Kadhim and Kadhem Iragi Journal of Science, 2023, Vol. 64, No. 6, pp: 3011-3021
DOI: 10.24996/ijs.2023.64.6.29

N/
Iraqi

Journal of

Science

ISSN: 0067-2904

Spatio-Temporal Mixture Model for Identifying Risk Levels of COVID-19
Pandemic in Iraq

Sadeq A. Kadhim*, Safaa K. Kadhem?
'Higer Education and Scientific Research Ministry, Iraq
2College of Administration and Economics, AL Muthanna University, AL Muthanna, Iraq

Received: 20/5/2022 Accepted: 7/9/2022 Published: 30/6/2023

Abstract

This paper focuses on choosing a spatial mixture model with implicitly includes
the time to represent the relative risks of COVID-19 pandemic using an appropriate
model selection criterion. For this purpose, a more recent criterion so-called the
widely Akaike information criterion (WAIC) is used which we believe that its use so
limitedly in the context of relative risk modelling. In addition, a graphical method is
adopted that is based on a spatial-temporal predictive posterior distribution to select
the best model yielding the best predictive accuracy. By applying this model selection
criterion, we seek to identify the levels of relative risk, which implicitly represents the
determination of the number of the model components of all regions over independent
time periods. The estimation of parameters and the model selection are both
performed in a Bayesian framework. Also, the means of estimated relative risk for the
selected mixture model are mapped to give a clearer picture of distributing the disease
risks in each district.

Keywords: Mixture model, Widely Akaike information criterion, Relative risk,
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1. Introduction

The health data about the spreading of a certain disease is typically reported as a statistical
summary or information that differs from one region to region. This variation in data forms is
called spatial variation or heterogeneity. One of the challenges is how to accommodate or
capture this heterogeneity in data that can be not easy to modelling using standard statistical
models. On the other side, the spatial modelling of heterogeneity maybe not enough to describe
the evolution of disease over time. Hence, inserting time, as another dimension with the space,
can form an important role in analyzing precisely the spread of the disease. Besides, mapping
of this spatial-temporal heterogeneity can appear to the underlying structure of scattered
infections data [1].

There have been many literatures focusing on the development of spatial and temporal
modeling methods to accommodate this type of data heterogeneity. In the literature on relative
risk, the measure of standardized mortality ratio (SMR) is the most often used as an
epidemiological approach to map relative risk. However, this path has some cons. This measure
gives unstable results, especially in small areas [2]. In addition, this approach cannot identify
the high or low levels of risk of disease in infected regions under the research [3]. Despite of
existence some traditional methods to classify health areas according to their relative risk such
as the standardized mortality ratio (SMR) [2] and the Gamma—Poisson model which has been
introduced abundantly by [4, 5, 6]. But, those methods have some disadvantages in describing
the spatial distribution of the risk of the disease. To overcome these limitations. A flexible
methodology called mixture modeling has long been used to treat such heterogeneity in data
[7]. They have been used in many articles introduced to analyse the disease nature. For instance,
to reveal the extreme mortality risks of breast cancer and Scottish lip cancer, a comparison
using two types of mixture models was implemented by [8] to how well each of these models
determines the districts which have high risks. In [9], the authors developed a spatial mixture
model to analyse the mortality of cancer of the larynx data among females in France. K. C.
Florez et al. [10] used a Poisson mixture model to estimate the relative risk and cluster detection
for the reported cases of varicella disease in Spain. S. K. Kadhem and S. A. Kadhim [11]
Adopted a Markov model to analyse the absorbing case (death) of COVID-19 patients as a
criterion to measure the risk rate in the Iraqi population. The contribution of this paper is to
develop spatial modelling for the evolution of the COVID-19 infections in Iraq through
independent fixed times. Actually, this work is developed from a previous work introduced by
[12], who shows that spatial modelling using mixture models is an appropriate approach to
analyse the COVID-19 infections. In other words, they modelled the relative risk of this
pandemic through different fixed periods and each period has its own mixture model. The issue
of determination of levels of relative risk, i.e. model selection has special importance in
identifying and evaluating the disease risk which can form a key point in the working of health
systems and also controls diseases [1]. So, this paper also contributes by introducing a model
selection methodology using two approaches. The first approach is the model selection criterion
which is so-called the widely Akaike information criterion (WAIC) introduced by [13]. The
properties of this criterion were investigated by [14] and [15] using an application that included
a hidden mixture modelling. The second approach is confined to supporting the model selected
in the first approach by checking its predictive accuracy using the predictive posterior
distribution. At each period, the model is selected that gives the best goodness of fit to the data
using the above two tools. The aim of conducting such a study is to stimulate health
organizations in revising their future plans for such infectious diseases. The results of this study
give a warning to health organizations by determining the most affected regions.
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The structure of this paper is distributed as follows. In Section 2, the definition of the
proposed model and approaches to model selection under the Bayesian principle is introduced.
Section 3 includes the description of infection data of COVID19. In section 4, all results
regarding the model estimation and selection are presented. Finally, section 5 shows the
conclusions.

2. Material and methods
2.1 Bayesian spatial-temporal mixture model

Assume that there is a disease occurring within n regions and is also observed within
T successive fixed time periods. The resulting observed infections count from that disease can
defineas y;; where i = 1,2,...,n; t = 1,2,...,T . For relatively rare diseases, the observed
infections count yit is often modelled as a standard Poisson model so that

Yie ~ Pois(6;), (1
where 0;, is the mean parameter and its probability mass function is given by [16]:
eit}’ite—eit
(1 810) = —————. (2)
Yit:

Since disease occurs within a population at risk for the disease, the mean 6;; has to be
modified by a population effect in some way. This modification is often done by two indicators
such that

Oic = Eitlir - (3)

The first indicator E;; refers to the population at risk and is often computed as the expected

count. The E;; is estimated based on a population number [9]:
?:1 ZZ=1 Vjt )
?:1 23;:1 th '

where N;, is the size of the population of it"region that observed at time t (we here assume
that population size for each region is fixed over all time periods) and L is the number of all
regions under study. The second indicator A;; is known as a relative risk which is computed as
Aip = ? . Since the values of y;; and E;; are not fixed and can change from one region to

Eit = Ny X

it

another region and from one time to another time, the values of relative risk as a result are
affected and heterogeneous. Our focus is on modelling the heterogeneity in the values of relative
risk which can be accommodated by a mixture model that takes into account the spatial trend
as well the temporal of disease. Our focus is on modelling the heterogeneity in the values of
relative risk which can be accommodated by a mixture model that takes into account the spatial
trend as well as the temporal disease. In this case, a finite spatial-temporal mixture with K
components will be developed to accommodate the heterogeneity in the relative risks. That
means, the model in equation (2) is extended such that the mixture density, which is the
weighted sum of Poisson densities for each region i and each time point t, is obtained as follows
[17]:

K
Qi 2, Ey) = Z Wi f(yit' ljt’ Eit)' (5)
j=1

With 0 < wj, < 1and X5_; wj, = 1 forall ¢,
where Q = (4, w) represents a collection of the model parameters and w;; refers to the mixing
weighing. In the context of latent class models, a process called the hidden allocation or data
augmentation [18] is often included to interpretation purposes and to simplify the computational
complexities of such models [19]. Let z = {z;;},i = 1,2,....n;t = 1,2,...,T; j =
1,2,...,K be an allocation vector that indicate the component to which y;; belongs, where K
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refers to the components or groups number in the model, so that z;;, € {0,1} and Z;‘:l zije = 1.
The pmf of the complete data (y;;; z;;¢) is

K
fie zije | AW, E) = HW;Ut P[}’itht,Eit]ZUt- (6)
j=1
The joint complete posterior distribution for the model parameters can be given by:
fAw,zly, E) « f(y,z|Aw,E)f(zlw)f (D) f (w), (7)

where the first term in equation (7) represents the complete data likelihood, the second term
represents the posterior of allocation variables, the third term represents the prior on the relative
risk parameter and the fourth term represents the prior on the mixing weights. For completing
the specification of the Bayesian model, the priors of unknown model parameters have to be
specified. The prior on the mixing weights w are given independently Dirichlet distribution
with hyper-parameter 7:
fwly, z) < [T, wj};f””ftﬂ = Dirichelt (R;; +n;,), foreacht  (8)
where nj; > 0 foreach t is hyper-parameters of the Dirichlet distribution and R; =
Yic1 e, = 1,2,...,K, denote the allocation sizes. The prior on the component-specific
relative risk parameter A, we independently assume a Gamma distribution as a conjugate prior
[20], on each distinct relative risk parameter 1,;; = A; such that

f(4j|a, B)~ Gammal(a, p),

~ /qu—l e—ﬁljﬁa

T

where a and 8 are hyper-parameters that represent the shape and rate or inverse scale

parameters of the Gamma distribution respectively. The Gamma prior density above has mean

a /B and variance a /2. Sampling from the relative risk parameter and the parameter of mixing

weights are implemented using the Gibbs sampler, an MCMC method that is based on sampling

from conditional posterior distribution instead of the joint posterior. Given the observations, y;;,
the fully conditional posterior distribution of allocation probability z; ;. can be obtained as

1 ; Wt Pois(yj¢|EjtAjt)
Zit = ':A:W:E x w;.Pois i E,A = J -
f@ie = jlyie ) it (yltl jt ]t) 5K wiPois (v lEicie)

4>0a>0 B>0,

€)

2.2Data source

This article focuses only on the observed number of infected people for the period from
March to December 2021 which has the highest infections in Irag. All information about the
population of each province, infections and relative risk (the parameter of interest) are attached
in the appendix. The number of infected people was directly obtained from the world health
organization (WHO) (World Health Organization, 2021)[21]. According to the central
statistical organization of Iraq (Central Statistical Organization of Irag, 2019) (CSO)[22], the
estimated population denoted by n; was provided based on the estimated census of 2019. The
parameter of relative risk E;; in equation 4 is computed based on the number of observed
infections and populations for each province also provided in the appendix

2.3Determining the relative risk levels

This section is interested in determining for the spatial levels of relative risk of pandemic
over independent times. For this purpose, two approaches have been employed. In the first
approach, the WAIC model selection criterion is used to choose the best model to fit the
infection data among several candidate models. In the second approach, a graphical tool which
is represented by the predictive posterior distribution of infection data is adopted. This former
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step is to examine the predictive accuracy of the model selected in the first approach.

2.3.1The WAIC
Assume that a sequence of count data set y = {y;;},i = 1,2,...,nand t = 1,2,...,T
that follows a mixture Poisson distribution with the parameters collection: (4, w,E), and a
sequence of latent variables z = {z;;},i = 1,2,...,m;j = 1,2,...,K; t =1,2,...,T in
which each z;;, is specified for each corresponding observation y;,, the integrated pointwise
predictive density (ilppd) can be defined as follows:
n T

ilppdy = log 1_[ 1_[ POiSpost Yie),

i=1 t=1

= Y, ZZ=1 log E{zz w} [POiS(yijt |Zit» A, W) |)’],

ZZf f f Pois(yit|zije , A, w)Pois (2,4, w|y)dz dA dw (10)

i=1t=
The integrals in equatlon 10 can be approximated by the posterior draws of the model

parameters (z™, A, w™) that were obtained over the Gibbs sampling. Hence, the approximated
ilppd can be then given as follows

uppd, = z z Z log Pois (y;¢ M( () w(r(’,l,)o, (11)
L]t L]t

m=1i=1t=

Where A7) (™ and w' (m) represent the m*" state based relative risk and risk weight, respectively.
L]t L]t

To avoid the bias, Gelman et al. (2014) [21] proposed adding a correction term or so-called

effect number of parameters py, 4;¢c Which is based on computed the variance of individual terms

in the inpd WhiCh is defined as follows:

Pwaic = ZZ Vi [l0g Pois (i 12,4, w)],

i=1t=

)| 2

ijt ijt

= Zm 12 1Zt 1Vz/1w[10gP015 <3’it

The WAIC is constructed as follows:
WAIC = —2uppd, + 2pwaic. (13)

2.3.2The predictive posterior distribution
After the implementation of the model selection step using the criterion presented in the
previous section, the posterior predictive distribution (PPD [21] can be used as a graphical tool

to assess the adequacy of the selected model. Given the estimation of the model parameters
sampling through an MCMC, (w](tm),)lj(l”), =1,2,...,M) and observed infections data
Yy = Vit Vorr---»Yne) fOr each region i at the timet, the PPD for predicted infections,
Yip i = 1,2,...,n; t = 1,2,...,T of the Poisson mixture model can be defined as follows:

Pr(y;ly) = f f Pois(y; |14, w,E, 2)Pois, o5 (A, W, E, z|y)dzdA, (14)
A Yz
where Poisy,s: (A, w, E, z|y) represents the joint complete posterior distribution. Given

samples of the relative risk parameter, /1( ), and latent variables, z( ) are drawn from an
MCMC run, the predictive data of a P0|sson mixture model can be approximated as

Vir~ Pois( i (m));i =12,..nt=12,..,T. (15)

l]t
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2.4 The model implementation

For each time period, one model is specified. The estimation of the model parameters for
each time period is obtained separately by running the Gibbs sampler. For the relative risk
parameter A a non-informative Gamma hyperprior is used with hyperparameters: a« = 0.001
and g = 0.001 and for the allocation probabilities w the Dirichlet distribution is considered:
w~ Dir(w;,n) as a prior distribution where n =1V j. The number of components K is
assumed to be fixed but unknown number of components. In other words, a maximum term on
the number of components which is K4, = 6,1. €. K = 2,3,4,5, K4, Of models for each
time period that being fitted for our data. Selecting the level of relative risk for all provinces at
each time period t is identified using the WAIC criterion. After that, a graphical checking by
the posterior predictive distribution to examine the goodness of fit of the model selected by the
criterion is done. The sampler is run for 30000 iterations and the last 15000 iterations were
adopted for inference. The problem of the identifiability in model was addressed by imposing
artificial constraints on the relative risk parameter such that: 1, < A, <...< Ag. The
convergence of the posterior distributions is verified by running three different chains for every
parameter with different initial values. The convergence of the model is checked using the
Gelman-Rubin statistic. For stability, the precision of the posterior mean of parameters is
verified by checking the Monte Carlo error. Three different chains were run together to check
the convergence for all parameters of the model using the Gelman-Rubin statistic. For checking
the precision of the posterior mean for all parameters, the Monte Carlo error is employed for
this purpose.

3. Discussion of experimental results

The data of COVID19 infections for the period from March-December 2021 based on a
Bayesian spatio-temporal Poisson mixture model is analysed. In the first stage, the results of
model selection are presented in Table 1 which illustrates that the provinces take different
choices with respect to the levels (components) of the relative risk. These different levels of
relative risk suggesting to the heterogeneity in infections through the different time periods. As
we can see from Table 1 that two levels of relative risk are enough to accommodate the
heterogeneity in the number of infected people in the months: March, April and June, while
three levels of relative risk are representing the heterogeneity in infections for all rest of the
months. Two levels of relative risk can be interpreted as the more stable for infections in
concerning months of March, April and June throughout Iraq which are probably classified as
low and high risk. On the other hand, the relative risk is classified as three levels in the rest
months that indicate to unstable infection numbers which can be classified as low, medium and
high. The distribution of the spatio- temporal areal allocation to the levels (components) of the
relative risk over time is given in Figure 2 where each map is allocated to a certain time period.
This different classification in levels of relative risk at different time periods can be important
for the health organizations in Iraq to diagnose in which month the increasing in levels of risk
is. The goodness of fit is also examined by the posterior predictive distribution for the models
selected by the WAIC. The 95% prediction interval obtained by the posterior predictive
distributions and the mean of observed infections for each province and each time period were
drawn as shown in Figure 1 which appears somewhat match. The estimation of the model
parameters selected by WAIC for each time period is presented in Table 2. From the same table,
in March 2021, it can be seen that about 55% of provinces were assigned to a low level of
relative risk of COVID-19 and about 45% were assigned to a high level. In April 2021, 60%
were assigned to a low level equal to 0.801 and 40% of provinces were assigned to a high level
with a relative risk average equal to 1.779. In May 2021, with an average of 1.878, about 44%
of provinces were assigned to a high level of risk. About 60% of provinces also were assigned
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to a high level with an average equaling 1.710 in June 2021. In July 2021, most provinces were
assigned to a medium level of risk with an average equal to 1.285. From August to December
2021, provinces with high proportions were assigned to a low level of relative risk of COVID-

19 with averages: 0.888, 0.988, 0.971, 0.765 and 0.723 respectively.

Table 1: The results of the model selection over the period from March to December 2021.The
numbers in bold font represent the smallest value introduced by the WAIC among values of the
models fitted to the data.

WAIC
187.775
189.056
192,112
194.665
195.512
August
WAIC

184.877
183.596
185.239
187.166
188.971

~ o o1 B W N

o OB W N

Pwaic
5.443
7.911
9.776
9.714
10.116

Pwaic

4.012
5.776
8.161
9.674
11.017

WAIC

183.737
185.036
187.555
187.906
188.099

September

WAIC

187.332
186.665
188.654
190.120
191.306

Pwaic
5.099
6.971
8.226
8.881
9.151

Pwaic

4.441
6.661
8.139
9.887
10.443

WAIC

187.766
187.001
188.221
189.763
190.141
October
WAIC

185.761
183.221
185.873
187.111
190.344

Pwaic
4.644
5.099
6.222
7.889
9.031

Pwaic

3.996
5.744
7.404
7.955

10.532

WAIC
179.556
181.00
182.00
184.00
186.00

November

WAIC

194.985
193.087
204.826
210.471
213.829

Pwaic
6.323
6.788
7.256
9.121
9.202

Pwaic

5774
7.358
9.225
11.176
15.851

WAIC

185.655
184.111
185.665
187.298
188.712

December

WAIC

190.985
188.074
191.573
194.363
198.855

Pwaic
5.258
5.638
6.551
8.467
9.323

Pwaic

4.816
5.916
8.664
11.129
13.397

Table 2: Results of the estimation of the model parameters selected by the model selection

wj Aj
0.592 0.801
0.408 1.799

September

Aj wj  Aj
0.544 0.988
0.333 1.266
0.123 2.117

wj Aj
0.284 0.344
0.273 0.952
0.443 1.878

October

wj Aj
0.667 0.971
0.112 1411
0.221 2.993

criterion of all provinces over periods: March-December 2021.

wj Aj
0.388 0.901
0.612 1.710

November

Aj wj
0.556 0.765
0.166 1.208
0.278 2.687

A

0.112 0.436
0.611 1.285
0.277 2.055
December
wj Aj
0.502 0.723
0.277 1.395
0.221 2.916
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Figure 1: The best spatial predictive performance for the models selected by the WAIC over
period from March-December 2021, represented by 95\% posterior predictive intervals of the

model.
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Relative Risk: March 2021 Relative Risk: June 2021
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Relative Risk: November 2021 Relative Risk: October 2021

Relative Risk: April 2021 Relative Risk: December 2021

- e 1 7
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Figure 2: Relative risk—based spatial classification of all provinces on the basis of the best
model fits the infections data over the period from March to December 2021.

4. Conclusion

This paper introduced a Bayesian spatio-temporal mixture model that classifies the
provinces of Iraq infected by COVID-19 pandemic into levels of relative risk over fixed time
periods. In other words, we developed a spatio-temporal mixture model in which the model is
based on an unknown fixed number of risk levels (components) and all provinces under study
has been assigned to range of relative risk, over different time periods, by means of independent
allocation variables. The identification of levels of time-specific spatial relative risk is
implemented by using WAIC criterion. Those identified levels of risk can have special
importance for governments to review their health systems and also controls diseases. At the
beginning of a pandemic, especially in March, April and June the situation in Iraq is classified
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into two cases: low and high levels of risk with a high tendency to have a low risk. After that,
with increasing the number of infections, the situation in the next months became more
complicated due to appear high heterogeneity in the infections, hence, increasing the
classification of levels of relative risk. Although, all provinces are tended to have a lower level
of risk indicating a stable health case. In comparison, our proposed methodology, which is
based on the classification principle is superior to the standardized mortality ratio (SMR)
method introduced by [2], as the former is able to identify the high or low levels of the risk of
disease in infected regions.

In the development of our methodology, we seek to include as many as covariates in the
model in order to obtain a more accurate estimation. Hence, the challenge that can be
encountered in this case is to increase the dimensions of the model which needs to estimation
method more developed.
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