1),one can get:-

pc(r)_—{Z‘ 10(")‘ +6‘ 11(()‘ +10‘ 12([‘)‘ +(2- 71)‘ 20‘ +72‘R13‘ +(Z-20- 72+71)‘ 21‘ } )

where Z is the atomic number of nuclei, the parameter y, characterizes the deviation of the proton
occupation numbers from the prediction of the simple shell model (y, =0), the parameter y, is
assumed as a free parameter to be adjusted in order to obtain the agreement with the experimental
(CDD). After introducing the form of R.,(r) with a harmonic oscillator size parameter b in Eq.(2),
an analytical form for the ground state CDD of the 1f — 2 shell nuclei is expressed as

12/ b2
p(r) =h{(5—§m+[l—ln +2(2-20-710) +H4-20, — 5 (2 -20- 7)1

[E72+_(Z 20 - 7/2)"‘ 7/1]( )} (€))
The mean square charge radius (MSR) can be determmed accordlng to the following equation [12,13]
=22 p(nyrar, @
Z 0
where the normalization condition of the p, (r)is given by [12,13]
Z =47ZJ-pC(I’)I’2dI’, )
0
And the corresponding MSR is
9 30
(1) =" -2+ 23 ©
The central p,(r = 0) is obtained from eq. (3) as
1 3
p.(0) =w{5—571}, (7
The parameter y; is determined from the central CDD of eq. (6) as
2
7= -7, (0)] ®)

In eq. (8), the values of the central density, p.(0), are taken from the experiments whereas the
harmonic oscillator size parameter b is chosen in such away so as to reproduce the experimental root

.. V2 . .
mean square charge radii <r2> of the considered nuclei.
exp

The PMD, n(k), for the 1f —2pshell nuclei is studied using two distinct methods. In the first

method, it is determined by the shell model using the single-particle harmonic oscillator wave
functions in momentum representation and expressed as
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whereas in the second method, the n(k) is determined by the CDFM, where the mixed density is
given by [12, 13]

p(F,7) = []F 00 oy (7,7l (10)
0
since

(11)

p, (F,F)=3p, (X) s (ke (97 =) x 9[2- |r+2r'|}

Ke (x)|F - F’|
is the density matrix for Z protons uniformly distributed in the sphere with radius X and density
0o (X) =3Z /47>, The Fermi momentum is defined as [12, 13]

372 13 V 9,7 \°
ke(X)=| —p,(X)| =—; V=— 12
F (X) [ > Po ( )] " ( 2 ) (12)
and the step function &, in Eq. (10), is defined by
1, y=>0
o(y) = 13
) {O, = 13)

According to the density matrix definition of Eq.(10), one-particle density p(r) is given by its
diagonal element as [12, 13]

Po(r) = po (1, 1) ey = [| £ 0O oy (r)elx, (14)
0
In Eq. (14), p, (r) and |f(x)|2 have the following forms [12, 13]
(1) = po () O(x—[F) (15)
. —1 dp.(r)
f(x)| = T 16
|f () 00 dr .- (16)

The weight function |f(x)|2 of Eq. (16), determined in terms of the ground state p. (r), satisfies the
following normalization condition [12, 13]

JF 00 ax =1, (17)
0
and holds only for monotonically decreasing o, (r), i.e. % <0.
On the basis of Eq. (14), the PMD, n(k), is given by [12, 13]
n(k) = j | (0| n, (K)dx, (18)
0
4 _
where N (K) = 57z><3¢9(kF (x) —\k\), (19)
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is the Fermi-momentum distribution of the system with density p, (X). By means of Eqs. (16), (18)
and (19), an explicit form for the PMD is expressed in terms of p_(r)[12,13] as

NS (k[ ) :[4{} ;{6 | pc(x)xsdx—[\fj p[‘fﬂ (20)

with normalization condition

3
Z = [neom (k)—d k3.
(27)
The elastic monopole charge form factors F.,(q) of the target nucleus are also expressed in the
CDFM as [12, 13]

(21)

1 0
Feo (@) =3 [T 00" F (@, ), (22)
0
where the form factor of uniform charge density distribution is given by [12,13]
3Z | sin(gx
F(a,X)=—5 {ﬂ - COS(QX)} : (23)
(@) [ (%)

Inclusion of the correction due to the finite nucleon size f (q)and the center of mass correction
f.,(a) in the calculations requires multiplying the form factor of Eq. (22) by these corrections. Here,
f,(q)is considered as free nucleon form factor which is assumed to be the same for protons and

neutrons [17]

0.43g°
fo(q) = exp[— 4q 1. (24)

The correction f_,(q) removes the spurious state arising from the motion of the center of mass
when shell model wave function is used and is given by [17]

2b2
fon (@) = 0[], (25)
Multiplying the right hand side of Eq. (22) by these corrections yields:
1 o0
Feo (@) =2 [ £ (9" F (@, ) f (@) T (@)- (26)
0

It is important to point out that all physical quantities studied above in the framework of the CDFM
such as n(k) and F.,(q), are expressed in terms of the weight function |f(x)|2. In the previous

work [12, 13], the weight function was obtained from the NDD of the 2PF, extracted by analyzing
elastic electron-nuclei scattering experiments. In the present work, the theoretical weight function

|f (x)|2 is expressed, by introducing the derived CDD of Eq. (3) into Eq. (16), as

11 5
E71+E(Z—20—7/2)
» 8w’ 16x%e X/’ 4 x Y
(X)) =EPC(X)—W +(4—271—§(Z—20—72)](Bj (27)
4 2 2 Y x)*
+ =y, +=(Z-20—-y,)+— —
(3572 5( 72) 571j(bj

Here, the quadrupole charge from factors are described by the undeformed fp —shell model,
where the ground state charge density distributions of these deformed nuclei are described by [18]
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Pen (1) = Pogy (1) + P (1Y 0(COS O) + ... (28)
The normalization of the spherically symmetric part p,, () gives 47r.|.p00h (r)r’dr = Ze. here, the

Poe (1) is calculated by Eq. (3), i.e., o, (F) = p,(r). The quadrupole part of the charge density
Poe (1) is related to the electric quadrupole moment Q by [18]

4z ) .
Q=2 ] [pumrar 9

The quadrupole charge form factor, which contains the non-spherical part of the charge density
distribution, is then given by [19]

Y2
<r’>( 4 .

Fe.(a) = 0 (EJ _[JZ(qr)pZCh (r)rdr, (30)
where J,(qr) is the spherical Bessel function of order two, P, is a quadrupole projection factor
given by P; =J(2J —-1)/(J +1)(2J +3), and J is the ground state angular momentum (J =7/2

for *°Co nucleus and J =3/2 for both (**Cu, ®*Cu) nuclei). According to the undeformed
fp — shell model [20], where the qudrupole moment arises from protons moving in the fp —shell of
undeformed potential, the radial dependence of the quarupole charge density distributions p,, (r) is

assumed to be the same as that of the fp —shell part p,, (r). In this study, the quadrupole moment

Q is considered as a free parameter so as to fit the theoretical form factors with those of experimental
data.
Results and Discussion

The proton momentum distributions n(k) and elastic form factors, F(q), for *°Co, ®*Cu and

®*Cu nuclei are studied by means of the CFM. The PMD of Eq. (20) is calculated in term of the CDD
and obtained firstly from theoretical consideration, as in Eq. (3) and secondly from the fit to the
electron-nuclei scattering experiments, such as 2PF [14]. The harmonic oscillator size parameters b
are chosen in such a way so as to imitate the experimental root mean square (rms) charge radii of

nuclei. The values of y, are determined by Eq. (8). In Table-1, we display the values of the

parameters b, 7, and y, together with the experimental values of the parameters c, z of 2PF

2PF
exp

distribution as well as the corresponding value of the central densities p_. (0), the root mean square

charge radii < r? >¥ 2 and Q for *°Co, ®*Cu and **Cu nuclei.

exp

Table 1- The Values of various parameters employed in the present calculations together With the value of
Pexp(0) and < r? >u2

exp

0
Nucleus | Model ¢ z pe[xlp4(] ) N >1e’/‘f’ b ¥ 4 Q
[14] [14] ( fm) 1 2
(fm) [14] ( fm)
%Co | 2PE | 4.158 | 0575 | 0.1646 3.864 2.0903 | 0.777623 | 6.40 | 150
83cy OPF | 4218 | 0596 | 0.1672 3.947 21130 | 0.636387 | 8.336 | 290
5Cy 2PF | 4252 | 0589 | 0.1695 3.954 21166 | 0.669720 | 8.220 | 300

In Figure-1, we explore the dependence of the CDD (in fm™ )onr (in fm ) for *°Co Figure-

1(a), **Cu Figure-1(b) and ®°Cu Figure-1(c) nuclei. The dashed and solid curves correspond to the

calculated CDD, using Eq. (3) with (y,, 7, =0) and (y,, 7, # 0), respectively whereas the dotted
symbols correspond to the experimental data [14]. It is obvious that the dashed curves are in poor
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agreement with the experimental data, mainly for small r. Introducing the parameter y, and y, (i.e.,

taking into account the higher orbitals) into our calculations leads to a good agreement with the
experimental data as displayed by the solid curves.

0.1 T

a)

T T T T T T T 0.1

5900 (

(b) |
63Cu

0 2

4

r(fm)

Figure 1- Dependence of the CDD on I for (a) *Co (b) *3Cu and (c) *°Cu nuclei. The dashed and solid
curves are the calculated CDD of Eg. (3) when y, =y, =0 and y, #y, #0, Table-1,
respectively. The dotted symbols are the experimental of 2PF data taken from ref. [14].

In Figure-2, we demonstrate the dependence of the n(k) (in fm®) on k (in fm™) for **Co

Figure-2(a), ®*Cu Figure-2(b) and ®*Cu Figure-2(c) nuclei. The long-dashed curves correspond to

the PMD’s of Eq. (9) evaluated by the shell model utilizing the single particle harmonic oscillator
wave functions in the momentum space. The dotted symbols and solid curves correspond to the
PMD’s obtained by the CDFM of Eq. (20) utilizing the experimental and theoretical CDD,
respectively. It is clear that the manner of the long-dashed distributions obtained by the shell model is
in dissimilarity with the distributions imitated by the CDFM. The majer property of the long-dashed
distributions is the steep slope mode, when k increases. This behavior is in disagreement with the
studies [12, 13, 21- 23] and it is recognized to the fact that the ground state shell model wave functions
given in terms of a Slater determinant does not take into consideration the significant effects of the
short range dynamical correlation functions. Therefore, the short-range repulsive features of the
nucleon-nucleon forces are responsible for the high momentum behavior of the PMD [21, 22].
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It is noted that the general structure of the dotted and solid distributions at the region of high
momentum components is almost the same for *°Co, ®*Cu and ®*Cu nuclei, where these
distributions have the property of long-tail manner at momentum region k > 2 fm™. The property of

long-tail manner obtained by the CDFM, which is in agreement with the studies [12, 13, 21- 23], is
connected to the presence of high densities p,(r) in the decomposition of Eq. (14), though their

fluctuation functions | f (x)|2 are small.

HHHH‘ L1l H‘ HHHH‘ HHHH‘ HHHH‘ HHHH‘ HHHH‘ HHHH‘ L LI
HHHH‘ HHHH‘ HHHH‘ HHHH‘ HHHH‘ HHHH‘ HHHH‘ HHHH‘ HHHH‘ HHHH‘ A

PRI EERTTH EERTITT EERTIT ERRTTTT ERRTTT EERTTTT ERRTIT AR

[N
o
<
[N
[en)

o
N
o
O*‘
N

™

107

o
N

4
k(fm-)
Figure 2- Dependence of PMD on K for (a) *Co (b) ®*Cu and (c) *®Cu nuclei. The solid curves and dotted
symbols are the calculated PMD obtained in terms of the CDFM of Eq. (20) using the theoretical
CDD of Eg. (3) and the experimental data of ref. [14], respectively. The long-dashed curves are the
calculated PMD of Eq. (9) obtained by the shell model calculation using the single-particle harmonic
oscillator wave functions in momentum representation
The elastic electron scattering charge form factors from the considered nuclei are calculated in the
framework of the CDFM through introducing the theoretical weight functions |fC(X)|2 of Eq. (27)
into Eq. (26). In Figure-3, we present the dependence of the form factors F(q) on the momentum
transfer q (in fm™) for *°Co Figure-3(a), **Cu Figure-3(b) and **Cu Figure-3(c) nuclei. Here,
the effect of the quadrupole form factor F.,(q) is considered by the undeformed 1f —2p shell
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model as given in Eg. (30). The dashed and long-dashed curves correspond to the contributions of the
monopole form factors |F¢, (q)|2and quadrupole form factors |Fcz(q)|2, respectively, whereas the

solid curves correspond to the total contribution, which is obtained as the sum of the monopole and
quadrupole form factors. Figures-3(a) - 3(b), show that the contribution of the monopole form factors
for the considered nuclei underestimated the experimental data [24] (filled circles symbols) at
1.03(q(2.08 (for *°Co), 1.02(q(1.71 (for **Cu ) and 1.02(q(1.71 (for **Cu ) respectively.

Inclusion the effect of quadrupole form factors in the calculations leads to improve the calculated
form factors, especially at the regions where the experimental data are not explained by the dashed
curve. The locations of the diffraction minima in Figures-3(a)-3(c) are approximately located in the
correct places when the contribution of the quadrupole form factors is considered in the calculations.
This figure gives the conclusion that the contribution of the quadrupole form factors gives a strong
modification to the monopole form factors and brings the calculated values very close to the
experimental data.

(a)

10 .

- E

w0/

= b '. .

g F 1 " E

100 ve N T

C '* 4

10-9: 1 | 1 | 1 ]

0 1 2
q(fm-1)
1F 3 lg 3
- ) 3 : E
3 E 3 E
i ERE E
[ 1 ~ F ;
T 1 =T 3
LL B ] LL N
E E E
104 . a
0 0.4 0.8 1.2 1.6 2 10 0 0.4 0.8 1.2 1.6 2
q(fm-) q(fm-)

Figure 3- Dependence of the charge from factors on  for (a) *°Co, (b) **Cu and (c) ®*Cu nuclei. The dashed
and long-dashed curves represent the contributions of the monopole form factors | F.,(Q) |2 and the
quadrupole form factors | F.,(q) |?, respectively. The solid curves represent the total form factors

for both contributions. The experimental data (filled circles) for °Co ®3Cu and °°Cu are taken from
ref. [24].
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Conclusions
The PMD and elastic charge form factors F(q), which are evaluated by the CDFM, are

formulated via the weight function |f(x)|2. The weight function, which is related with the local

density p.(r), is obtained from experiment and from theory. The property of the long-tail behavior of
the PMD, which is in agreement with the other studies [12, 13, 22, 23], is achieved by both theoretical
and experimental weight functions and is connected to the presence of high densities o, (r) in the
decomposition of Eq. (14), though their weight functions are small. It is found that the contribution of
the quadrupole form factors in *Co, ®cu and °°Cu nuclei, which are described by the undeformed
1f —2p shell model, is essential in obtaining a good agreement between the theoretical and

experimental form factors. It is found that the theoretical CDD of Eq. (3) employed in the

determination of theoretical weight function of Eq. (27) is capable to reproduce information about the

PMD and elastic charge form factors as do those of the experimental data.
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