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Abstract: 
In the framework of correlation method so-called coherent density fluctuation 

model (CDFM) the nucleon momentum distributions (NMD) of the ground state for 

some even mass nuclei of fp-shell like 
50

Cr, 
52

Cr and 
54

Cr isotopes are examined. 

Nucleon momentum distributions are expressed in terms of the fluctuation function 

(|f(x)|
2
) which is evaluated by means of the nucleon density distributions (NDD) of 

the nuclei and determined from theory and experiment. The main characteristic 

feature of the NMD obtained by CDFM is the existence of high-momentum 

components, for momenta k ≥ 2 fm
−1

. For completeness, also elastic electron 

scattering form factors, F(q) are evaluated within the same framework. 
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 توزيعات زخم النيكليون وعوامل التشكل للاستطارة الالكترونية المرنة لنظائر
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Cr ،
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Cr  و
54

Cr 
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 الخلاصة
 للحالة الارضية (NMD) النيكليونتم استخدام أنموذج تموج الكثافة المترابط في حساب توزيعات زخم 

50مثل نظائر الكروم  fp الواقعة ضمن القشرة النووية الزوجيةلبعض النوى 
Cr ،

52
Cr 54 و

Cr.  لقد تم التعبير
|f(x)|)بدلالة دالة التموج  NMDعن 

2
التي تحسب من خلال النتائج النظرية والعملية لتوزيعات كثافة و  (

في هذه الدراسة  .بخاصية الذيل الطويل عند قيم الزخوم العالية النيكيلوننتائج توزيعات زخم  تميزت .النيكليون
 .كل للاستطارة الالكترونية المرنة لهذه النوىعوامل التشحساب  ايضا   تم

 

1. Introduction 
The systematic investigations of the nucleon momentum distributions in nuclei extend the scope of 

the nuclear ground-state theory. Until the mid-seventies more attention in the theory had been paid to 

the study of quantities such as the binding energy and the nuclear density distribution  (r). This is 

related to the ability of the widely used Hartree-Fock theory to describe successfully these quantities, 

which, however, are not very sensitive to the dynamical short-range correlations. The experimental 

situation in recent years concerning the interaction of particles with nuclei at high energies, in 

particular the nuclear photo effect, meson absorption by nuclei, inclusive proton production in proton-

nucleus collisions, and even some phenomena at low energies such as giant multipole resonances, 

makes it possible to study additional quantities. One of them is the nucleon momentum distribution 

n(k) [1,2] which is specifically related to the processes mentioned above.  However, it has been shown 

[3] that, in principle, it is impossible to describe correctly both momentum and density distributions 

simultaneously in the Hartree-Fock theory. The reason is that the nucleon momentum distribution is 

sensitive to short-range and tensor nucleon-nucleon correlations. It reflects the peculiarities of the 
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nucleon-nucleon forces at short distances which are not included in the Hartree-Fock theory. This 

requires a correct simultaneous description of both related distributions  (r) and n(k) in the 

framework of nuclear correlation methods. 

The main characteristic feature of the nucleon momentum distribution obtained by various 

correlation methods [1,2,4-7] is the existence of high-momentum components, for momenta  k ≥ 2 

fm
−1

, due to the presence of short-range and tensor nucleon correlations. This feature of n(k) has been 

confirmed by the experimental data on inclusive and exclusive electron scattering on nuclei. In 

general, the knowledge of the momentum distribution for any nucleus is important for calculations of 

cross-sections of various kinds of nuclear reactions. The coherent density fluctuation model (CDFM) 

has been suggested in [1,2] as a model for studying characteristics of nuclear structure and nuclear 

reactions based on the local density distribution as a variable of the theory and using the essential 

results of the infinite nuclear matter theory. 

Hamoudi et al. [8-10] have studied the NMD and elastic electron scattering form factors for p-shell 

[8],  sd-shell [9] and fp- shell [10] nuclei using the framework of CDFM. They [8, 9,10]  derived an 

analytical form for the NDD based on the use of the single particle harmonic oscillator wave functions 

and the occupation number of the states. The derived NDD’s, which are applicable throughout the 

whole p-shell [8], sd-shell [9] and fp- shell [10] nuclei, have been used in the CDFM. The calculated 

NMD and elastic form factors of all considered nuclei have been in very good agreement with 

experimental data. 

In the present study, we follow the work of Hamoudi et al. [8-10] and utilize the CDFM with 

weight functions originated in terms of theoretical NDD of some fp-shell nuclei such as 
50

Cr, 
52

Cr and 
54

Cr isotopes. It is found that the theoretical weight function (|f(x)|
2
) based on the derived NDD is 

capable to give information about the NMD and elastic charge form factors as do those of the 

experimental data [11]. 

2. Theory 

The nucleon density distribution NDD of one body operator can be written as [8]: 
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Where n  is the nucleon occupation probability of the state n  ( 0n or 1 for closed shell nuclei 

and 10  n for open shell nuclei) and nR  is the radial part of the single particle harmonic 

oscillator wave function.  

The NDD form of Cr-isotopes is derived on the assumption that there are filled 1s, 1p and 1d 

orbitals and the nucleon occupation numbers in 2s, 1f and 2p orbitals are equal to, respectively, (4-α1), 

α2 and (A-40-α2+α1)  and not to 4, (A-40) and 0 as in the simple shell model. Using this assumption in 

Eq. (1), an analytical form for the ground state NDD of Cr-isotopes is obtained as: 
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where A is the nuclear mass number, b is the harmonic oscillator size parameter, the parameter α1 

characterizes the deviation of the nucleon occupation numbers from the prediction of the simple shell 

model (α1=0). The parameter α2 in Eq. (2) is assumed as a free parameter to be adjusted to obtain 

agreement with the experimental NDD.  

The normalization condition of the )(r  is given by [12]  

drrrA 2

0

)(4 


                                                                                                                      (3) 

and the mean square radius (MSR) of the considered  nuclei is given by [12] 
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The central NDD,  )0( r  is obtained from Eq. (2) as 
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then α1 is obtained from Eq. (5) as 
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1 010
3

2
b                                                                                                                      (6) 

Substituting Eq. (2) into Eq. (4) and after simplification gives: 
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In Eq’s (5) and (7), the values of the central density )0(  and  2r  are taken from the experiments 

while the parameter b is chosen in such a way as to reproduce the experimental root mean square radii 

of nuclei. 

The NMD, n(k), of the considered nuclei is studied using two distinct methods. In the first, it is 

determined by the shell model using the single particle harmonic oscillator wave functions in 

momentum representation and is given by [10]: 
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k is the momentum of the particle.  

In the second method, the NMD is determined by the Coherent Density Fluctuation Model (CDFM), 

where the mixed density is given by [1,2]  
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is the density matrix for A nucleons uniformly distributed in a sphere with radius x and density 
3

0 4/3)( xAx   . The Fermi momentum is defined as [1,2]:  
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and the step function ,
 
is defined by 
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The diagonal element of Eq. (9) gives the one-particle density as      
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In eq. (13), )(rx  and 
2

)(xf  have the following forms [1,2]: 
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The weight function of Eq. (15), determined in terms of the NDD satisfies the following normalization 

condition [1,2] 
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and holds for monotonically decreasing density NDD distribution, i.e.  .0
)(


dr

rd
  

On the basis of eq. (13), the NMD, )(kn , is expressed as [1,2]: 
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is the Fermi-momentum distribution of the system with density )(0 x . By means of Eqs. (15), (17) 

and (18), an explicit form for the NMD is expressed in terms of )(r  as  
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with normalization condition 

 3
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The elastic monopole form factor )(qF  of the target nucleus is also expressed in the CDFM as [1,2]: 
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where ),( xqF is the form factor of uniform charge density distribution given by: 
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Inclusion the corrections of the nucleon finite size )(qF fs
and the center of mass corrections 

)(qFcm in the calculations requires multiplying the form factor of equation (22) by these corrections. 

Here, )(qF fs
 is considered as free nucleon form factor which is assumed to be the same for protons and 

neutrons. This correction takes the form [12]: 
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The correction Fcm (q) removes the spurious state arising from the motion of the center of mass when 

shell model wave function is used and given by [12]: 
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It is important to point out that all physical quantities studied above in the framework of the CDFM 

such as NMD and )(qF , are expressed in terms of the weight function (|f(x)|
2
). Therefore, it is 

worthwhile trying to obtain the weight function firstly from the NDD of two- parameter Fermi (2PF) 

model extracted from the analysis of elastic electron-nuclei scattering experiments and secondly from 

theoretical considerations. The NDD of 2PF is given by [13] 
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Moreover, introducing the derived NDD of Eq. (2) into Eq. (15), we obtain the theoretical weight 

function  as   
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3. Results and Discussion 

The nucleon momentum distributions, n(k), and elastic form factors, F(q), in nuclei like 
50

Cr, 
52

Cr 

and 
54

Cr isotopes are explicitly calculated within CDFM. In order to calculate the n(k), obtained from 

Eq. (19), we need to investigate the NDD for both experiment, such as, 2PF [13] and theoretical 

consideration using Eq.(2), which  includes some parameters needed for calculations. These 

parameters have been calculated and presented in Table -1 together with other parameters employed 

for the selected isotopes used in the present work. The parameter α1 is determined by introducing the 

harmonic oscillator size parameter b, chosen such that to reproduce the measured root mean square 

radius (rms), and the experimental central density ρexp(0) into Eq. (6), while the parameter α2 is 

assumed as a free parameter to be adjusted to obtain agreement with the experimental NDD. For 

comparison the calculated rms radius 
2/12

calr   and the experimental one 
2/1

exp

2 r  are also displayed in 

Table-1. A remarkable agreement has been shown for all considered nuclei. The (4-α1), α2 and       (A-

40-α2+α1) nucleon occupations numbers for 2s, 1f and 2p orbitals, respectively, have been also 

calculated and tabulated in Table-2.  
 

Table 1- Parameters for the NDD of considered isotopes together with 
2/12

calr   and 
2/1

exp

2 r  

Nuclei 
2PF [13] )0(exp  

(fm
-3

) [13] 

2/12

calr   

2/1

exp

2 r  

[13] 

b 

(fm) 
α1 α2 c (fm) z (fm) 

50
Cr 3.941 0.566 0.16185 3.707 3.707 2.031 1.62998 9.1 

52
Cr 4.01 0.497 0.16707 3.685 3.684 2.005 1.66472 11.2 

54
Cr 4.01 0.578 0.16573 3.777 3.776 2.044 1.40939 12.3 

     

Table 2- Calculated occupation numbers of 2s, 1f and 2p orbitals of the considered isotopes 

Nuclei 
Occupation No. 

of 2s (4-α1) 

Occupation No. 

of 1f (α2) 

Occupation No. 

of 2p (A-40-α2+α1) 
50

Cr 2.37001 9.1 2.52998 
52

Cr 2.33527 11.2 2.46472 
54

Cr 2.59060 12.3 3.10939 
    

The NDD calculations for
  50

Cr, 
52

Cr and 
54

Cr isotopes obtained using Eq. (2) with α1=α2=0 (blue 

curve) and α1≠α2≠0 (red curve) are presented in Figure-1 along with experimental data [8] denoted by 

the filled circle symbols. This figure shows that considering the parameters α1 and α2 in the 

calculations leads to a satisfactory results for NDD between the red curves and the experimental data 

of 2PF (the filled circle symbols). It also shows a poor agreement between the blue curves and the 

experimental data especially in the region of small r, i.e., 0  r  2.5 fm. 

Figure-2 shows the n(k) (in fm
3
) versus k (fm

-1
) for the selected isotopes calculated with shell 

model using single particle harmonic oscillator wave function in momentum space. The experimental 

and theoretical n(k) obtained by CDFM, using experimental and theoretical NDD in Eq. (19), have 

been also presented in this figure. It is clearly seen that the calculated n(k) distributions using shell 

model has a steep slope behavior, which are in disagreement with the studies [1, 2, 14-16]. This 

disagreement refer to the fact that the ground state shell model Slater determinate wave function does 

not take  into account the important effect of the short range dynamical correlation function which is 

responsible for the behavior of n(k) in the high momentum [15, 16]. The calculated n(k) obtained by 

CDFM for the interested nuclei are much closer to the experimental data than the shell model 

calculation. The CDFM corrected the steep slope behavior of the n(k) curves to a long tail manner for 
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momenta k ≥ 2 fm
-1

. The property of long-tail manner obtained by CDFM is connected to the presence 

of high densities ρx(r) in the decomposition of Eq. (14), though their fluctuation function |f(x)|
2
 are 

small. 

The elastic electron scattering form factors for the considered isotopes are calculated in the 

framework of the CDFM by introducing the theoretical weight functions of the Eq. (27) into Eq. (21). 

The calculated form factors (solid curves) are plotted versus q as shown in Figure-3 for 
50

Cr, 
52

Cr and 
54

Cr isotopes where the filled circle symbols are the experimental data [11]. This figure shows that the 

experimental form factors of these nuclei are in a good agreement with those of calculated result up to 

momentum transfer q ≈1  fm
-1

, whereas for  q > 1 fm
-1

 the calculated form factors underestimate these 

experimental data. 

4. Conclusions        
The nucleon momentum distribution can be easily calculated by means of the weight function 

which is extracted from experiment and theory. It was shown that the nucleon momentum distribution 

is close to the other studies [14-16] and has a strongly expressed high-momentum tail. High-

momentum components of the distribution n(k) in CDFM are related to the existence of high densities 

ρx(r) in the decomposition of Eq. (14), though their fluctuation function |f(x)|
2
 are small.  

  

 
 
Figure 1- The NDD versus r for 

50
Cr, 

52
Cr and 

54
Cr isotopes. The blue and red curves are the calculated NDD of 

Eq. (2) when α1=α2=0  and α1≠α2≠0, respectively. The filled circle symbols are the experimental data 

taken from ref. [13]. 
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Figure 2-  The NMD versus k for 
50

Cr, 
52

Cr and 
54

Cr isotopes. The red curves and filled circle symbols are the 

calculated NMD expressed by the CDFM of Eq. (19) using the theoretical NDD of Eq. (2) and the 

experimental data of ref. [13], respectively. The blue curves are the calculated NMD of Eq. (8) 

obtained by the shell model calculation using the single-particle harmonic oscillator wave functions 

in momentum representation. 
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Figure 3-The elastic form factors for 

50
Cr, 

52
Cr and 

54
Cr isotopes. The solid curves are the form factors 

calculated using Eq. (21). The filled circle symbols are the experimental data taken from ref. [11]. 
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